The Explanation for Dark Matter and Dark Energy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33093
The Explanation for Dark Matter and Dark Energy

Authors: Richard Lewis

Abstract:

The following assumptions of the Big Bang theory are challenged and found to be false: the cosmological principle, the assumption that all matter formed at the same time and the assumption regarding the cause of the cosmic microwave background radiation. The evolution of the universe is described based on the conclusion that the universe is finite with a space boundary. This conclusion is reached by ruling out the possibility of an infinite universe or a universe which is finite with no boundary. In a finite universe, the centre of the universe can be located with reference to our home galaxy (The Milky Way) using the speed relative to the Cosmic Microwave Background (CMB) rest frame and Hubble's law. This places our home galaxy at a distance of approximately 26 million light years from the centre of the universe. Because we are making observations from a point relatively close to the centre of the universe, the universe appears to be isotropic and homogeneous but this is not the case. The CMB is coming from a source located within the event horizon of the universe. There is sufficient mass in the universe to create an event horizon at the Schwarzschild radius. Galaxies form over time due to the energy released by the expansion of space. Conservation of energy must consider total energy which is mass (+ve) plus energy (+ve) plus spacetime curvature (-ve) so that the total energy of the universe is always zero. The predominant position of galaxy formation moves over time from the centre of the universe towards the boundary so that today the majority of new galaxy formation is taking place beyond our horizon of observation at 14 billion light years.

Keywords: Cosmic microwave background, dark energy, dark matter, evolution of the universe.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 905

References:


[1] Andrew Liddle (2003). An Introduction to Modern Cosmology (2nd ed.). John Wiley & Sons. p. 2. ISBN 978-0-470-84835-7.
[2] William C. Keel (2007). The Road to Galaxy Formation (2nd ed.). Springer-Praxis. p.2. ISBN 978-3-540-72534-3
[3] Alexander Friedmann (1923). Die Welt als Raum und Zeit (The World as Space and Time). Ostwalds Klassiker der exakten Wissenschaften. ISBN 978-3-8171-3287-4. OCLC 248202523..
[4] Eduard Abramovich Tropp; Viktor Ya. Frenkel; Artur Davidovich Chernin (1993). Alexander A. Friedmann: The Man who Made the Universe Expand. Cambridge University Press. P. 219. ISBN 978-0-521-38470-4.
[5] Lemaitre, Georges (1927). “Un univers homogène de masses constante et de rayon croissant rendant compte de la vitesse radiale des nébuleuses extra-galactiques”. Annales de la Société Scientifique de Bruxelles. A47 (5): 49-56.
[6] Helge Kragh: “The most philosophically of all the sciences”: Karl Popper and physical cosmology. Archived 2013-07-20 at the Wayback Machine (2012)
[7] “Australian study backs major assumption of cosmology” 17 September 2012
[8] “Simple but challenging: the Universe according to Planck”. ESA Science & Technology. October 5, 2016 (March 21, 2013) Retrieved October 29, 2016.
[9] Penzias, A. A.; Wilson, R. W. (1965). "A Measurement of Excess Antenna Temperature at 4080 Mc/s". The Astrophysical Journal. 142 (1): 419–421. Bibcode:1965ApJ...142..419P. doi:10.1086/148307.
[10] Smoot Group (28 March 1996). "The Cosmic Microwave Background Radiation". Lawrence Berkeley Lab. Retrieved 2008-12-11.
[11] Kaku, M. (2014). “First Second of the Big Bang”. How the Universe Works. Discovery Science.
[12] Wright, E.L. (2004). “Theoretical Overview of Cosmic Microwave Background Anisotropy”. In W. L. Fredman. Measuring and Modelling the Universe. Carnegie Observatories Astrophysics Series. Cambridge University Press. P.291.
[13] The Planck Collaboration (2014), “Planck 2013 results. XXVII. Doppler boosting of the CMB: Eppur is move”, Astronomy, 571 (27): A27
[14] Planck Collaboration (2018). Planck 2018 results. VI. Cosmological parameters.
[15] “Planck reveals an almost perfect universe”. Planck. Paris: ESA. 21 March 2013.
[16] Kragh 1996, p. 319: “At the same time that observations tipped the balance definitely in favor of relativistic big-bang theory, …”
[17] Wright, Edward L. (24 May 2013). “Frequently Asked Questions in Cosmology: What is the evidence for the Big Bang?”. Ned Wright’s Cosmology Tutorial. Los Angeles: Division of Astronomy & Astrophysics, University of California, Los Angeles.
[18] Landau & Lifshitz 1975, p. 228 “… the general theory of relativity… was established by Einstein, and represents probably the most beautiful of all existing physical theories.”
[19] O’Connor, J.J.; Robertson, E.F. (May 1996). “General relativity”. History Topics: Mathematical Physics Index, Scotland: School of Mathematics and Statistics, University of St. Andrews.
[20] Moshe Carmeli (2008). Relativity: Modern Large-Scale Structures of the Cosmos. Pp.92, 93. World Scientific Publishing
[21] Grossmann for the mathematical part and Einstein for the physical part (1913). Entwurf einer verallgemeinerten Relativitatstheorie und einer Theorie der Gravitation (Outline of a Generalized Theory of Relativity and of a Theory of Gravitation), Zeitschrift fur Mathematik und Physik, 62, 225-261.
[22] Biron, Lauren (7 April 2015). “Our universe is Flat”. Symmetry magazine.org. FermiLab/SLAC
[23] Kogut, Alan; et al. (December 10, 1993). “Dipole anisotropy in the COBE differential microwave radiometers first-year sky maps”.
[24] The Planck Collaboration (2020), “Planck 2018 results. I. Overview, and the cosmological legacy of Planck”, Astronomy and Astrophysics, 641: A1
[25] Hotokezaka, K.; et al. (8 July 2019). “A Hubble constant measurement from superluminal motion of the jet in GW170817”.
[26] Mukherjee, S.; Ghosh, A.; Graham, M.J.; Karathanasis, C.; et al. (29 September 2020). “First measurement of the Hubble parameter from bright binary black hole GW190521”.
[27] Pesce, D.W.; Braatz, J.A.; Reid, M.J.; Riess, A. G.; et al. (26 February 2020). “The Megamaser Cosmology project. XIII. Combined Hubble Constant Constraints”. The Astrophysical Journal 891: L1.
[28] Shajib, A. J.; Birrer, S.; Treu, T.; Agnello, A.; et al. (14 October 2019). “STRIDES: A 3.9 per cent measurement of the Hubble constant from the strongly lensed system DES J0408-5354”.
[29] Dutta, Koushik; Roy, Anirban; Ruchika, Richika; Sen, Anjan A.; Sheikh-Jabbari, M. M. (20 August 2019). “Cosmology with Low-Redshift Observations: No Signal For New Physics”. Phys. Rev. D. 100 (10): 10351.
[30] Overbye, Dennis (20 February 2017). "Cosmos Controversy: The Universe Is Expanding, but How Fast?". New York Times. Retrieved 21 February 2017.
[31] Nussbaumer, H.; Bieri, L. (2011). “Who discovered the expanding universe?”. The Observatory. 131 (6): 394-398.
[32] Livio, M.; Riess, A. (2013). “Measuring the Hubble constant”. Physics Today. 66 (10): 41
[33] "Dark Matter". CERN Physics. 20 January 2012.
[34] Trimble, V. (1987). “Existence and nature of dark matter in the universe”. Annual Review of Astronomy and Astrophysics. 25: 425-472.
[35] Bertone, G.; Hooper, D.; Silk, J. (2005). “Particle dark matter: Evidence, candidates and constraints”. Physics Reports. 405 (5-6): 279-390
[36] De Swart, J.G.; Bertone, G.; van Dongen, J. (2017). “How dark matter came to matter”. Nature Astronomy. 1 (59): 0059.
[37] Freeman, K.C. (June 1970). “On the Disks of Spiral and S0 Galaxies”. The Astrophysical Journal. 160: 811-830
[38] Zwicky, F. (1937). “On the Masses of Nebulae and of Clusters of Nebulae”. The Astrophysical Journal. 86: 217-246.
[39] Peebles, P. J. E.; Ratra, Bharat (2003). "The cosmological constant and dark energy". Reviews of Modern Physics. 75 (2): 559–606. arXiv:astro-ph/0207347. Bibcode:2003RvMP...75..559P. doi:10.1103/RevModPhys.75.559. in Conf. Rec. 1995 World Academy of Science, Engineering and Technology Int. Conf. Communications, pp. 3–8.
[40] Paul J. Steinhardt; Neil Turok (2006). “Why the cosmological constant is small and positive”. Science. 312 (5777): 1180-1183.
[41] Riess, Adam G.; Filippenko; Challis; Clocchiatti; Diercks; Garnavich; Gilliland; Hogan; Jha; Kirshner; Leibundgut; Phillips; Reiss; Schmidt; Schommer; Smith; Spyromilio; Stubbs; Suntzeff; Tonry (1998). "Observational evidence from supernovae for an accelerating universe and a cosmological constant". Astronomical Journal. 116 (3): 1009–1038.
[42] Perlmutter, S.;Aldering; Goldhaber; Knop; Nugent; Castro; Deustua; Fabbro; Goobar; Groom; Hook; Kim; Kim; Lee; Nunes; Pain; Pennypacker; Quimby; Lidman; Ellis; Irwin; McMahon; Ruiz-Lapuente; Walton; Schaefer; Boyle; Filippenko; Matheson; Fruchter; et al. (1999). “Measurements of Omega and Lambda from 42 high redshift supernovae”. Astrophysical Journal. 517 (2): 565-586
[43] K. Schwarzschild, "Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie", Sitzungsberichte der Deutschen Akademie der Wissenschaften zu Berlin, Klasse fur Mathematik, Physik, und Technik (1916) pp 189.
[44] Richard Lewis. The Unification of Physics. International Journal of Recent Advances in Physics (IJRAP) Vol 9,No 4, November 2020
[45] Barish, Barry C.; Weiss, Rainer (October 1999). “LIGO and the Detection of Gravitational Waves”. Physics Today. 52 (10): 44
[46] Castelvecchi, Davide (15 September 2015), “Hunt for gravitational waves to resume after massive upgrade: LIGO experiment now has better chance of detecting ripples in space-time”, Nature, 525 (7569): 301-302.