Search results for: task space control
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5634

Search results for: task space control

4854 The Effect of Response Feedback on Performance of Active Controlled Nonlinear Frames

Authors: M. Mohebbi, K. Shakeri

Abstract:

The effect of different combinations of response feedback on the performance of active control system on nonlinear frames has been studied in this paper. To this end different feedback combinations including displacement, velocity, acceleration and full response feedback have been utilized in controlling the response of an eight story bilinear hysteretic frame which has been subjected to a white noise excitation and controlled by eight actuators which could fully control the frame. For active control of nonlinear frame Newmark nonlinear instantaneous optimal control algorithm has been used which a diagonal matrix has been selected for weighting matrices in performance index. For optimal design of active control system while the objective has been to reduce the maximum drift to below the yielding level, Distributed Genetic Algorithm (DGA) has been used to determine the proper set of weighting matrices. The criteria to assess the effect of each combination of response feedback have been the minimum required control force to reduce the maximum drift to below the yielding drift. The results of numerical simulation show that the performance of active control system is dependent on the type of response feedback where the velocity feedback is more effective in designing optimal control system in comparison with displacement and acceleration feedback. Also using full feedback of response in controller design leads to minimum control force amongst other combinations. Also the distributed genetic algorithm shows acceptable convergence speed in solving the optimization problem of designing active control systems.

Keywords: Active control, Distributed genetic algorithms, Response feedback, Weighting matrices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1405
4853 Material Characterization and Numerical Simulation of a Rubber Bumper

Authors: Tamás Mankovits, Dávid Huri, Imre Kállai, Imre Kocsis, Tamás Szabó

Abstract:

Non-linear FEM calculations are indispensable when important technical information like operating performance of a rubber component is desired. Rubber bumpers built into air-spring structures may undergo large deformations under load, which in itself shows non-linear behavior. The changing contact range between the parts and the incompressibility of the rubber increases this non-linear behavior further. The material characterization of an elastomeric component is also a demanding engineering task. In this paper a comprehensive investigation is introduced including laboratory measurements, mesh density analysis and complex finite element simulations to obtain the load-displacement curve of the chosen rubber bumper. Contact and friction effects are also taken into consideration. The aim of this research is to elaborate a FEM model which is accurate and competitive for a future shape optimization task.

Keywords: Rubber bumper, finite element analysis, compression test, Mooney-Rivlin material model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3583
4852 Extended Minimal Controller Synthesis for Voltage-Fed Induction Motor Based on the Hyperstability Theory

Authors: A. Ramdane, F.Naceri, S. Ramdane

Abstract:

in this work, we present a new strategy of direct adaptive control denoted: Extended minimal controller synthesis (EMCS). This algorithm is designed for an induction motor, which includes both electrical and mechanical dynamics under the assumptions of linear magnetic circuits. The main motivation of the EMCS control is to enhance the robustness of the MRAC algorithms, i.e. the rejection of bounded effects of rapidly varying external disturbances.

Keywords: Adaptive Control, Simple model reference adaptive control (SMRAC), Extended Minimal Controller synthesis (EMCS), Induction Motor (IM)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1639
4851 Robust Stability in Multivariable Neural Network Control using Harmonic Analysis

Authors: J. Fernandez de Canete, S. Gonzalez-Perez, P. del Saz-Orozco, I. Garcia-Moral

Abstract:

Robust stability and performance are the two most basic features of feedback control systems. The harmonic balance analysis technique enables to analyze the stability of limit cycles arising from a neural network control based system operating over nonlinear plants. In this work a robust stability analysis based on the harmonic balance is presented and applied to a neural based control of a non-linear binary distillation column with unstructured uncertainty. We develop ways to describe uncertainty in the form of neglected nonlinear dynamics and high harmonics for the plant and controller respectively. Finally, conclusions about the performance of the neural control system are discussed using the Nyquist stability margin together with the structured singular values of the uncertainty as a robustness measure.

Keywords: Robust stability, neural network control, unstructured uncertainty, singular values, distillation column.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1627
4850 A Strategy to Optimize the SPC Scheme for Mass Production of HDD Arm with ClusteringTechnique and Three-Way Control Chart

Authors: W. Chattinnawat

Abstract:

Consider a mass production of HDD arms where hundreds of CNC machines are used to manufacturer the HDD arms. According to an overwhelming number of machines and models of arm, construction of separate control chart for monitoring each HDD arm model by each machine is not feasible. This research proposed a strategy to optimize the SPC management on shop floor. The procedure started from identifying the clusters of the machine with similar manufacturing performance using clustering technique. The three way control chart ( I - MR - R ) is then applied to each clustered group of machine. This proposed research has advantageous to the manufacturer in terms of not only better performance of the SPC but also the quality management paradigm.

Keywords: Three way control chart. I - MR - R , between/within variation, HDD arm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1634
4849 Positive Solutions of Initial Value Problem for the Systems of Second Order Integro-Differential Equations in Banach Space

Authors: Lv Yuhua

Abstract:

In this paper, by establishing a new comparison result, we investigate the existence of positive solutions for initial value problems of nonlinear systems of second order integro-differential equations in Banach space.We improve and generalize some results  (see[5,6]), and the results is new even in finite dimensional spaces.

Keywords: Systems of integro-differential equations, monotone iterative method, comparison result, cone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1498
4848 Optimal Control of Viscoelastic Melt Spinning Processes

Authors: Shyam S.N. Perera

Abstract:

The optimal control problem for the viscoelastic melt spinning process has not been reported yet in the literature. In this study, an optimal control problem for a mathematical model of a viscoelastic melt spinning process is considered. Maxwell-Oldroyd model is used to describe the rheology of the polymeric material, the fiber is made of. The extrusion velocity of the polymer at the spinneret as well as the velocity and the temperature of the quench air and the fiber length serve as control variables. A constrained optimization problem is derived and the first–order optimality system is set up to obtain the adjoint equations. Numerical solutions are carried out using a steepest descent algorithm. A computer program in MATLAB is developed for simulations.

Keywords: Fiber spinning, Maxwell-Oldroyd, Optimal control, First-order optimality system, Adjoint system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1887
4847 A Framework for Ranking Quality of Information on Weblog

Authors: Mohammad Javad Kargar, Fatemeh Azimzadeh

Abstract:

The vast amount of information on the World Wide Web is created and published by many different types of providers. Unlike books and journals, most of this information is not subject to editing or peer review by experts. This lack of quality control and the explosion of web sites make the task of finding quality information on the web especially critical. Meanwhile new facilities for producing web pages such as Blogs make this issue more significant because Blogs have simple content management tools enabling nonexperts to build easily updatable web diaries or online journals. On the other hand despite a decade of active research in information quality (IQ) there is no framework for measuring information quality on the Blogs yet. This paper presents a novel experimental framework for ranking quality of information on the Weblog. The results of data analysis revealed seven IQ dimensions for the Weblog. For each dimension, variables and related coefficients were calculated so that presented framework is able to assess IQ of Weblogs automatically.

Keywords: Information Quality, Weblog, Web Ranking, Web- Quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1843
4846 Nonlinear Fuzzy Tracking Real-time-based Control of Drying Parameters

Authors: Marco Soares dos Santos, Camila Nicola Boeri, Jorge Augusto Ferreira, Fernando Neto da Silva

Abstract:

The highly nonlinear characteristics of drying processes have prompted researchers to seek new nonlinear control solutions. However, the relation between the implementation complexity, on-line processing complexity, reliability control structure and controller-s performance is not well established. The present paper proposes high performance nonlinear fuzzy controllers for a real-time operation of a drying machine, being developed under a consistent match between those issues. A PCI-6025E data acquisition device from National Instruments® was used, and the control system was fully designed with MATLAB® / SIMULINK language. Drying parameters, namely relative humidity and temperature, were controlled through MIMOs Hybrid Bang-bang+PI (BPI) and Four-dimensional Fuzzy Logic (FLC) real-time-based controllers to perform drying tests on biological materials. The performance of the drying strategies was compared through several criteria, which are reported without controllers- retuning. Controllers- performance analysis has showed much better performance of FLC than BPI controller. The absolute errors were lower than 8,85 % for Fuzzy Logic Controller, about three times lower than the experimental results with BPI control.

Keywords: Drying control, Fuzzy logic control, Intelligent temperature-humidity control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2337
4845 Multi-Objective Optimal Design of a Cascade Control System for a Class of Underactuated Mechanical Systems

Authors: Yuekun Chen, Yousef Sardahi, Salam Hajjar, Christopher Greer

Abstract:

This paper presents a multi-objective optimal design of a cascade control system for an underactuated mechanical system. Cascade control structures usually include two control algorithms (inner and outer). To design such a control system properly, the following conflicting objectives should be considered at the same time: 1) the inner closed-loop control must be faster than the outer one, 2) the inner loop should fast reject any disturbance and prevent it from propagating to the outer loop, 3) the controlled system should be insensitive to measurement noise, and 4) the controlled system should be driven by optimal energy. Such a control problem can be formulated as a multi-objective optimization problem such that the optimal trade-offs among these design goals are found. To authors best knowledge, such a problem has not been studied in multi-objective settings so far. In this work, an underactuated mechanical system consisting of a rotary servo motor and a ball and beam is used for the computer simulations, the setup parameters of the inner and outer control systems are tuned by NSGA-II (Non-dominated Sorting Genetic Algorithm), and the dominancy concept is used to find the optimal design points. The solution of this problem is not a single optimal cascade control, but rather a set of optimal cascade controllers (called Pareto set) which represent the optimal trade-offs among the selected design criteria. The function evaluation of the Pareto set is called the Pareto front. The solution set is introduced to the decision-maker who can choose any point to implement. The simulation results in terms of Pareto front and time responses to external signals show the competing nature among the design objectives. The presented study may become the basis for multi-objective optimal design of multi-loop control systems.

Keywords: Cascade control, multi-loop control systems, multi-objective optimization, optimal control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 921
4844 Research on Control Strategy of Differential Drive Assisted Steering of Distributed Drive Electric Vehicle

Authors: J. Liu, Z. P. Yu, L. Xiong, Y. Feng, J. He

Abstract:

According to the independence, accuracy and controllability of the driving/braking torque of the distributed drive electric vehicle, a control strategy of differential drive assisted steering was designed. Firstly, the assisted curve under different speed and steering wheel torque was developed and the differential torques were distributed to the right and left front wheels. Then the steering return ability assisted control algorithm was designed. At last, the joint simulation was conducted by CarSim/Simulink. The result indicated: the differential drive assisted steering algorithm could provide enough steering drive-assisted under low speed and improve the steering portability. Along with the increase of the speed, the provided steering drive-assisted decreased. With the control algorithm, the steering stiffness of the steering system increased along with the increase of the speed, which ensures the driver’s road feeling. The control algorithm of differential drive assisted steering could avoid the understeer under low speed effectively.

Keywords: Differential assisted steering, control strategy, distributed drive electric vehicle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2262
4843 Interval Type-2 Fuzzy Vibration Control of an ERF Embedded Smart Structure

Authors: Chih-Jer Lin, Chun-Ying Lee, Ying Liu, Chiang-Ho Cheng

Abstract:

The main objective of this article is to present the semi-active vibration control using an electro-rheological fluid embedded sandwich structure for a cantilever beam. ER fluid is a smart material, which cause the suspended particles polarize and connect each other to form chain. The stiffness and damping coefficients of the ER fluid can be changed in 10 micro seconds; therefore, ERF is suitable to become the material embedded in the tunable vibration absorber to become a smart absorber. For the ERF smart material embedded structure, the fuzzy control law depends on the experimental expert database and the proposed self-tuning strategy. The electric field is controlled by a CRIO embedded system to implement the real application. This study investigates the different performances using the Type-1 fuzzy and interval Type-2 fuzzy controllers. The Interval type-2 fuzzy control is used to improve the modeling uncertainties for this ERF embedded shock absorber. The self-tuning vibration controllers using Type-1 and Interval Type-2 fuzzy law are implemented to the shock absorber system. Based on the resulting performance, Internal Type-2 fuzzy is better than the traditional Type-1 fuzzy control for this vibration control system.

 

Keywords: Electro-Rheological Fluid, Semi-active vibration control, shock absorber, type 2 fuzzy control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2122
4842 T-DOF PID Controller Design using Characteristic Ratio Assignment Method for Quadruple Tank Process

Authors: Tianchai Suksri, U-thai Sritheeravirojana, Arjin Numsomran, Viriya Kongrattana, Thongchai Werataweemart

Abstract:

A control system design with Characteristic Ratio Assignment (CRA) is proven that effective for SISO control design. But the control system design for MIMO via CRA is not concrete procedure. In this paper presents the control system design method for quadruple-tank process via CRA. By using the decentralized method for both minimum phase and non-minimum phase are made. The results from PI and PID controller design via CRA can be illustrated the validity of our approach by MATLAB.

Keywords: CRA, Quadruple-Tank.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1584
4841 Simulation for Squat Exercise of an Active Controlled Vibration Isolation and Stabilization System for Astronaut’s Exercise Platform

Authors: Ziraguen O. Williams, Shield B. Lin, Fouad N. Matari, Leslie J. Quiocho

Abstract:

In a task to assist NASA in analyzing the dynamic forces caused by operational countermeasures of an astronaut’s exercise platform impacting the spacecraft, feedback delay and signal noise were added to a simulation model of an active controlled vibration isolation and stabilization system to regulate the movement of the exercise platform. Two additional simulation tools used in this study were Trick and MBDyn, software simulation environments developed at the NASA Johnson Space Center. Simulation results obtained from these three tools were very similar. All simulation results support the hypothesis that an active controlled vibration isolation and stabilization system outperforms a passive controlled system even with the addition of feedback delay and signal noise to the active controlled system. In this paper, squat exercise was used in creating excited force to the simulation model. The exciter force from squat exercise was calculated from motion capture of an exerciser. The simulation results demonstrate much greater transmitted force reduction in the active controlled system than the passive controlled system.

Keywords: Astronaut, counterweight, stabilization, vibration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 459
4840 Fractional-Order PI Controller Tuning Rules for Cascade Control System

Authors: Truong Nguyen Luan Vu, Le Hieu Giang, Le Linh

Abstract:

The fractional–order proportional integral (FOPI) controller tuning rules based on the fractional calculus for the cascade control system are systematically proposed in this paper. Accordingly, the ideal controller is obtained by using internal model control (IMC) approach for both the inner and outer loops, which gives the desired closed-loop responses. On the basis of the fractional calculus, the analytical tuning rules of FOPI controller for the inner loop can be established in the frequency domain. Besides, the outer loop is tuned by using any integer PI/PID controller tuning rules in the literature. The simulation study is considered for the stable process model and the results demonstrate the simplicity, flexibility, and effectiveness of the proposed method for the cascade control system in compared with the other methods.

Keywords: Fractional calculus, fractional–order proportional integral controller, cascade control system, internal model control approach.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1556
4839 An Inverse Optimal Control Approach for the Nonlinear System Design Using ANN

Authors: M. P. Nanda Kumar, K. Dheeraj

Abstract:

The design of a feedback controller, so as to minimize a given performance criterion, for a general non-linear dynamical system is difficult; if not impossible. But for a large class of non-linear dynamical systems, the open loop control that minimizes a performance criterion can be obtained using calculus of variations and Pontryagin’s minimum principle. In this paper, the open loop optimal trajectories, that minimizes a given performance measure, is used to train the neural network whose inputs are state variables of non-linear dynamical systems and the open loop optimal control as the desired output. This trained neural network is used as the feedback controller. In other words, attempts are made here to solve the “inverse optimal control problem” by using the state and control trajectories that are optimal in an open loop sense.

Keywords: Inverse Optimal Control, Radial basis function neural network, Controller Design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2286
4838 Optimal Tuning of a Fuzzy Immune PID Parameters to Control a Delayed System

Authors: S. Gherbi, F. Bouchareb

Abstract:

This paper deals with the novel intelligent bio-inspired control strategies, it presents a novel approach based on an optimal fuzzy immune PID parameters tuning, it is a combination of a PID controller, inspired by the human immune mechanism with fuzzy logic. Such controller offers more possibilities to deal with the delayed systems control difficulties due to the delay term. Indeed, we use an optimization approach to tune the four parameters of the controller in addition to the fuzzy function; the obtained controller is implemented in a modified Smith predictor structure, which is well known that it is the most efficient to the control of delayed systems. The application of the presented approach to control a three tank delay system shows good performances and proves the efficiency of the method.

Keywords: Delayed systems, Fuzzy Immune PID, Optimization, Smith predictor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2220
4837 Back Stepping Sliding Mode Control of Blood Glucose for Type I Diabetes

Authors: N. Tadrisi Parsa, A. R. Vali, R. Ghasemi

Abstract:

Diabetes is a growing health problem in worldwide. Especially, the patients with Type 1 diabetes need strict glycemic control because they have deficiency of insulin production. This paper attempts to control blood glucose based on body mathematical body model. The Bergman minimal mathematical model is used to develop the nonlinear controller. A novel back-stepping based sliding mode control (B-SMC) strategy is proposed as a solution that guarantees practical tracking of a desired glucose concentration. In order to show the performance of the proposed design, it is compared with conventional linear and fuzzy controllers which have been done in previous researches. The numerical simulation result shows the advantages of sliding mode back stepping controller design to linear and fuzzy controllers.

Keywords: Back stepping, Bergman Model, Nonlinear control, Sliding mode control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3535
4836 Active Control for Reduction of Noise Passing through Enclosure and Optimization of Microphone Position

Authors: Han-wool Lee, Chin-suk Hong, Weui-bong Jung

Abstract:

In this study, noise characteristics of structure were analyzed in an effort to reduce noise passing through an opening of an enclosure surrounding the structure that generates noise. Enclosures are essential measure to protect noise propagation from operating machinery. Access openings of the enclosures are important path of noise leakage. First, noise characteristics of structure were analyzed and feed-forward noise control was performed using simulation in order to reduce noise passing through the opening of enclosure, which surrounds a structure generating noise. We then implemented a feed-forward controller to actively control the acoustic power through the opening. Finally, we conducted optimization of placement of the reference sensors for several cases of the number of sensors. Good control performances were achieved using the minimum number of microphones arranged an optimal placement.

Keywords: Active Noise Control, Feed-forward Control, Noise Attenuation, Position Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1644
4835 Study of Single Network Adjustment Using QOCA Software in Korea

Authors: Seongchan Kang, Hongsik Yun, Hyukgil Kim, Minwoo Park

Abstract:

For this study, this researcher conducted a precision network adjustment with QOCA, the precision network adjustment software developed by Jet Propulsion Laboratory, to perform an integrated network adjustment on the Unified Control Points managed by the National Geographic Information Institute. Towards this end, 275 Unified Control Points observed in 2008 were selected before a network adjustment is performed on those 275 Unified Control Points. The RMSE on the discrepancies of coordinates as compared to the results of GLOBK was ±6.07mm along the N axis, ±2.68mm along the E axis and ±6.49mm along the U axis.

Keywords: Network adjustment, QOCA, unified control point.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1846
4834 A Survey on Positive Real and Strictly Positive Real Scalar Transfer Functions

Authors: Mojtaba Hakimi-Moghaddam

Abstract:

Positive real and strictly positive real transfer functions are important concepts in the control theory. In this paper, the results of researches in these areas are summarized. Definitions together with their graphical interpretations are mentioned. The equivalent conditions in the frequency domain and state space representations are reviewed. Their equivalent electrical networks are explained. Also, a comprehensive discussion about a difference between behavior of real part of positive real and strictly positive real transfer functions in high frequencies is presented. Furthermore, several illustrative examples are given.

Keywords: Real rational transfer functions, positive realness property, strictly positive realness property, equivalent conditions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2386
4833 Heuristic Search Algorithm (HSA) for Enhancing the Lifetime of Wireless Sensor Networks

Authors: Tripatjot S. Panag, J. S. Dhillon

Abstract:

The lifetime of a wireless sensor network can be effectively increased by using scheduling operations. Once the sensors are randomly deployed, the task at hand is to find the largest number of disjoint sets of sensors such that every sensor set provides complete coverage of the target area. At any instant, only one of these disjoint sets is switched on, while all other are switched off. This paper proposes a heuristic search method to find the maximum number of disjoint sets that completely cover the region. A population of randomly initialized members is made to explore the solution space. A set of heuristics has been applied to guide the members to a possible solution in their neighborhood. The heuristics escalate the convergence of the algorithm. The best solution explored by the population is recorded and is continuously updated. The proposed algorithm has been tested for applications which require sensing of multiple target points, referred to as point coverage applications. Results show that the proposed algorithm outclasses the existing algorithms. It always finds the optimum solution, and that too by making fewer number of fitness function evaluations than the existing approaches.

Keywords: Coverage, disjoint sets, heuristic, lifetime, scheduling, wireless sensor networks, WSN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1840
4832 Insight-Based Evaluation of a Map-based Dashboard

Authors: Anna Fredriksson Häägg, Charlotte Weil, Niklas Rönnberg

Abstract:

Map-based dashboards are used for data exploration every day. The present study used an insight-based methodology for evaluating a map-based dashboard that presents research findings of water management and ecosystem services in the Amazon. In addition to analyzing the insights gained from using the dashboard, the evaluation method was compared to standardized questionnaires and task-based evaluations. The result suggests that the dashboard enabled the participants to gain domain-relevant, complex insights regarding the topic presented. Furthermore, the insight-based analysis highlighted unexpected insights and hypotheses regarding causes and potential adaptation strategies for remediation. Although time- and resource-consuming, the insight-based methodology was shown to have the potential of thoroughly analyzing how end users can utilize map-based dashboards for data exploration and decision making. Finally, the insight-based methodology is argued to evaluate tools in scenarios more similar to real-life usage, compared to task-based evaluation methods.

Keywords: Visual analytics, dashboard, insight-based evaluation, geographic visualization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 405
4831 Role-based Access Control Model in Home Network Environments

Authors: Do-Woo Kim, Geon Woo Kim, Jun-Ho Lee, Jong-Wook Han

Abstract:

The home in these days has not one computer connected to the Internet but rather a network of many devices within the home, and that network might be connected to the Internet. In such an environment, the potential for attacks is greatly increased. The general security technology can not apply because of the use of various wired and wireless network, middleware and protocol in digital home environment and a restricted system resource of home information appliances. To offer secure home services home network environments have need of access control for various home devices and information when users want to access. Therefore home network access control for user authorization is a very important issue. In this paper we propose access control model using RBAC in home network environments to provide home users with secure home services.

Keywords: Home network, access control, RBAC, security.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1910
4830 A Modified Maximum Urgency First Scheduling Algorithm for Real-Time Tasks

Authors: Vahid Salmani, Saman Taghavi Zargar, Mahmoud Naghibzadeh

Abstract:

This paper presents a modified version of the maximum urgency first scheduling algorithm. The maximum urgency algorithm combines the advantages of fixed and dynamic scheduling to provide the dynamically changing systems with flexible scheduling. This algorithm, however, has a major shortcoming due to its scheduling mechanism which may cause a critical task to fail. The modified maximum urgency first scheduling algorithm resolves the mentioned problem. In this paper, we propose two possible implementations for this algorithm by using either earliest deadline first or modified least laxity first algorithms for calculating the dynamic priorities. These two approaches are compared together by simulating the two algorithms. The earliest deadline first algorithm as the preferred implementation is then recommended. Afterwards, we make a comparison between our proposed algorithm and maximum urgency first algorithm using simulation and results are presented. It is shown that modified maximum urgency first is superior to maximum urgency first, since it usually has less task preemption and hence, less related overhead. It also leads to less failed non-critical tasks in overloaded situations.

Keywords: Modified maximum urgency first, maximum urgency first, real-time systems, scheduling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2730
4829 Specification Requirements for a Combined Dehumidifier/Cooling Panel: A Global Scale Analysis

Authors: Damien Gondre, Hatem Ben Maad, Abdelkrim Trabelsi, Frédéric Kuznik, Joseph Virgone

Abstract:

The use of a radiant cooling solution would enable to lower cooling needs which is of great interest when the demand is initially high (hot climate). But, radiant systems are not naturally compatibles with humid climates since a low-temperature surface leads to condensation risks as soon as the surface temperature is close to or lower than the dew point temperature. A radiant cooling system combined to a dehumidification system would enable to remove humidity for the space, thereby lowering the dew point temperature. The humidity removal needs to be especially effective near the cooled surface. This requirement could be fulfilled by a system using a single desiccant fluid for the removal of both excessive heat and moisture. This task aims at providing an estimation of the specification requirements of such system in terms of cooling power and dehumidification rate required to fulfill comfort issues and to prevent any condensation risk on the cool panel surface. The present paper develops a preliminary study on the specification requirements, performances and behavior of a combined dehumidifier/cooling ceiling panel for different operating conditions. This study has been carried using the TRNSYS software which allows nodal calculations of thermal systems. It consists of the dynamic modeling of heat and vapor balances of a 5m x 3m x 2.7m office space. In a first design estimation, this room is equipped with an ideal heating, cooling, humidification and dehumidification system so that the room temperature is always maintained in between 21C and 25C with a relative humidity in between 40% and 60%. The room is also equipped with a ventilation system that includes a heat recovery heat exchanger and another heat exchanger connected to a heat sink. Main results show that the system should be designed to meet a cooling power of 42W.m−2 and a desiccant rate of 45 gH2O.h−1. In a second time, a parametric study of comfort issues and system performances has been achieved on a more realistic system (that includes a chilled ceiling) under different operating conditions. It enables an estimation of an acceptable range of operating conditions. This preliminary study is intended to provide useful information for the system design.

Keywords: Dehumidification, nodal calculation, radiant cooling panel, system sizing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 731
4828 A Mapping Approach of Code Generation for Arinc653-Based Avionics Software

Authors: Lu Zou, Dianfu MA, Ying Wang, Xianqi Zhao

Abstract:

Avionic software architecture has transit from a federated avionics architecture to an integrated modular avionics (IMA) .ARINC 653 (Avionics Application Standard Software Interface) is a software specification for space and time partitioning in Safety-critical avionics Real-time operating systems. Methods to transform the abstract avionics application logic function to the executable model have been brought up, however with less consideration about the code generating input and output model specific for ARINC 653 platform and inner-task synchronous dynamic interaction order sequence. In this paper, we proposed an AADL-based model-driven design methodology to fulfill the purpose to automatically generating Cµ executable model on ARINC 653 platform from the ARINC653 architecture which defined as AADL653 in order to facilitate the development of the avionics software constructed on ARINC653 OS. This paper presents the mapping rules between the AADL653 elements and the elements in Cµ language, and define the code generating rules , designs an automatic C µ code generator .Then, we use a case to illustrate our approach. Finally, we give the related work and future research directions.

Keywords: IMA, ARINC653, AADL653, code generation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3037
4827 Robust Control Synthesis for an Unmanned Underwater Vehicle

Authors: A. Budiyono

Abstract:

The control design for unmanned underwater vehicles (UUVs) is challenging due to the uncertainties in the complex dynamic modeling of the vehicle as well as its unstructured operational environment. To cope with these difficulties, a practical robust control is therefore desirable. The paper deals with the application of coefficient diagram method (CDM) for a robust control design of an autonomous underwater vehicle. The CDM is an algebraic approach in which the characteristic polynomial and the controller are synthesized simultaneously. Particularly, a coefficient diagram (comparable to Bode diagram) is used effectively to convey pertinent design information and as a measure of trade-off between stability, response speed and robustness. In the polynomial ring, Kharitonov polynomials are employed to analyze the robustness of the controller due to parametric uncertainties.

Keywords: coefficient diagram method, robust control, Kharitonov polynomials, unmanned underwater vehicles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2087
4826 MOSFET Based ADC for Accurate Positioning of Control Valves in Industry

Authors: K. Diwakar, N. Vasudevan, C. Senthilpari

Abstract:

This paper presents MOSFET based analog to digital converter which is simple in design, has high resolution, and conversion rate better than dual slope ADC. It has no DAC which will limit the performance, no error in conversion, can operate for wide range of inputs and never become unstable. One of the industrial applications, where the proposed high resolution MOSFET ADC can be used is, for the positioning of control valves in a multi channel data acquisition and control system (DACS), using stepper motors as actuators of control valves. It is observed that in a DACS having ten control valves, 0.02% of positional accuracy of control valves can be achieved with the data update period of 250ms and with stepper motors of maximum pulse rate 20 Kpulses per sec. and minimum pulse width of 2.5 μsec. The reported accuracy so far by other authors is 0.2%, with update period of 255 ms and with 8 bit DAC. The accuracy in the proposed configuration is limited by the available precision stepper motor and not by the MOSFET based ADC.

Keywords: MOSFET based ADC, Actuators, Positional accuracy, Stepper Motors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2610
4825 Cognitive Virtual Exploration for Optimization Model Reduction

Authors: Livier Serna, Xavier Fischer, Fouad Bennis

Abstract:

In this paper, a decision aid method for preoptimization is presented. The method is called “negotiation", and it is based on the identification, formulation, modeling and use of indicators defined as “negotiation indicators". These negotiation indicators are used to explore the solution space by means of a classbased approach. The classes are subdomains for the negotiation indicators domain. They represent equivalent cognitive solutions in terms of the negotiation indictors being used. By this method, we reduced the size of the solution space and the criteria, thus aiding the optimization methods. We present an example to show the method.

Keywords: Optimization Model Reduction, Pre-Optimization, Negotiation Process, Class-Making, Cognition Based VirtualExploration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1425