Search results for: Feature Weighting
242 A Geospatial Consumer Marketing Campaign Optimization Strategy: Case of Fuzzy Approach in Nigeria Mobile Market
Authors: Adeolu O. Dairo
Abstract:
Getting the consumer marketing strategy right is a crucial and complex task for firms with a large customer base such as mobile operators in a competitive mobile market. While empirical studies have made efforts to identify key constructs, no geospatial model has been developed to comprehensively assess the viability and interdependency of ground realities regarding the customer, competition, channel and the network quality of mobile operators. With this research, a geo-analytic framework is proposed for strategy formulation and allocation for mobile operators. Firstly, a fuzzy analytic network using a self-organizing feature map clustering technique based on inputs from managers and literature, which depicts the interrelationships amongst ground realities is developed. The model is tested with a mobile operator in the Nigeria mobile market. As a result, a customer-centric geospatial and visualization solution is developed. This provides a consolidated and integrated insight that serves as a transparent, logical and practical guide for strategic, tactical and operational decision making.
Keywords: Geospatial, geo-analytics, self-organizing map, customer-centric.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 818241 Effect of Personality Traits on Classification of Political Orientation
Authors: Vesile Evrim, Aliyu Awwal
Abstract:
Today, there is a large number of political transcripts available on the Web to be mined and used for statistical analysis, and product recommendations. As the online political resources are used for various purposes, automatically determining the political orientation on these transcripts becomes crucial. The methodologies used by machine learning algorithms to do an automatic classification are based on different features that are classified under categories such as Linguistic, Personality etc. Considering the ideological differences between Liberals and Conservatives, in this paper, the effect of Personality traits on political orientation classification is studied. The experiments in this study were based on the correlation between LIWC features and the BIG Five Personality traits. Several experiments were conducted using Convote U.S. Congressional- Speech dataset with seven benchmark classification algorithms. The different methodologies were applied on several LIWC feature sets that constituted by 8 to 64 varying number of features that are correlated to five personality traits. As results of experiments, Neuroticism trait was obtained to be the most differentiating personality trait for classification of political orientation. At the same time, it was observed that the personality trait based classification methodology gives better and comparable results with the related work.Keywords: Politics, personality traits, LIWC, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2164240 Automatic Musical Genre Classification Using Divergence and Average Information Measures
Authors: Hassan Ezzaidi, Jean Rouat
Abstract:
Recently many research has been conducted to retrieve pertinent parameters and adequate models for automatic music genre classification. In this paper, two measures based upon information theory concepts are investigated for mapping the features space to decision space. A Gaussian Mixture Model (GMM) is used as a baseline and reference system. Various strategies are proposed for training and testing sessions with matched or mismatched conditions, long training and long testing, long training and short testing. For all experiments, the file sections used for testing are never been used during training. With matched conditions all examined measures yield the best and similar scores (almost 100%). With mismatched conditions, the proposed measures yield better scores than the GMM baseline system, especially for the short testing case. It is also observed that the average discrimination information measure is most appropriate for music category classifications and on the other hand the divergence measure is more suitable for music subcategory classifications.Keywords: Audio feature, information measures, music genre.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1577239 Literature Review on Metallurgical Properties of Ti/Al Weld Joint Using Laser Beam Welding
Authors: K. Kalaiselvan, Naresh Subramania Warrier, S. Elavarasi
Abstract:
Several situations arise in industrial practice which calls for joining of dissimilar metals. With increasing demand in the application requirements, dissimilar metal joining becomes inevitable in modern engineering industries. The metals employed are the structure for effective and utilization of the special properties of each metal. The purpose of this paper is to present the research and development status of titanium (Ti) and aluminium (Al) dissimilar alloys weldment by the researchers worldwide. The detailed analysis of problems faced during welding of dissimilar metal joint for Ti/Al metal combinations are discussed. Microstructural variations in heat affected zone (HAZ), fusion zone (FZ), Intermetallic compound (IMC) layer and surface fracture of weldments are analysed. Additionally, mechanical property variations and microstructural feature have been studied by the researchers. The paper provides a detailed literature review of Ti/Al dissimilar metal joint microchemistry and property variation across the weldment.
Keywords: Laser beam welding, titanium, aluminium, metallurgical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 449238 Enhance the Power of Sentiment Analysis
Authors: Yu Zhang, Pedro Desouza
Abstract:
Since big data has become substantially more accessible and manageable due to the development of powerful tools for dealing with unstructured data, people are eager to mine information from social media resources that could not be handled in the past. Sentiment analysis, as a novel branch of text mining, has in the last decade become increasingly important in marketing analysis, customer risk prediction and other fields. Scientists and researchers have undertaken significant work in creating and improving their sentiment models. In this paper, we present a concept of selecting appropriate classifiers based on the features and qualities of data sources by comparing the performances of five classifiers with three popular social media data sources: Twitter, Amazon Customer Reviews, and Movie Reviews. We introduced a couple of innovative models that outperform traditional sentiment classifiers for these data sources, and provide insights on how to further improve the predictive power of sentiment analysis. The modeling and testing work was done in R and Greenplum in-database analytic tools.
Keywords: Sentiment Analysis, Social Media, Twitter, Amazon, Data Mining, Machine Learning, Text Mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3518237 An Edge-based Text Region Extraction Algorithm for Indoor Mobile Robot Navigation
Authors: Jagath Samarabandu, Xiaoqing Liu
Abstract:
Using bottom-up image processing algorithms to predict human eye fixations and extract the relevant embedded information in images has been widely applied in the design of active machine vision systems. Scene text is an important feature to be extracted, especially in vision-based mobile robot navigation as many potential landmarks such as nameplates and information signs contain text. This paper proposes an edge-based text region extraction algorithm, which is robust with respect to font sizes, styles, color/intensity, orientations, and effects of illumination, reflections, shadows, perspective distortion, and the complexity of image backgrounds. Performance of the proposed algorithm is compared against a number of widely used text localization algorithms and the results show that this method can quickly and effectively localize and extract text regions from real scenes and can be used in mobile robot navigation under an indoor environment to detect text based landmarks.
Keywords: Landmarks, mobile robot navigation, scene text, text localization and extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2925236 Improved Feature Extraction Technique for Handling Occlusion in Automatic Facial Expression Recognition
Authors: Khadijat T. Bamigbade, Olufade F. W. Onifade
Abstract:
The field of automatic facial expression analysis has been an active research area in the last two decades. Its vast applicability in various domains has drawn so much attention into developing techniques and dataset that mirror real life scenarios. Many techniques such as Local Binary Patterns and its variants (CLBP, LBP-TOP) and lately, deep learning techniques, have been used for facial expression recognition. However, the problem of occlusion has not been sufficiently handled, making their results not applicable in real life situations. This paper develops a simple, yet highly efficient method tagged Local Binary Pattern-Histogram of Gradient (LBP-HOG) with occlusion detection in face image, using a multi-class SVM for Action Unit and in turn expression recognition. Our method was evaluated on three publicly available datasets which are JAFFE, CK, SFEW. Experimental results showed that our approach performed considerably well when compared with state-of-the-art algorithms and gave insight to occlusion detection as a key step to handling expression in wild.
Keywords: Automatic facial expression analysis, local binary pattern, LBP-HOG, occlusion detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 783235 Finite-Horizon Tracking Control for Repetitive Systems with Uncertain Initial Conditions
Authors: Sung Wook Yun, Yun Jong Choi, Kyong-min Lee, Poogyeon Park*
Abstract:
Repetitive systems stand for a kind of systems that perform a simple task on a fixed pattern repetitively, which are widely spread in industrial fields. Hence, many researchers have been interested in those systems, especially in the field of iterative learning control (ILC). In this paper, we propose a finite-horizon tracking control scheme for linear time-varying repetitive systems with uncertain initial conditions. The scheme is derived both analytically and numerically for state-feedback systems and only numerically for output-feedback systems. Then, it is extended to stable systems with input constraints. All numerical schemes are developed in the forms of linear matrix inequalities (LMIs). A distinguished feature of the proposed scheme from the existing iterative learning control is that the scheme guarantees the tracking performance exactly even under uncertain initial conditions. The simulation results demonstrate the good performance of the proposed scheme.Keywords: Finite time horizon, linear matrix inequality (LMI), repetitive system, uncertain initial condition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1894234 An Efficient MIPv6 Return Routability Scheme Based on Geometric Computing
Authors: Yen-Cheng Chen, Fu-Chen Yang
Abstract:
IETF defines mobility support in IPv6, i.e. MIPv6, to allow nodes to remain reachable while moving around in the IPv6 internet. When a node moves and visits a foreign network, it is still reachable through the indirect packet forwarding from its home network. This triangular routing feature provides node mobility but increases the communication latency between nodes. This deficiency can be overcome by using a Binding Update (BU) scheme, which let nodes keep up-to-date IP addresses and communicate with each other through direct IP routing. To further protect the security of BU, a Return Routability (RR) procedure was developed. However, it has been found that RR procedure is vulnerable to many attacks. In this paper, we will propose a lightweight RR procedure based on geometric computing. In consideration of the inherent limitation of computing resources in mobile node, the proposed scheme is developed to minimize the cost of computations and to eliminate the overhead of state maintenance during binding updates. Compared with other CGA-based BU schemes, our scheme is more efficient and doesn-t need nonce tables in nodes.Keywords: Mobile IPv6, Binding update, Geometric computing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1387233 Kant’s Conception of Human Dignity and the Importance of Singularity within Commonality
Authors: Francisco Lobo
Abstract:
Kant’s household theory of human dignity as a common feature of all rational beings is the starting point of any intellectual endeavor to unravel the implications of this normative notion. Yet, it is incomplete, as it neglects considering the importance of the singularity or uniqueness of the individual. In a first, deconstructive stage, this paper describes the Kantian account of human dignity as one among many conceptions of human dignity. It reads carefully into the original wording used by Kant in German and its English translations, as well as the works of modern commentators, to identify its shortcomings. In a second, constructive stage, it then draws on the theories of Aristotle, Alexis de Tocqueville, John Stuart Mill, and Hannah Arendt to try and enhance the Kantian conception, in the sense that these authors give major importance to the singularity of the individual. The Kantian theory can be perfected by including elements from the works of these authors, while at the same time being mindful of the dangers entailed in focusing too much on singularity. The conclusion of this paper is that the Kantian conception of human dignity can be enhanced if it acknowledges that not only morality has dignity, but also the irreplaceable human individual to the extent that she is a narrative, original creature with the potential to act morally.
Keywords: Commonality, dignity, Kant, singularity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 822232 Under the ‘Fourth World’: A Discussion to the Transformation of Character-Settings in Chinese Ethnic Minority Films
Authors: Sicheng Liu
Abstract:
Based on the key issue of the current fourth world studies, the article aims to analyze the features of character-settings in Chinese ethnic minority films. As a generalizable transformation, this feature progresses from a microcosmic representation. It argues that, as the mediation, films note down the current state of people and their surroundings, while the ‘fourth world’ theorization (or the fourth cinema) provides a new perspective to ethnic minority topics in China. Like the ‘fourth cinema’ focusing on the depiction of indigeneity groups, the ethnic minority films portrait the non-Han nationalities in China. Both types possess the motif of returning history-writing to the minority members’ own hand. In this article, the discussion entirely involves three types of cinematic role-settings in Chinese minority themed films, which illustrates that, similar to the creative principle of the fourth film, the themes and narratives of these films are becoming more individualized, with more concern to minority grassroots.
Keywords: Fourth world, Chinese ethnic minority films, ethnicity and culture reflection, mother tongue (muyu), highlighting to individual spirits.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 844231 A Novel Method to Evaluate Line Loadability for Distribution Systems with Realistic Loads
Authors: K. Nagaraju, S. Sivanagaraju, T. Ramana, V. Ganesh
Abstract:
This paper presents a simple method for estimation of additional load as a factor of the existing load that may be drawn before reaching the point of line maximum loadability of radial distribution system (RDS) with different realistic load models at different substation voltages. The proposed method involves a simple line loadability index (LLI) that gives a measure of the proximity of the present state of a line in the distribution system. The LLI can use to assess voltage instability and the line loading margin. The proposed method also compares with the existing method of maximum loadability index [10]. The simulation results show that the LLI can identify not only the weakest line/branch causing system instability but also the system voltage collapse point when it is near one. This feature enables us to set an index threshold to monitor and predict system stability on-line so that a proper action can be taken to prevent the system from collapse. To demonstrate the validity of the proposed algorithm, computer simulations are carried out on two bus and 69 bus RDS.Keywords: line loadability index, line loading margin, maximum line loadability, system stability, radial distribution system
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1962230 On-line Handwritten Character Recognition: An Implementation of Counterpropagation Neural Net
Authors: Muhammad Faisal Zafar, Dzulkifli Mohamad, Razib M. Othman
Abstract:
On-line handwritten scripts are usually dealt with pen tip traces from pen-down to pen-up positions. Time evaluation of the pen coordinates is also considered along with trajectory information. However, the data obtained needs a lot of preprocessing including filtering, smoothing, slant removing and size normalization before recognition process. Instead of doing such lengthy preprocessing, this paper presents a simple approach to extract the useful character information. This work evaluates the use of the counter- propagation neural network (CPN) and presents feature extraction mechanism in full detail to work with on-line handwriting recognition. The obtained recognition rates were 60% to 94% using the CPN for different sets of character samples. This paper also describes a performance study in which a recognition mechanism with multiple thresholds is evaluated for counter-propagation architecture. The results indicate that the application of multiple thresholds has significant effect on recognition mechanism. The method is applicable for off-line character recognition as well. The technique is tested for upper-case English alphabets for a number of different styles from different peoples.
Keywords: On-line character recognition, character digitization, counter-propagation neural networks, extreme coordinates.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2433229 A Review in Recent Development of Network Threats and Security Measures
Authors: Roza Dastres, Mohsen Soori
Abstract:
Networks are vulnerable devices due to their basic feature of facilitating remote access and data communication. The information in the networks needs to be kept secured and safe in order to provide an effective communication and sharing device in the web of data. Due to challenges and threats of the data in networks, the network security is one of the most important considerations in information technology infrastructures. As a result, the security measures are considered in the network in order to decrease the probability of accessing the secured data by the hackers. The purpose of network security is to protect the network and its components from unauthorized access and abuse in order to provide a safe and secured communication device for the users. In the present research work a review in recent development of network threats and security measures is presented and future research works are also suggested. Different attacks to the networks and security measured against them are discussed in order to increase security in the web of data. So, new ideas in the network security systems can be presented by analyzing the published papers in order to move forward the research field.
Keywords: Network threats, network security, security measures, firewalls.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 839228 Sequential Straightforward Clustering for Local Image Block Matching
Authors: Mohammad Akbarpour Sekeh, Mohd. Aizaini Maarof, Mohd. Foad Rohani, Malihe Motiei
Abstract:
Duplicated region detection is a technical method to expose copy-paste forgeries on digital images. Copy-paste is one of the common types of forgeries to clone portion of an image in order to conceal or duplicate special object. In this type of forgery detection, extracting robust block feature and also high time complexity of matching step are two main open problems. This paper concentrates on computational time and proposes a local block matching algorithm based on block clustering to enhance time complexity. Time complexity of the proposed algorithm is formulated and effects of two parameter, block size and number of cluster, on efficiency of this algorithm are considered. The experimental results and mathematical analysis demonstrate this algorithm is more costeffective than lexicographically algorithms in time complexity issue when the image is complex.Keywords: Copy-paste forgery detection, Duplicated region, Timecomplexity, Local block matching, Sequential block clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1834227 Artificial Neural Network-Based Short-Term Load Forecasting for Mymensingh Area of Bangladesh
Authors: S. M. Anowarul Haque, Md. Asiful Islam
Abstract:
Electrical load forecasting is considered to be one of the most indispensable parts of a modern-day electrical power system. To ensure a reliable and efficient supply of electric energy, special emphasis should have been put on the predictive feature of electricity supply. Artificial Neural Network-based approaches have emerged to be a significant area of interest for electric load forecasting research. This paper proposed an Artificial Neural Network model based on the particle swarm optimization algorithm for improved electric load forecasting for Mymensingh, Bangladesh. The forecasting model is developed and simulated on the MATLAB environment with a large number of training datasets. The model is trained based on eight input parameters including historical load and weather data. The predicted load data are then compared with an available dataset for validation. The proposed neural network model is proved to be more reliable in terms of day-wise load forecasting for Mymensingh, Bangladesh.Keywords: Load forecasting, artificial neural network, particle swarm optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 688226 Hybrid Anomaly Detection Using Decision Tree and Support Vector Machine
Authors: Elham Serkani, Hossein Gharaee Garakani, Naser Mohammadzadeh, Elaheh Vaezpour
Abstract:
Intrusion detection systems (IDS) are the main components of network security. These systems analyze the network events for intrusion detection. The design of an IDS is through the training of normal traffic data or attack. The methods of machine learning are the best ways to design IDSs. In the method presented in this article, the pruning algorithm of C5.0 decision tree is being used to reduce the features of traffic data used and training IDS by the least square vector algorithm (LS-SVM). Then, the remaining features are arranged according to the predictor importance criterion. The least important features are eliminated in the order. The remaining features of this stage, which have created the highest level of accuracy in LS-SVM, are selected as the final features. The features obtained, compared to other similar articles which have examined the selected features in the least squared support vector machine model, are better in the accuracy, true positive rate, and false positive. The results are tested by the UNSW-NB15 dataset.
Keywords: Intrusion detection system, decision tree, support vector machine, feature selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1241225 A Comparison of SVM-based Criteria in Evolutionary Method for Gene Selection and Classification of Microarray Data
Authors: Rameswar Debnath, Haruhisa Takahashi
Abstract:
An evolutionary method whose selection and recombination operations are based on generalization error-bounds of support vector machine (SVM) can select a subset of potentially informative genes for SVM classifier very efficiently [7]. In this paper, we will use the derivative of error-bound (first-order criteria) to select and recombine gene features in the evolutionary process, and compare the performance of the derivative of error-bound with the error-bound itself (zero-order) in the evolutionary process. We also investigate several error-bounds and their derivatives to compare the performance, and find the best criteria for gene selection and classification. We use 7 cancer-related human gene expression datasets to evaluate the performance of the zero-order and first-order criteria of error-bounds. Though both criteria have the same strategy in theoretically, experimental results demonstrate the best criterion for microarray gene expression data.Keywords: support vector machine, generalization error-bound, feature selection, evolutionary algorithm, microarray data
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1538224 Image Contrast Enhancement based Sub-histogram Equalization Technique without Over-equalization Noise
Authors: Hyunsup Yoon, Youngjoon Han, Hernsoo Hahn
Abstract:
In order to enhance the contrast in the regions where the pixels have similar intensities, this paper presents a new histogram equalization scheme. Conventional global equalization schemes over-equalizes these regions so that too bright or dark pixels are resulted and local equalization schemes produce unexpected discontinuities at the boundaries of the blocks. The proposed algorithm segments the original histogram into sub-histograms with reference to brightness level and equalizes each sub-histogram with the limited extents of equalization considering its mean and variance. The final image is determined as the weighted sum of the equalized images obtained by using the sub-histogram equalizations. By limiting the maximum and minimum ranges of equalization operations on individual sub-histograms, the over-equalization effect is eliminated. Also the result image does not miss feature information in low density histogram region since the remaining these area is applied separating equalization. This paper includes how to determine the segmentation points in the histogram. The proposed algorithm has been tested with more than 100 images having various contrasts in the images and the results are compared to the conventional approaches to show its superiority.
Keywords: Contrast Enhancement, Histogram Equalization, Histogram Region Equalization, Equalization Noise
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3419223 Handover Strategies Challenges in Wireless ATM Networks
Authors: Jamila Bhar, Ridha Ouni, Kholdoun Torki, Salem Nasri
Abstract:
To support user mobility for a wireless network new mechanisms are needed and are fundamental, such as paging, location updating, routing, and handover. Also an important key feature is mobile QoS offered by the WATM. Several ATM network protocols should be updated to implement mobility management and to maintain the already ATM QoS over wireless ATM networks. A survey of the various schemes and types of handover is provided. Handover procedure allows guarantee the terminal connection reestablishment when it moves between areas covered by different base stations. It is useful to satisfy user radio link transfer without interrupting a connection. However, failure to offer efficient solutions will result in handover important packet loss, severe delays and degradation of QoS offered to the applications. This paper reviews the requirements, characteristics and open issues of wireless ATM, particularly with regard to handover. It introduces key aspects of WATM and mobility extensions, which are added in the fixed ATM network. We propose a flexible approach for handover management that will minimize the QoS deterioration. Functional entities of this flexible approach are discussed in order to achieve minimum impact on the connection quality when a MT crosses the BS.
Keywords: Handover, HDL synthesis, QoS, Wireless ATM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1950222 Natural Preservatives: An Alternative for Chemical Preservative Used in Foods
Authors: Zerrin Erginkaya, Gözde Konuray
Abstract:
Microbial degradation of foods is defined as a decrease of food safety due to microorganism activity. Organic acids, sulfur dioxide, sulfide, nitrate, nitrite, dimethyl dicarbonate and several preservative gases have been used as chemical preservatives in foods as well as natural preservatives which are indigenous in foods. It is determined that usage of herbal preservatives such as blueberry, dried grape, prune, garlic, mustard, spices inhibited several microorganisms. Moreover, it is determined that animal origin preservatives such as whey, honey, lysosomes of duck egg and chicken egg, chitosan have antimicrobial effect. Other than indigenous antimicrobials in foods, antimicrobial agents produced by microorganisms could be used as natural preservatives. The antimicrobial feature of preservatives depends on the antimicrobial spectrum, chemical and physical features of material, concentration, mode of action, components of food, process conditions, and pH and storage temperature. In this review, studies about antimicrobial components which are indigenous in food (such as herbal and animal origin antimicrobial agents), antimicrobial materials synthesized by microorganisms, and their usage as an antimicrobial agent to preserve foods are discussed.
Keywords: Animal origin preservatives, antimicrobial, chemical preservatives, herbal preservatives.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2614221 Adaptive Kernel Principal Analysis for Online Feature Extraction
Authors: Mingtao Ding, Zheng Tian, Haixia Xu
Abstract:
The batch nature limits the standard kernel principal component analysis (KPCA) methods in numerous applications, especially for dynamic or large-scale data. In this paper, an efficient adaptive approach is presented for online extraction of the kernel principal components (KPC). The contribution of this paper may be divided into two parts. First, kernel covariance matrix is correctly updated to adapt to the changing characteristics of data. Second, KPC are recursively formulated to overcome the batch nature of standard KPCA.This formulation is derived from the recursive eigen-decomposition of kernel covariance matrix and indicates the KPC variation caused by the new data. The proposed method not only alleviates sub-optimality of the KPCA method for non-stationary data, but also maintains constant update speed and memory usage as the data-size increases. Experiments for simulation data and real applications demonstrate that our approach yields improvements in terms of both computational speed and approximation accuracy.
Keywords: adaptive method, kernel principal component analysis, online extraction, recursive algorithm
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1553220 Performance Analysis of Bluetooth Low Energy Mesh Routing Algorithm in Case of Disaster Prediction
Authors: Asmir Gogic, Aljo Mujcic, Sandra Ibric, Nermin Suljanovic
Abstract:
Ubiquity of natural disasters during last few decades have risen serious questions towards the prediction of such events and human safety. Every disaster regardless its proportion has a precursor which is manifested as a disruption of some environmental parameter such as temperature, humidity, pressure, vibrations and etc. In order to anticipate and monitor those changes, in this paper we propose an overall system for disaster prediction and monitoring, based on wireless sensor network (WSN). Furthermore, we introduce a modified and simplified WSN routing protocol built on the top of the trickle routing algorithm. Routing algorithm was deployed using the bluetooth low energy protocol in order to achieve low power consumption. Performance of the WSN network was analyzed using a real life system implementation. Estimates of the WSN parameters such as battery life time, network size and packet delay are determined. Based on the performance of the WSN network, proposed system can be utilized for disaster monitoring and prediction due to its low power profile and mesh routing feature.Keywords: Bluetooth low energy, disaster prediction, mesh routing protocols, wireless sensor networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2860219 Operating System Based Virtualization Models in Cloud Computing
Authors: Dev Ras Pandey, Bharat Mishra, S. K. Tripathi
Abstract:
Cloud computing is ready to transform the structure of businesses and learning through supplying the real-time applications and provide an immediate help for small to medium sized businesses. The ability to run a hypervisor inside a virtual machine is important feature of virtualization and it is called nested virtualization. In today’s growing field of information technology, many of the virtualization models are available, that provide a convenient approach to implement, but decision for a single model selection is difficult. This paper explains the applications of operating system based virtualization in cloud computing with an appropriate/suitable model with their different specifications and user’s requirements. In the present paper, most popular models are selected, and the selection was based on container and hypervisor based virtualization. Selected models were compared with a wide range of user’s requirements as number of CPUs, memory size, nested virtualization supports, live migration and commercial supports, etc. and we identified a most suitable model of virtualization.
Keywords: Virtualization, OS based virtualization, container and hypervisor based virtualization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1946218 Machine Learning Approach for Identifying Dementia from MRI Images
Authors: S. K. Aruna, S. Chitra
Abstract:
This research paper presents a framework for classifying Magnetic Resonance Imaging (MRI) images for Dementia. Dementia, an age-related cognitive decline is indicated by degeneration of cortical and sub-cortical structures. Characterizing morphological changes helps understand disease development and contributes to early prediction and prevention of the disease. Modelling, that captures the brain’s structural variability and which is valid in disease classification and interpretation is very challenging. Features are extracted using Gabor filter with 0, 30, 60, 90 orientations and Gray Level Co-occurrence Matrix (GLCM). It is proposed to normalize and fuse the features. Independent Component Analysis (ICA) selects features. Support Vector Machine (SVM) classifier with different kernels is evaluated, for efficiency to classify dementia. This study evaluates the presented framework using MRI images from OASIS dataset for identifying dementia. Results showed that the proposed feature fusion classifier achieves higher classification accuracy.
Keywords: Magnetic resonance imaging, dementia, Gabor filter, gray level co-occurrence matrix, support vector machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2118217 Automated Thickness Measurement of Retinal Blood Vessels for Implementation of Clinical Decision Support Systems in Diagnostic Diabetic Retinopathy
Authors: S.Jerald Jeba Kumar, M.Madheswaran
Abstract:
The structure of retinal vessels is a prominent feature, that reveals information on the state of disease that are reflected in the form of measurable abnormalities in thickness and colour. Vascular structures of retina, for implementation of clinical diabetic retinopathy decision making system is presented in this paper. Retinal Vascular structure is with thin blood vessel, whose accuracy is highly dependent upon the vessel segmentation. In this paper the blood vessel thickness is automatically detected using preprocessing techniques and vessel segmentation algorithm. First the capture image is binarized to get the blood vessel structure clearly, then it is skeletonised to get the overall structure of all the terminal and branching nodes of the blood vessels. By identifying the terminal node and the branching points automatically, the main and branching blood vessel thickness is estimated. Results are presented and compared with those provided by clinical classification on 50 vessels collected from Bejan Singh Eye hospital..Keywords: Diabetic retinopathy, Binarization, SegmentationClinical Decision Support Systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2045216 Hyperspectral Mapping Methods for Differentiating Mangrove Species along Karachi Coast
Authors: Sher Muhammad, Mirza Muhammad Waqar
Abstract:
It is necessary to monitor and identify mangroves types and spatial extent near coastal areas because it plays an important role in coastal ecosystem and environmental protection. This research aims at identifying and mapping mangroves types along Karachi coast ranging from 24.790 to 24.850 in latitude and 66.910 to 66.970 in longitude using hyperspectral remote sensing data and techniques. Image acquired during February, 2012 through Hyperion sensor have been used for this research. Image pre processing includes geometric and radiometric correction followed by Minimum Noise Fraction (MNF) and Pixel Purity Index (PPI). The output of MNF and PPI has been analyzed by visualizing it in n-dimensions for end member extraction. Well distributed clusters on the n-dimensional scatter plot have been selected with the region of interest (ROI) tool as end members. These end members have been used as an input for classification techniques applied to identify and map mangroves species including Spectral Angle Mapper (SAM), Spectral Feature Fitting (SFF) and Spectral Information Diversion (SID). Only two types of mangroves namely Avicennia Marina (White Mangroves) and Avicennia germinans (Black Mangroves) have been observed throughout the study area.
Keywords: Mangrove, Hyperspectral, SAM, SFF, SID.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2908215 The Characteristics of the Factors that Govern the Preferred Force in the Social Force Model of Pedestrian Movement
Authors: Zarita Zainuddin, Mohammed Mahmod Shuaib, Ibtesam M. Abu-Sulyman
Abstract:
The social force model which belongs to the microscopic pedestrian studies has been considered as the supremacy by many researchers and due to the main feature of reproducing the self-organized phenomena resulted from pedestrian dynamic. The Preferred Force which is a measurement of pedestrian-s motivation to adapt his actual velocity to his desired velocity is an essential term on which the model was set up. This Force has gone through stages of development: first of all, Helbing and Molnar (1995) have modeled the original force for the normal situation. Second, Helbing and his co-workers (2000) have incorporated the panic situation into this force by incorporating the panic parameter to account for the panic situations. Third, Lakoba and Kaup (2005) have provided the pedestrians some kind of intelligence by incorporating aspects of the decision-making capability. In this paper, the authors analyze the most important incorporations into the model regarding the preferred force. They make comparisons between the different factors of these incorporations. Furthermore, to enhance the decision-making ability of the pedestrians, they introduce additional features such as the familiarity factor to the preferred force to let it appear more representative of what actually happens in reality.Keywords: Pedestrian movement, social force model, preferredforce, familiarity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1249214 Adaptive Kaman Filter for Fault Diagnosis of Linear Parameter-Varying Systems
Authors: Rajamani Doraiswami, Lahouari Cheded
Abstract:
Fault diagnosis of Linear Parameter-Varying (LPV) system using an adaptive Kalman filter is proposed. The LPV model is comprised of scheduling parameters, and the emulator parameters. The scheduling parameters are chosen such that they are capable of tracking variations in the system model as a result of changes in the operating regimes. The emulator parameters, on the other hand, simulate variations in the subsystems during the identification phase and have negligible effect during the operational phase. The nominal model and the influence vectors, which are the gradient of the feature vector respect to the emulator parameters, are identified off-line from a number of emulator parameter perturbed experiments. A Kalman filter is designed using the identified nominal model. As the system varies, the Kalman filter model is adapted using the scheduling variables. The residual is employed for fault diagnosis. The proposed scheme is successfully evaluated on simulated system as well as on a physical process control system.Keywords: Keywords—Identification, linear parameter-varying systems, least-squares estimation, fault diagnosis, Kalman filter, emulators
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1301213 Application of Biometrics to Obtain High Entropy Cryptographic Keys
Authors: Sanjay Kanade, Danielle Camara, Dijana Petrovska-Delacretaz, Bernadette Dorizzi
Abstract:
In this paper, a two factor scheme is proposed to generate cryptographic keys directly from biometric data, which unlike passwords, are strongly bound to the user. Hash value of the reference iris code is used as a cryptographic key and its length depends only on the hash function, being independent of any other parameter. The entropy of such keys is 94 bits, which is much higher than any other comparable system. The most important and distinct feature of this scheme is that it regenerates the reference iris code by providing a genuine iris sample and the correct user password. Since iris codes obtained from two images of the same eye are not exactly the same, error correcting codes (Hadamard code and Reed-Solomon code) are used to deal with the variability. The scheme proposed here can be used to provide keys for a cryptographic system and/or for user authentication. The performance of this system is evaluated on two publicly available databases for iris biometrics namely CBS and ICE databases. The operating point of the system (values of False Acceptance Rate (FAR) and False Rejection Rate (FRR)) can be set by properly selecting the error correction capacity (ts) of the Reed- Solomon codes, e.g., on the ICE database, at ts = 15, FAR is 0.096% and FRR is 0.76%. Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2091