Search results for: Sawada-Kotera-Kadomtsev-Petviashivili equation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1093

Search results for: Sawada-Kotera-Kadomtsev-Petviashivili equation

283 Study of Natural Convection Heat Transfer of Plate-Fin Heat Sink in a Closed Enclosure

Authors: Han-Taw Chen, Tzu-Hsiang Lin, Chung-Hou Lai

Abstract:

The present study applies the inverse method and three-dimensional CFD commercial software in conjunction with the experimental temperature data to investigate the heat transfer and fluid flow characteristics of the plate-fin heat sink in a rectangular closed enclosure. The inverse method with the finite difference method and the experimental temperature data is applied to determine the approximate heat transfer coefficient. Later, based on the obtained results, the zero-equation turbulence model is used to obtain the heat transfer and fluid flow characteristics between two fins. T0 validate the accuracy of the results obtained, the comparison of the heat transfer coefficient is made. The obtained temperature at selected measurement locations of the fin is also compared with experimental data. The effect of the height of the rectangular enclosure on the obtained results is discussed.

Keywords: Inverse method, FLUENT, Plate-fin heat sink, Heat transfer characteristics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2259
282 Forest Growth Simulation: Tropical Rain Forest Stand Table Projection

Authors: Yasmin Yahya, Roslan Ismail, Samreth Vanna, Khorn Saret

Abstract:

The study on the tree growth for four species groups of commercial timber in Koh Kong province, Cambodia-s tropical rainforest is described. The simulation for these four groups had been successfully developed in the 5-year interval through year-60. Data were obtained from twenty permanent sample plots in the duration of thirteen years. The aim for this study was to develop stand table simulation system of tree growth by the species group. There were five steps involved in the development of the tree growth simulation: aggregate the tree species into meaningful groups by using cluster analysis; allocate the trees in the diameter classes by the species group; observe the diameter movement of the species group. The diameter growth rate, mortality rate and recruitment rate were calculated by using some mathematical formula. Simulation equation had been created by combining those parameters. Result showed the dissimilarity of the diameter growth among species groups.

Keywords: cluster analysis, diameter growth, simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2223
281 Contribution to the Analytical Study of Barrier Surface Waves: Decomposition of the Solution

Authors: T. Zitoun, M. Bouhadef

Abstract:

When a partially or completely immersed solid moves in a liquid such as water, it undergoes a force called hydrodynamic drag. Reducing this force has always been the objective of hydrodynamic engineers to make water slide better on submerged bodies. This paper deals with the examination of the different terms composing the analytical solution of the flow over an obstacle embedded at the bottom of a hydraulic channel. We have chosen to use a linear method to study a two-dimensional flow over an obstacle, in order to understand the evolution of the drag. We set the following assumptions: incompressible inviscid fluid, irrotational flow, low obstacle height compared to the water height. Those assumptions allow overcoming the difficulties associated with modelling these waves. We will mathematically formulate the equations that allow the determination of the stream function, and then the free surface equation. A similar method is used to determine the exact analytical solution for an obstacle in the shape of a sinusoidal arch.

Keywords: Free-surface wave, inviscid fluid, analytical solution, hydraulic channel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 805
280 Theoretical Investigation on the Dynamic Characteristics of One Degree of Freedom Vibration System Equipped with Inerter of Variable Inertance

Authors: Barenten Suciu, Yoshiki Tsuji

Abstract:

In this paper, a theoretical investigation on the dynamic characteristics of one degree of freedom vibration system equipped with inerter of variable inertance, is presented. Differential equation of movement was solved under proper initial conditions in the case of free undamped/damped vibration, considered in the absence/presence of the inerter in the mechanical system. Influence of inertance on the amplitude of vibration, phase angle, natural frequency, damping ratio, and logarithmic decrement was clarified. It was mainly found that the inerter decreases the natural frequency of the undamped system and also of the damped system if the damping ratio is below 0.707. On the other hand, the inerter increases the natural frequency of the damped system if the damping ratio exceeds 0.707. Results obtained in this work are useful for the adequate design of inerters.

Keywords: One degree of freedom vibration system, inerter, parallel connection, variable inertance, frequency control, damping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1650
279 Design Process of the Fixing Pipes in the Guide Pipe Anchor System for Cable-Stayed Bridges

Authors: Jinwoong Choi, Sun-Kyu Park, Sungnam Hong

Abstract:

For the efficient and safe use of the cable-stayed bridge, a design based on the detailed local analysis of the cable anchor system is required. Also, a theoretical design process for the anchor system should be prepared and reviewed. Generally, the size of the fixing pipe in the anchor system is decided according to the specifications prepared by cable-manufacturing companies, and accordingly, there is difficulty determining the initial inner diameters of the fixing pipes. As such, there is no choice but to use the products with the existing sizes. In this study, the existing design process of the fixing pipe, is a type of guide pipe anchor in the cable anchor system, is reviewed, a formula determining the thickness of the fixing pipe is proposed, and the convenience and validity of the suggested equation is compared with the results of the existing designs to verify its convenience and validity.

Keywords: Cable-stayed bridge; Guide pipe anchor system; Fixing pipe; Theoretical design process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3320
278 Analysis of Cyclic Elastic-Plastic Loading of Shaft Based On Kinematic Hardening Model

Authors: Isa Ahmadi, Ramin Khamedi

Abstract:

In this paper, the elasto-plastic and cyclic torsion of a shaft is studied using a finite element method. The Prager kinematic hardening theory of plasticity with the Ramberg and Osgood stress-strain equation is used to evaluate the cyclic loading behavior of the shaft under the torsional loading. The material of shaft is assumed to follow the non-linear strain hardening property based on the Prager model. The finite element method with C1 continuity is developed and used for solution of the governing equations of the problem. The successive substitution iterative method is used to calculate the distribution of stresses and plastic strains in the shaft due to cyclic loads. The shear stress, effective stress, residual stress and elastic and plastic shear strain distribution are presented in the numerical results.

Keywords: Cyclic Loading, Finite Element Analysis, Prager Kinematic Hardening Model, Torsion of shaft.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2748
277 Gas Flow Rate Identification in Biomass Power Plants by Response Surface Method

Authors: J. Satonsaowapak, M. Krapeedang, R. Oonsivilai, A. Oonsivilai

Abstract:

The utilize of renewable energy sources becomes more crucial and fascinatingly, wider application of renewable energy devices at domestic, commercial and industrial levels is not only affect to stronger awareness but also significantly installed capacities. Moreover, biomass principally is in form of woods and converts to be energy for using by humans for a long time. Gasification is a process of conversion of solid carbonaceous fuel into combustible gas by partial combustion. Many gasified models have various operating conditions because the parameters kept in each model are differentiated. This study applied the experimental data including three inputs variables including biomass consumption; temperature at combustion zone and ash discharge rate and gas flow rate as only one output variable. In this paper, response surface methods were applied for identification of the gasified system equation suitable for experimental data. The result showed that linear model gave superlative results.

Keywords: Gasified System, Identification, Response SurfaceMethod

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1251
276 Fuzzy Sliding Mode Control of an MR Mount for Vibration Attenuation

Authors: Jinsiang Shaw, Ray Pan, Yin-Chieh Chang

Abstract:

In this paper, an magnetorheological (MR) mount with fuzzy sliding mode controller (FSMC) is studied for vibration suppression when the system is subject to base excitations. In recent years, magnetorheological fluids are becoming a popular material in the field of the semi-active control. However, the dynamic equation of an MR mount is highly nonlinear and it is difficult to identify. FSMC provides a simple method to achieve vibration attenuation of the nonlinear system with uncertain disturbances. This method is capable of handling the chattering problem of sliding mode control effectively and the fuzzy control rules are obtained by using the Lyapunov stability theory. The numerical simulations using one-dimension and two-dimension FSMC show effectiveness of the proposed controller for vibration suppression. Further, the well-known skyhook control scheme and an adaptive sliding mode controller are also included in the simulation for comparison with the proposed FSMC.

Keywords: adaptive sliding mode controller, fuzzy sliding modecontroller, magnetorheological mount, skyhook control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1801
275 Operating Conditions Optimization of Steam Injection in Enhanced Oil Recovery Using Duelist Algorithm

Authors: Totok R. Biyanto, Sonny Irawan, Hiskia J. Ginting, Matradji, Ya’umar, A. I. Fitri

Abstract:

Steam injection is the most suitable of Enhanced Oil Recovery (EOR) methods to recover high viscosity oil. This is due to the capabilities of steam to reduce oil viscosity and increase the sweep capability of oil from the injection well toward the production well. Oil operating conditions in production should be match well with the operating condition target at the bottom of the production well. It is influenced by oil properties and reservoir rock properties. Hence, the operating condition should be optimized. Optimization requires three components i.e., objective function, model, and optimization technique. In this paper, the objective function is to obtain the optimum operating condition at the production well. The model was built using Darcy equation and mass-energy balance. The optimization technique utilizes Duelist Algorithm due to the effectiveness of its algorithm to obtain the desirable optimization results at the optimum operating condition.

Keywords: Enhanced oil recovery, steam injection, operating conditions, modeling, optimization, Duelist algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1586
274 Reduction in Population Growth under Various Contraceptive Strategies in Uttar Pradesh, India

Authors: Prashant Verma, K. K. Singh, Anjali Singh, Ujjaval Srivastava

Abstract:

Contraceptive policies have been derived to achieve desired reductions in the growth rate and also, applied to the data of Uttar-Pradesh, India for illustration. Using the Lotka’s integral equation for the stable population, expressions for the proportion of contraceptive users at different ages have been obtained. At the age of 20 years, 42% of contraceptive users is imperative to reduce the present annual growth rate of 0.036 to 0.02, assuming that 40% of the contraceptive users discontinue at the age of 25 years and 30% again continue contraceptive use at age 30 years. Further, presuming that 75% of women start using contraceptives at the age of 23 years, and 50% of the remaining women start using contraceptives at the age of 28 years, while the rest of them start using it at the age of 32 years. If we set a minimum age of marriage as 20 years, a reduction of 0.019 in growth rate will be obtained. This study describes how the level of contraceptive use at different age groups of women reduces the growth rate in the state of Uttar Pradesh. The article also promotes delayed marriage in the region.

Keywords: Child bearing, contraceptive devices, contraceptive policies, population growth, stable population.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 654
273 Investigation of Electromagnetic Force in 3P5W Busbar System under Peak Short-Circuit Current

Authors: Farhana Mohamad Yusop, Syafrudin Masri, Dahaman Ishak, Mohamad Kamarol

Abstract:

Electromagnetic forces on three-phase five-wire (3P5W) busbar system is investigated under three-phase short-circuits current. The conductor busbar placed in compact galvanized steel enclosure is in the rectangular shape. Transient analysis from Opera-2D is carried out to develop the model of three-phase short-circuits current in the system. The result of the simulation is compared with the calculation result, which is obtained by applying the theories of Biot Savart’s law and Laplace equation. Under this analytical approach, the moment of peak short-circuit current is taken into account. The effect upon geometrical arrangement of the conductor and the present of the steel enclosure are considered by the theory of image. The result depict that the electromagnetic force due to the transient short-circuit from simulation is agreed with the calculation.

Keywords: Busbar, electromagnetic force, short-circuit current, transient analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4002
272 Research on Development and Accuracy Improvement of an Explosion Proof Combustible Gas Leak Detector Using an IR Sensor

Authors: Gyoutae Park, Seungho Han, Byungduk Kim, Youngdo Jo, Yongsop Shim, Yeonjae Lee, Sangguk Ahn, Hiesik Kim, Jungil Park

Abstract:

In this paper, we presented not only development technology of an explosion proof type and portable combustible gas leak detector but also algorithm to improve accuracy for measuring gas concentrations. The presented techniques are to apply the flame-proof enclosure and intrinsic safe explosion proof to an infrared gas leak detector at first in Korea and to improve accuracy using linearization recursion equation and Lagrange interpolation polynomial. Together, we tested sensor characteristics and calibrated suitable input gases and output voltages. Then, we advanced the performances of combustible gaseous detectors through reflecting demands of gas safety management fields. To check performances of two company's detectors, we achieved the measurement tests with eight standard gases made by Korea Gas Safety Corporation. We demonstrated our instruments better in detecting accuracy other than detectors through experimental results.

Keywords: Gas sensor, leak, detector, accuracy, interpolation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1408
271 FZP Design Considering Spherical Wave Incidence

Authors: Sergio Pérez-López, Daniel Tarrazó-Serrano, José M. Fuster, Pilar Candelas, Constanza Rubio

Abstract:

Fresnel Zone Plates (FZPs) are widely used in many areas, such as optics, microwaves or acoustics. On the design of FZPs, plane wave incidence is typically considered, but that is not usually the case in ultrasounds, especially in applications where a piston emitter is placed at a certain distance from the lens. In these cases, having control of the focal distance is very important, and with the usual Fresnel equation a focal displacement from the theoretical distance is observed due to the plane wave supposition. In this work, a comparison between FZP with plane wave incidence design and FZP with point source design in the case of piston emitter is presented. Influence of the main parameters of the piston in the final focalization profile has been studied. Numerical models and experimental results are shown, and they prove that when spherical wave incidence is considered for the piston case, it is possible to have a fine control of the focal distance in comparison with the classical design method.

Keywords: Focusing, Fresnel zone plate, ultrasound, spherical wave incidence, piston emitter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 768
270 Experimental Evaluation of Methane Adsorptionon Granular Activated Carbon (GAC) and Determination of Model Isotherm

Authors: M. Delavar, A.A. Ghoreyshi, M. Jahanshahi, M. Irannejad

Abstract:

This study investigates the capacity of granular activated carbon (GAC) for the storage of methane through the equilibrium adsorption. An experimental apparatus consist of a dual adsorption vessel was set up for the measurement of equilibrium adsorption of methane on GAC using volumetric technique (pressure decay). Experimental isotherms of methane adsorption were determined by the measurement of equilibrium uptake of methane in different pressures (0-50 bar) and temperatures (285.15-328.15°K). The experimental data was fitted to Freundlich and Langmuir equations to determine the model isotherm. The results show that the experimental data is equally well fitted by the both model isotherms. Using the experimental data obtained in different temperatures the isosteric heat of methane adsorption was also calculated by the Clausius-Clapeyron equation from the Sips isotherm model. Results of isosteric heat of adsorption show that decreasing temperature or increasing methane uptake by GAC decrease the isosteric heat of methane adsorption.

Keywords: Methane adsorption, Activated carbon, Modelisotherm, Isosteric heat

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2484
269 The Kinetic of Biodegradation Lignin in Water Hyacinth (Eichhornia Crassipes) by Phanerochaete Chrysosporium using Solid State Fermentation (SSF) Method for Bioethanol Production, Indonesia

Authors: Eka Sari, Siti Syamsiah, Hary Sulistyo, Muslikhin

Abstract:

Lignocellulosic materials are considered the most abundant renewable resource available for the Bioethanol Production. Water Hyacinth is one of potential raw material of the world-s worst aquatic plant as a feedstock to produce Bioethanol. The purposed this research is obtain reduced of matter for biodegradation lignin in Biological pretreatment with White Rot Fungi eg. Phanerochaete Chrysosporium using Solid state Fermentation methods. Phanerochaete Chrysosporium is known to have the best ability to degraded lignin, but simultaneously it can also degraded cellulose and hemicelulose. During 8 weeks incubation, water hyacinth occurred loss of weight reached 34,67%, while loss of lignin reached 67,21%, loss of cellulose reached 11,01% and loss of hemicellulose reached 36,56%. The kinetic of losses lignin using regression linear plot, the results is obtained constant rate (k) of reduction lignin is -0.1053 and the equation of reduction of lignin is y = wo - 0, 1.53 x

Keywords: Biodegradation, lignin, PhanerochaeteChrysosporium, SSF, Water Hyacinth, Bioethanol

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2593
268 A Lagrangian Hamiltonian Computational Method for Hyper-Elastic Structural Dynamics

Authors: Hosein Falahaty, Hitoshi Gotoh, Abbas Khayyer

Abstract:

Performance of a Hamiltonian based particle method in simulation of nonlinear structural dynamics is subjected to investigation in terms of stability and accuracy. The governing equation of motion is derived based on Hamilton's principle of least action, while the deformation gradient is obtained according to Weighted Least Square method. The hyper-elasticity models of Saint Venant-Kirchhoff and a compressible version similar to Mooney- Rivlin are engaged for the calculation of second Piola-Kirchhoff stress tensor, respectively. Stability along with accuracy of numerical model is verified by reproducing critical stress fields in static and dynamic responses. As the results, although performance of Hamiltonian based model is evaluated as being acceptable in dealing with intense extensional stress fields, however kinds of instabilities reveal in the case of violent collision which can be most likely attributed to zero energy singular modes.

Keywords: Hamilton's principle of least action, particle based method, hyper-elasticity, analysis of stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1678
267 Magnetic Field Analysis for a Distribution Transformer with Unbalanced Load Conditions by using 3-D Finite Element Method

Authors: P. Meesuk, T. Kulworawanichpong, P. Pao-la-or

Abstract:

This paper proposes a set of quasi-static mathematical model of magnetic fields caused by high voltage conductors of distribution transformer by using a set of second-order partial differential equation. The modification for complex magnetic field analysis and time-harmonic simulation are also utilized. In this research, transformers were study in both balanced and unbalanced loading conditions. Computer-based simulation utilizing the threedimensional finite element method (3-D FEM) is exploited as a tool for visualizing magnetic fields distribution volume a distribution transformer. Finite Element Method (FEM) is one among popular numerical methods that is able to handle problem complexity in various forms. At present, the FEM has been widely applied in most engineering fields. Even for problems of magnetic field distribution, the FEM is able to estimate solutions of Maxwell-s equations governing the power transmission systems. The computer simulation based on the use of the FEM has been developed in MATLAB programming environment.

Keywords: Distribution Transformer, Magnetic Field, Load Unbalance, 3-D Finite Element Method (3-D FEM)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2706
266 Effect of Swirl on Gas-Fired Combustion Behavior in a 3-D Rectangular Combustion Chamber

Authors: Man Young Kim

Abstract:

The objective of this work is to investigate the turbulent reacting flow in a three dimensional combustor with emphasis on the effect of inlet swirl flow through a numerical simulation. Flow field is analyzed using the SIMPLE method which is known as stable as well as accurate in the combustion modeling, and the finite volume method is adopted in solving the radiative transfer equation. In this work, the thermal and flow characteristics in a three dimensional combustor by changing parameters such as equivalence ratio and inlet swirl angle have investigated. As the equivalence ratio increases, which means that more fuel is supplied due to a larger inlet fuel velocity, the flame temperature increases and the location of maximum temperature has moved towards downstream. In the mean while, the existence of inlet swirl velocity makes the fuel and combustion air more completely mixed and burnt in short distance. Therefore, the locations of the maximum reaction rate and temperature were shifted to forward direction compared with the case of no swirl.

Keywords: Gaseous Fuel, Inlet Swirl, Thermal Radiation, Turbulent Combustion

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1638
265 Estimating the Effect of Fluid in Pressing Process

Authors: A. Movaghar, R. A. Mahdavinejad

Abstract:

To analyze the effect of various parameters of fluid on the material properties such as surface and depth defects and/or cracks, it is possible to determine the affection of pressure field on these specifications. Stress tensor analysis is also able to determine the points in which the probability of defection creation is more. Besides, from pressure field, it is possible to analyze the affection of various fluid specifications such as viscosity and density on defect created in the material. In this research, the concerned boundary conditions are analyzed first. Then the solution network and stencil used are mentioned. With the determination of relevant equation on the fluid flow between notch and matrix and their discretion according to the governed boundary conditions, these equations can be solved. Finally, with the variation creations on fluid parameters such as density and viscosity, the affection of these variations can be determined on pressure field. In this direction, the flowchart and solution algorithm with their results as vortex and current function contours for two conditions with most applications in pressing process are introduced and discussed.

Keywords: Pressing, notch, matrix, flow function, vortex.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 711
264 Mobile Robot Path Planning in a 2-Dimentional Mesh

Authors: Doraid Dalalah

Abstract:

A topologically oriented neural network is very efficient for real-time path planning for a mobile robot in changing environments. When using a recurrent neural network for this purpose and with the combination of the partial differential equation of heat transfer and the distributed potential concept of the network, the problem of obstacle avoidance of trajectory planning for a moving robot can be efficiently solved. The related dimensional network represents the state variables and the topology of the robot's working space. In this paper two approaches to problem solution are proposed. The first approach relies on the potential distribution of attraction distributed around the moving target, acting as a unique local extreme in the net, with the gradient of the state variables directing the current flow toward the source of the potential heat. The second approach considers two attractive and repulsive potential sources to decrease the time of potential distribution. Computer simulations have been carried out to interrogate the performance of the proposed approaches.

Keywords: Mobile robot, Path Planning, Mesh, Potential field.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1930
263 Computational Approaches for Ballistic Impact Response of Stainless Steel 304

Authors: A. Mostafa

Abstract:

This paper presents a numerical study on determination of ballistic limit velocity (V50) of stainless steel 304 (SS 304) used in manufacturing security screens. The simulated ballistic impact tests were conducted on clamped sheets with different thicknesses using ABAQUS/Explicit nonlinear finite element (FE) package. The ballistic limit velocity was determined using three approaches, namely: numerical tests based on material properties, FE calculated residual velocities and FE calculated residual energies. Johnson-Cook plasticity and failure criterion were utilized to simulate the dynamic behaviour of the SS 304 under various strain rates, while the well-known Lambert-Jonas equation was used for the data regression for the residual velocity and energy model. Good agreement between the investigated numerical methods was achieved. Additionally, the dependence of the ballistic limit velocity on the sheet thickness was observed. The proposed approaches present viable and cost-effective assessment methods of the ballistic performance of SS 304, which will support the development of robust security screen systems.

Keywords: Ballistic velocity, stainless steel, numerical approaches, security screen.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 671
262 Modeling Managerial Competences for Effective Small Firm Performance in a Developing Economy

Authors: M. Aminu Sanda

Abstract:

This paper explores competencies that managers of small firms in Ghana use to enhance operational flexibility towards the attainment of higher productivity. This is because the requisite competence required of such managers to be effective performers continues to be a challenge. Data was collected from managers of three hundred small firms using a standardized self-completion questionnaire and analyzed using the Amos-based structural equation model approach. Findings from factor and confirmatory factor analyses showed that the only competence exhibited by managers toward effective performance is realistic practices evident at the workplace. It is concluded that a manager’s self-confidence and involvement in areas that he/she is good at, and his/her possession of skills that enables performance at high capacity are indications of the manger’s effectiveness. The study outcome provides a knowledge base helpful to policy-makers, especially in Ghana, in determining the requisite managerial competences required by small firm managers for effective performance.

Keywords: Managerial competence, small firm, effective performance, developing economy, Ghana.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1392
261 Decoupled, Reduced Order Model for Double Output Induction Generator Using Integral Manifolds and Iterative Separation Theory

Authors: M. Sedighizadeh, A. Rezazadeh

Abstract:

In this paper presents a technique for developing the computational efficiency in simulating double output induction generators (DOIG) with two rotor circuits where stator transients are to be included. Iterative decomposition is used to separate the flux– Linkage equations into decoupled fast and slow subsystems, after which the model order of the fast subsystems is reduced by neglecting the heavily damped fast transients caused by the second rotor circuit using integral manifolds theory. The two decoupled subsystems along with the equation for the very slowly changing slip constitute a three time-scale model for the machine which resulted in increasing computational speed. Finally, the proposed method of reduced order in this paper is compared with the other conventional methods in linear and nonlinear modes and it is shown that this method is better than the other methods regarding simulation accuracy and speed.

Keywords: DOIG, Iterative separation, Integral manifolds, Reduced order.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1265
260 Non-equilibrium Statistical Mechanics of a Driven Lattice Gas Model: Probability Function, FDT-violation, and Monte Carlo Simulations

Authors: K. Sudprasert, M. Precharattana, N. Nuttavut, D. Triampo, B. Pattanasiri, Y. Lenbury, W. Triampo

Abstract:

The study of non-equilibrium systems has attracted increasing interest in recent years, mainly due to the lack of theoretical frameworks, unlike their equilibrium counterparts. Studying the steady state and/or simple systems is thus one of the main interests. Hence in this work we have focused our attention on the driven lattice gas model (DLG model) consisting of interacting particles subject to an external field E. The dynamics of the system are given by hopping of particles to nearby empty sites with rates biased for jumps in the direction of E. Having used small two dimensional systems of DLG model, the stochastic properties at nonequilibrium steady state were analytically studied. To understand the non-equilibrium phenomena, we have applied the analytic approach via master equation to calculate probability function and analyze violation of detailed balance in term of the fluctuation-dissipation theorem. Monte Carlo simulations have been performed to validate the analytic results.

Keywords: Non-equilibrium, lattice gas, stochastic process

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1742
259 Transient Voltage Distribution on the Single Phase Transmission Line under Short Circuit Fault Effect

Authors: A. Kojah, A. Nacaroğlu

Abstract:

Single phase transmission lines are used to transfer data or energy between two users. Transient conditions such as switching operations and short circuit faults cause the generation of the fluctuation on the waveform to be transmitted. Spatial voltage distribution on the single phase transmission line may change owing to the position and duration of the short circuit fault in the system. In this paper, the state space representation of the single phase transmission line for short circuit fault and for various types of terminations is given. Since the transmission line is modeled in time domain using distributed parametric elements, the mathematical representation of the event is given in state space (time domain) differential equation form. It also makes easy to solve the problem because of the time and space dependent characteristics of the voltage variations on the distributed parametrically modeled transmission line.

Keywords: Energy transmission, transient effects, transmission line, transient voltage, RLC short circuit, single phase.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1177
258 DQ Analysis of 3D Natural Convection in an Inclined Cavity Using an Velocity-Vorticity Formulation

Authors: D. C. Lo, S. S. Leu

Abstract:

In this paper, the differential quadrature method is applied to simulate natural convection in an inclined cubic cavity using velocity-vorticity formulation. The numerical capability of the present algorithm is demonstrated by application to natural convection in an inclined cubic cavity. The velocity Poisson equations, the vorticity transport equations and the energy equation are all solved as a coupled system of equations for the seven field variables consisting of three velocities, three vorticities and temperature. The coupled equations are simultaneously solved by imposing the vorticity definition at boundary without requiring the explicit specification of the vorticity boundary conditions. Test results obtained for an inclined cubic cavity with different angle of inclinations for Rayleigh number equal to 103, 104, 105 and 106 indicate that the present coupled solution algorithm could predict the benchmark results for temperature and flow fields. Thus, it is convinced that the present formulation is capable of solving coupled Navier-Stokes equations effectively and accurately.

Keywords: Natural convection, velocity-vorticity formulation, differential quadrature (DQ).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1578
257 The Effect of Diversity Sensitive Orientation on Job Satisfaction and Turnover Intention

Authors: Hyeondal Jeong, Yoonjung Baek

Abstract:

The main purpose of this paper is to examine the effect of diversity sensitive orientation on job satisfaction and turnover intention. Diversity sensitive orientation is the attitude of the individual to respect and accommodate diversity. This is focused on an individual’s perception of diversity. Although being made from the most diversity related research team and organizational level, this study deals with diversity issues at the individual level. To test the proposed research model and hypothesis, the data were collected from 291 Korean employees. The study conducted a confirmatory factor analysis for the validity test. Furthermore, structural equation modeling (SEM) was employed to test the hypothesized relationship in the conceptual model. The results of this paper were as followings: First, diversity sensitive orientation was positively related to job satisfaction. Second, diversity sensitive orientation was negatively related to turnover intention. In other words, the positive influence of the diversity sensitive orientation has been verified. Based on the findings, this study suggested implications and directions for future research.

Keywords: Diversity sensitive orientation, job satisfaction, turnover intention, perception, cognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1676
256 The Sequestration of Heavy Metals Contaminating the Wonderfonteinspruit Catchment Area using Natural Zeolite

Authors: P.P. Diale, S.S.L. Mkhize, E. Muzenda, J. Zimba

Abstract:

For more than 120 years, gold mining formed the backbone the South Africa-s economy. The consequence of mine closure was observed in large-scale land degradation and widespread pollution of surface water and groundwater. This paper investigates the feasibility of using natural zeolite in removing heavy metals contaminating the Wonderfonteinspruit Catchment Area (WCA), a water stream with high levels of heavy metals and radionuclide pollution. Batch experiments were conducted to study the adsorption behavior of natural zeolite with respect to Fe2+, Mn2+, Ni2+, and Zn2+. The data was analysed using the Langmuir and Freudlich isotherms. Langmuir was found to correlate the adsorption of Fe2+, Mn2+, Ni2+, and Zn2+ better, with the adsorption capacity of 11.9 mg/g, 1.2 mg/g, 1.3 mg/g, and 14.7 mg/g, respectively. Two kinetic models namely, pseudo-first order and pseudo second order were also tested to fit the data. Pseudo-second order equation was found to be the best fit for the adsorption of heavy metals by natural zeolite. Zeolite functionalization with humic acid increased its uptake ability.

Keywords: gold-mining, natural zeolites, water pollution, WestRand.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2532
255 An Experimental Design Approach to Determine Effects of The Operating Parameters on The Rate of Ru promoted Ir Carbonylation of Methanol

Authors: Vahid Hosseinpour, Mohammad Kazemini, Alireza Mohammadrezaee

Abstract:

carbonylation of methanol in homogenous phase is one of the major routesfor production of acetic acid. Amongst group VIII metal catalysts used in this process iridium has displayed the best capabilities. To investigate effect of operating parameters like: temperature, pressure, methyl iodide, methyl acetate, iridium, ruthenium, and water concentrations on the reaction rate, experimental design for this system based upon central composite design (CCD) was utilized. Statistical rate equation developed by this method contained individual, interactions and curvature effects of parameters on the reaction rate. The model with p-value less than 0.0001 and R2 values greater than 0.9; confirmeda satisfactory fitness of the experimental and theoretical studies. In other words, the developed model and experimental data obtained passed all diagnostic tests establishing this model as a statistically significant.

Keywords: Acetic Acid, Carbonylation of Methanol, Central Composite Design, Experimental Design, Iridium/Ruthenium

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3670
254 Effect of Time-Periodic Boundary Temperature on the Onset of Nanofluid Convection in a Layer of a Saturated Porous Medium

Authors: J.C. Umavathi

Abstract:

The linear stability of nanofluid convection in a horizontal porous layer is examined theoretically when the walls of the porous layer are subjected to time-periodic temperature modulation. The model used for the nanofluid incorporates the effects of Brownian motion and thermopherosis, while the Darcy model is used for the porous medium. The analysis revels that for a typical nanofluid (with large Lewis number) the prime effect of the nanofluids is via a buoyancy effect coupled with the conservation of nanoparticles. The contribution of nanoparticles to the thermal energy equation being a second-order effect. It is found that the critical thermal Rayleigh number can be found reduced or decreased by a substantial amount, depending on whether the basic nanoparticle distribution is top-heavy or bottom-heavy. Oscillatory instability is possible in the case of a bottom-heavy nanoparticle distribution, phase angle and frequency of modulation.

Keywords: Brownian motion and thermophoresis, Porous medium, Nanofluid, Natural convection, Thermal modulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2179