Search results for: machine learning in soccer
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2882

Search results for: machine learning in soccer

2102 Classification Influence Index and its Application for k-Nearest Neighbor Classifier

Authors: Sejong Oh

Abstract:

Classification is an important topic in machine learning and bioinformatics. Many datasets have been introduced for classification tasks. A dataset contains multiple features, and the quality of features influences the classification accuracy of the dataset. The power of classification for each feature differs. In this study, we suggest the Classification Influence Index (CII) as an indicator of classification power for each feature. CII enables evaluation of the features in a dataset and improved classification accuracy by transformation of the dataset. By conducting experiments using CII and the k-nearest neighbor classifier to analyze real datasets, we confirmed that the proposed index provided meaningful improvement of the classification accuracy.

Keywords: accuracy, classification, dataset, data preprocessing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1503
2101 Evaluation of the Impact of Dataset Characteristics for Classification Problems in Biological Applications

Authors: Kanthida Kusonmano, Michael Netzer, Bernhard Pfeifer, Christian Baumgartner, Klaus R. Liedl, Armin Graber

Abstract:

Availability of high dimensional biological datasets such as from gene expression, proteomic, and metabolic experiments can be leveraged for the diagnosis and prognosis of diseases. Many classification methods in this area have been studied to predict disease states and separate between predefined classes such as patients with a special disease versus healthy controls. However, most of the existing research only focuses on a specific dataset. There is a lack of generic comparison between classifiers, which might provide a guideline for biologists or bioinformaticians to select the proper algorithm for new datasets. In this study, we compare the performance of popular classifiers, which are Support Vector Machine (SVM), Logistic Regression, k-Nearest Neighbor (k-NN), Naive Bayes, Decision Tree, and Random Forest based on mock datasets. We mimic common biological scenarios simulating various proportions of real discriminating biomarkers and different effect sizes thereof. The result shows that SVM performs quite stable and reaches a higher AUC compared to other methods. This may be explained due to the ability of SVM to minimize the probability of error. Moreover, Decision Tree with its good applicability for diagnosis and prognosis shows good performance in our experimental setup. Logistic Regression and Random Forest, however, strongly depend on the ratio of discriminators and perform better when having a higher number of discriminators.

Keywords: Classification, High dimensional data, Machine learning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2387
2100 Are Lecturers- Ready for Usage of Mobile Technology for Teaching?

Authors: Norazah Mohd Suki, Norbayah Mohd Suki

Abstract:

Descriptive statistics was performed with the aim to achieve research objective of to investigate lecturers- usage of the mobile technology for teaching. A representative sample of 20 lecturers from the Faculty of Industrial Art & Design Technology of Universiti Industri Selangor (UNISEL), Malaysia was selected as the respondents. The result attested that lecturers fully accept the concept of mobility in learning and game play is appealing concept to support classroom learning. Subsequently, analogous experience on small size of keypad, screen resolution, and navigation could be the major problematic factors to students and affect their mobile learning process. Recommendation for future research is also presented.

Keywords: Academics, Mobile e-learning, Mobile technology, Readiness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1652
2099 Design of Mobile Teaching for Students Collaborative Learning in Distance Higher Education

Authors: Lisbeth Amhag

Abstract:

The aim of the study is to describe and analyze design of mobile teaching for students collaborative learning in distance higher education with a focus on mobile technologies as online webinars (web-based seminars or conferencing) by using laptops, smart phones, or tablets. These multimedia tools can provide face-toface interactions, recorded flipped classroom videos and parallel chat communications. The data collection consists of interviews with 22 students and observations of online face-to-face webinars, as well two surveys. Theoretically, the study joins the research tradition of Computer Supported Collaborative learning, CSCL, as well as Computer Self-Efficacy, CSE concerned with individuals’ media and information literacy. Important conclusions from the study demonstrated mobile interactions increased student centered learning. As the students were appreciating the working methods, they became more engaged and motivated. The mobile technology using among student also contributes to increased flexibility between space and place, as well as media and information literacy.

Keywords: Computer self-efficacy, computer supported collaborative learning, distance and open learning, educational design and technologies, media and information literacy, mobile learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1917
2098 Improvement Approach on Rotor Time Constant Adaptation with Optimum Flux in IFOC for Induction Machines Drives

Authors: S. Grouni, R. Ibtiouen, M. Kidouche, O. Touhami

Abstract:

Induction machine models used for steady-state and transient analysis require machine parameters that are usually considered design parameters or data. The knowledge of induction machine parameters is very important for Indirect Field Oriented Control (IFOC). A mismatched set of parameters will degrade the response of speed and torque control. This paper presents an improvement approach on rotor time constant adaptation in IFOC for Induction Machines (IM). Our approach tends to improve the estimation accuracy of the fundamental model for flux estimation. Based on the reduced order of the IM model, the rotor fluxes and rotor time constant are estimated using only the stator currents and voltages. This reduced order model offers many advantages for real time identification parameters of the IM.

Keywords: Indirect Field Oriented Control (IFOC), InductionMachine (IM), Rotor Time Constant, Parameters ApproachAdaptation. Optimum rotor flux.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1709
2097 Students’ Awareness of the Use of Poster, Power Point and Animated Video Presentations: A Case Study of Third Year Students of the Department of English of Batna University

Authors: Bahloul Amel

Abstract:

The present study debates students’ perceptions of the use of technology in learning English as a Foreign Language. Its aim is to explore and understand students’ preparation and presentation of Posters, PowerPoint and Animated Videos by drawing attention to visual and oral elements. The data is collected through observations and semi-structured interviews and analyzed through phenomenological data analysis steps. The themes emerged from the data, visual learning satisfaction in using information and communication technology, providing structure to oral presentation, learning from peers’ presentations, draw attention to using Posters, PowerPoint and Animated Videos as each supports visual learning and organization of thoughts in oral presentations.

Keywords: Animated Videos, EFL, Posters, PowerPoint presentations, Visual Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3051
2096 Instructional Design Using the Virtual Ecological Pond for Science Education in Elementary Schools

Authors: Wernhuar Tarng, Wen-Shin Tsai, Yu-Si Lin, Chen-Kai Shiu

Abstract:

Ecological ponds can be a good teaching tool for science teachers, but they must be built and maintained properly to provide students with a safe and suitable learning environment. Hence, many schools do not have the ability to build an ecological pond. This study used virtual reality technology to develop a webbased virtual ecological pond. Supported by situated learning theory and the instructional design of “Aquatic Life" learning unit, elementary school students can actively explore in the virtual ecological pond to observe aquatic animals and plants and learn about the concept of ecological conservation. A teaching experiment was conducted to investigate the learning effectiveness and practicability of this instructional design, and the results showed that students improved a great deal in learning about aquatic life. They found the virtual ecological pond interesting, easy to operate and helpful to understanding the aquatic ecological system. Therefore, it is useful in elementary science education.

Keywords: Virtual reality, virtual ecological ponds, situated learning, instructional design, science education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2061
2095 Human Interactive E-learning Systems using Head Posture Images

Authors: Yucel Ugurlu

Abstract:

This paper explains a novel approach to human interactive e-learning systems using head posture images. Students- face and hair information are used to identify a human presence and estimate the gaze direction. We then define the human-computer interaction level and test the definition using ten students and seventy different posture images. The experimental results show that head posture images provide adequate information for increasing human-computer interaction in e-learning systems.

Keywords: E-learning, image segmentation, human-presence, gaze-direction, human-computer interaction, LabVIEW

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1626
2094 The Application of Action Research to Integrate the Innovation in Learning Experience in a Design Course

Authors: Walaa Mohammed Metwally

Abstract:

This case study used the action research concept as a tool to integrate the innovation in a learning experience on a design course. The action research was investigated at Prince Sultan University, College of Engineering in the Interior Design and Architecture Department in January 2015, through the Higher Education Academy program. The action research was presented first with the definition of the research, leading to how it was used and how solutions were found. It concluded by showing that once the action research application in interior design and architecture were studied it was an effective tool to improve student’s learning, develop their practice in design courses, and it discussed the negative and positive issues that were encountered.

Keywords: Action research, innovation, intervention, learning experience, peer review.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1584
2093 Motivating the Independent Learner at the Arab Open University, Kuwait

Authors: Hassan A. Sharafuddin, Chekra A. Allani

Abstract:

Academicians at the Arab Open University have always voiced their concern about the efficacy of the blended learning process. Based on 75% independent study and 25% face-toface tutorial, it poses the challenge of the predisposition to adjustment. Being used to the psychology of traditional educational systems, AOU students cannot be easily weaned from being spoonfed. Hence they lack the motivation to plunge into self-study. For better involvement of AOU students into the learning practices, it is imperative to diagnose the factors that impede or increase their motivation. This is conducted through an empirical study grounded upon observations and tested hypothesis and aimed at monitoring and optimizing the students’ learning outcome. Recommendations of the research will follow the findings.

Keywords: Academic performance, blended learning, educational psychology, independent study, pedagogy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2522
2092 Genetic Folding: Analyzing the Mercer-s Kernels Effect in Support Vector Machine using Genetic Folding

Authors: Mohd A. Mezher, Maysam F. Abbod

Abstract:

Genetic Folding (GF) a new class of EA named as is introduced for the first time. It is based on chromosomes composed of floating genes structurally organized in a parent form and separated by dots. Although, the genotype/phenotype system of GF generates a kernel expression, which is the objective function of superior classifier. In this work the question of the satisfying mapping-s rules in evolving populations is addressed by analyzing populations undergoing either Mercer-s or none Mercer-s rule. The results presented here show that populations undergoing Mercer-s rules improve practically models selection of Support Vector Machine (SVM). The experiment is trained multi-classification problem and tested on nonlinear Ionosphere dataset. The target of this paper is to answer the question of evolving Mercer-s rule in SVM addressed using either genetic folding satisfied kernel-s rules or not applied to complicated domains and problems.

Keywords: Genetic Folding, GF, Evolutionary Algorithms, Support Vector Machine, Genetic Algorithm, Genetic Programming, Multi-Classification, Mercer's Rules

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1630
2091 Distributed Case Based Reasoning for Intelligent Tutoring System: An Agent Based Student Modeling Paradigm

Authors: O. P. Rishi, Rekha Govil, Madhavi Sinha

Abstract:

Online learning with Intelligent Tutoring System (ITS) is becoming very popular where the system models the student-s learning behavior and presents to the student the learning material (content, questions-answers, assignments) accordingly. In today-s distributed computing environment, the tutoring system can take advantage of networking to utilize the model for a student for students from other similar groups. In the present paper we present a methodology where using Case Based Reasoning (CBR), ITS provides student modeling for online learning in a distributed environment with the help of agents. The paper describes the approach, the architecture, and the agent characteristics for such system. This concept can be deployed to develop ITS where the tutor can author and the students can learn locally whereas the ITS can model the students- learning globally in a distributed environment. The advantage of such an approach is that both the learning material (domain knowledge) and student model can be globally distributed thus enhancing the efficiency of ITS with reducing the bandwidth requirement and complexity of the system.

Keywords: CBR, ITS, student modeling, distributed system, intelligent agent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2166
2090 Dynamic Network Routing Method Based on Chromosome Learning

Authors: Xun Liang

Abstract:

In this paper, we probe into the traffic assignment problem by the chromosome-learning-based path finding method in simulation, which is to model the driver' behavior in the with-in-a-day process. By simply making a combination and a change of the traffic route chromosomes, the driver at the intersection chooses his next route. The various crossover and mutation rules are proposed with extensive examples.

Keywords: Chromosome learning, crossover, mutation, traffic path finding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1351
2089 A Study on Learning Styles and Academic Performance in Relation with Kinesthetic, Verbal and Visual Intelligences

Authors: Salina Budin, Nor Liawati Abu Othman, Shaira Ismail

Abstract:

This study attempts to determine kinesthetic, verbal and visual intelligences among mechanical engineering undergraduate students and explores any probable relation with students’ learning styles and academic performance. The questionnaire used in this study is based on Howard Gardner’s multiple intelligences theory comprising of five elements of learning style; environmental, sociological, emotional, physiological and psychological. Questionnaires are distributed amongst undergraduates in the Faculty of Mechanical Engineering. Additional questions on students’ perception of learning styles and their academic performance are included in the questionnaire. The results show that one third of the students are strongly dominant in the kinesthetic intelligent (33%), followed by a combination of kinesthetic and visual intelligences (29%) and 21% are strongly dominant in all three types of intelligences. There is a statistically significant correlation between kinesthetic, verbal and visual intelligences and students learning styles and academic performances. The ANOVA analysis supports that there is a significant relationship between academic performances and level of kinesthetic, verbal and visual intelligences. In addition, it has also proven a remarkable relationship between academic performances and kinesthetic, verbal and visual learning styles amongst the male and female students. Thus, it can be concluded that, academic achievements can be enhanced by understanding as well as capitalizing the students’ types of intelligences and learning styles.

Keywords: Kinesthetic intelligent, verbal intelligent, visual intelligent, learning style, academic performances.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2774
2088 Using Emotional Learning in Rescue Simulation Environment

Authors: Maziar Ahmad Sharbafi, Caro Lucas, Abolfazel Toroghi Haghighat, Omid AmirGhiasvand, Omid Aghazade

Abstract:

RoboCup Rescue simulation as a large-scale Multi agent system (MAS) is one of the challenging environments for keeping coordination between agents to achieve the objectives despite sensing and communication limitations. The dynamicity of the environment and intensive dependency between actions of different kinds of agents make the problem more complex. This point encouraged us to use learning-based methods to adapt our decision making to different situations. Our approach is utilizing reinforcement leaning. Using learning in rescue simulation is one of the current ways which has been the subject of several researches in recent years. In this paper we present an innovative learning method implemented for Police Force (PF) Agent. This method can cope with the main difficulties that exist in other learning approaches. Different methods used in the literature have been examined. Their drawbacks and possible improvements have led us to the method proposed in this paper which is fast and accurate. The Brain Emotional Learning Based Intelligent Controller (BELBIC) is our solution for learning in this environment. BELBIC is a physiologically motivated approach based on a computational model of amygdale and limbic system. The paper presents the results obtained by the proposed approach, showing the power of BELBIC as a decision making tool in complex and dynamic situation.

Keywords: Emotional learning, rescue, simulation environment, RoboCup, multi-agent system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1626
2087 Mining Big Data in Telecommunications Industry: Challenges, Techniques, and Revenue Opportunity

Authors: Hoda A. Abdel Hafez

Abstract:

Mining big data represents a big challenge nowadays. Many types of research are concerned with mining massive amounts of data and big data streams. Mining big data faces a lot of challenges including scalability, speed, heterogeneity, accuracy, provenance and privacy. In telecommunication industry, mining big data is like a mining for gold; it represents a big opportunity and maximizing the revenue streams in this industry. This paper discusses the characteristics of big data (volume, variety, velocity and veracity), data mining techniques and tools for handling very large data sets, mining big data in telecommunication and the benefits and opportunities gained from them.

Keywords: Mining Big Data, Big Data, Machine learning, Data Streams, Telecommunication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2483
2086 Mobile Mediated Learning and Teachers Education in Less Resourced Region

Authors: Abdul Rashid Ahmadi, Samiullah Paracha, Hamidullah Sokout, Mohammad Hanif Gharanai

Abstract:

Conventional educational practices, do not offer all the required skills for teachers to successfully survive in today’s workplace. Due to poor professional training, a big gap exists across the curriculum plan and the teacher practices in the classroom. As such, raising the quality of teaching through ICT-enabled training and professional development of teachers should be an urgent priority. ‘Mobile Learning’, in that vein, is an increasingly growing field of educational research and practice across schools and work places. In this paper, we propose a novel Mobile learning system that allows the users to learn through an intelligent mobile learning in cooperatively every-time and every-where. The system will reduce the training cost and increase consistency, efficiency, and data reliability. To establish that our system will display neither functional nor performance failure, the evaluation strategy is based on formal observation of users interacting with system followed by questionnaires and structured interviews.

Keywords: Computer Assisted Learning, Intelligent Tutoring system, Learner Centered Design, Mobile Mediated Learning and Teacher education (MMLTE).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2247
2085 Disparity of Learning Styles and Cognitive Abilities in Vocational Education

Authors: Mimi Mohaffyza Mohamad, Yee Mei Heong, Nurfirdawati Muhammad Hanafi Tee Tze Kiong

Abstract:

This study is conducted to investigate the disparity of between learning styles and cognitive abilities specifically in Vocational Education.  Felder and Silverman Learning Styles Model (FSLSM) was applied to measure the students’ learning styles while the content in Building Construction Subject consists; knowledge, skills and problem solving were taken into account in constructing the elements of cognitive abilities. Building Construction is one of the vocational courses offered in Vocational Education structure. There are four dimension of learning styles proposed by Felder and Silverman intended to capture student learning preferences with regards to processing either active or reflective, perception based on sensing or intuitive, input of information used visual or verbal and understanding information represent with sequential or global learner. Felder-Solomon Learning Styles Index was developed based on FSLSM and the questions were used to identify what type of student learning preferences. The index consists 44 item-questions characterize for learning styles dimension in FSLSM. The achievement test was developed to determine the students’ cognitive abilities. The quantitative data was analyzed in descriptive and inferential statistic involving Multivariate Analysis of Variance (MANOVA). The study discovered students are tending to be visual learners and each type of learner having significant difference whereas cognitive abilities there are different finding for each type of learners in knowledge, skills and problem solving. This study concludes the gap between type of learner and the cognitive abilities in few illustrations and it explained how the connecting made. The finding may help teachers to facilitate students more effectively and to boost the student’s cognitive abilities.

Keywords: Learning Styles, Cognitive Abilities, Dimension of Learning Styles, Learning Preferences.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2640
2084 Personal Knowledge Management among Adult Learners: Behind the Scene of Social Network

Authors: Shahrinaz Ismail, Zulhelmi Mohammed, Nur Waheda Md Yusof, Mohd Sharifuddin Ahmad

Abstract:

The burst of Web 2.0 technology and social networking tools manifest different styles of learning and managing knowledge among both knowledge workers and adult learners. In the Western countries, open-learning concept has been made popular due to the ease of use and the reach that the technology provides. In Malaysia, there are still some gaps between the learners- acceptance of technology and the full implementation of the technology in the education system. There is a need to understand how adult learners, who are knowledge workers, manage their personal knowledge via social networking tools, especially in their learning process. Four processes of personal knowledge management (PKM) and four cognitive enablers are proposed supported by analysed data on adult learners in a university. The model derived from these processes and enablers is tested and presented, with recommendations on features to be included in adult learners- learning environment.

Keywords: Personal knowledge management, adult learners, social network, learning environment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1991
2083 Migration from Commercial to in-House Developed Learning Management Systems

Authors: Lejla A. Bexheti, Visar S. Shehu, Adrian A. Besimi

Abstract:

The Learning Management Systems present learning environment which offers a collection of e-learning tools in a package that allows a common interface and information sharing among the tools. South East European University initial experience in LMS was with the usage of the commercial LMS-ANGEL. After a three year experience on ANGEL usage because of expenses that were very high it was decided to develop our own software. As part of the research project team for the in-house design and development of the new LMS, we primarily had to select the features that would cover our needs and also comply with the actual trends in the area of software development, and then design and develop the system. In this paper we present the process of LMS in-house development for South East European University, its architecture, conception and strengths with a special accent on the process of migration and integration with other enterprise applications.

Keywords: e-learning tools, LMS, migration, user feedback.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1644
2082 Enhancement of Higher Order Thinking Skills among Teacher Trainers by Fun Game Learning Approach

Authors: Malathi Balakrishnan, Gananathan M. Nadarajah, Saraswathy Vellasamy, Evelyn Gnanam William George

Abstract:

The purpose of the study is to explore how the fun game-learning approach enhances teacher trainers’ higher order thinking skills. Two-day fun filled fun game learning-approach was introduced to teacher trainers as a Continuous Professional Development Program (CPD). 26 teacher trainers participated in this Transformation of Teaching and Learning Fun Way Program, organized by Institute of Teacher Education Malaysia. Qualitative research technique was adopted as the researchers observed the participants’ higher order thinking skills developed during the program. Data were collected from observational checklist; interview transcriptions of four participants and participants’ reflection notes. All the data were later analyzed with NVivo data analysis process. The finding of this study presented five main themes, which are critical thinking, hands on activities, creating, application and use of technology. The studies showed that the teacher trainers’ higher order thinking skills were enhanced after the two-day CPD program. Therefore, Institute of Teacher Education will have more success using the fun way game-learning approach to develop higher order thinking skills among its teacher trainers who can implement these skills to their trainee teachers in future. This study also added knowledge to Constructivism learning theory, which will further highlight the prominence of the fun way learning approach to enhance higher order thinking skills.

Keywords: Constructivism, game-learning approach, higher order thinking skill, teacher trainer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2829
2081 Engineering of E-Learning Content Creation: Case Study for African Countries

Authors: María-Dolores Afonso-Suárez, Nayra Pumar-Carreras, Juan Ruiz-Alzola

Abstract:

This research addresses the use of an e-Learning creation methodology for learning objects. Throughout the process, indicators are being gathered, to determine if it responds to the main objectives of an engineering discipline. These parameters will also indicate if it is necessary to review the creation cycle and readjust any phase. Within the project developed for this study, apart from the use of structured methods, there has been a central objective: the establishment of a learning atmosphere. A place where all the professionals involved are able to collaborate, plan, solve problems and determine guides to follow in order to develop creative and innovative solutions. It has been outlined as a blended learning program with an assessment plan that proposes face to face lessons, coaching, collaboration, multimedia and web based learning objects as well as support resources. The project has been drawn as a long term task, the pilot teaching actions designed provide the preliminary results object of study. This methodology is been used in the creation of learning content for the African countries of Senegal, Mauritania and Cape Verde. It has been developed within the framework of the MACbioIDi, an Interreg European project for the International cooperation and development. The educational area of this project is focused in the training and advice of professionals of the medicine as well as engineers in the use of applications of medical imaging technology, specifically the 3DSlicer application and the Open Anatomy Browser.

Keywords: Teaching contents engineering, e-learning, blended learning, international cooperation, 3DSlicer, open anatomy browser.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1054
2080 Modified Levenberg-Marquardt Method for Neural Networks Training

Authors: Amir Abolfazl Suratgar, Mohammad Bagher Tavakoli, Abbas Hoseinabadi

Abstract:

In this paper a modification on Levenberg-Marquardt algorithm for MLP neural network learning is proposed. The proposed algorithm has good convergence. This method reduces the amount of oscillation in learning procedure. An example is given to show usefulness of this method. Finally a simulation verifies the results of proposed method.

Keywords: Levenberg-Marquardt, modification, neural network, variable learning rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5052
2079 Development and Validation of Cylindrical Linear Oscillating Generator

Authors: Sungin Jeong

Abstract:

This paper presents a linear oscillating generator of cylindrical type for hybrid electric vehicle application. The focus of the study is the suggestion of the optimal model and the design rule of the cylindrical linear oscillating generator with permanent magnet in the back-iron translator. The cylindrical topology is achieved using equivalent magnetic circuit considering leakage elements as initial modeling. This topology with permanent magnet in the back-iron translator is described by number of phases and displacement of stroke. For more accurate analysis of an oscillating machine, it will be compared by moving just one-pole pitch forward and backward the thrust of single-phase system and three-phase system. Through the analysis and comparison, a single-phase system of cylindrical topology as the optimal topology is selected. Finally, the detailed design of the optimal topology takes the magnetic saturation effects into account by finite element analysis. Besides, the losses are examined to obtain more accurate results; copper loss in the conductors of machine windings, eddy-current loss of permanent magnet, and iron-loss of specific material of electrical steel. The considerations of thermal performances and mechanical robustness are essential, because they have an effect on the entire efficiency and the insulations of the machine due to the losses of the high temperature generated in each region of the generator. Besides electric machine with linear oscillating movement requires a support system that can resist dynamic forces and mechanical masses. As a result, the fatigue analysis of shaft is achieved by the kinetic equations. Also, the thermal characteristics are analyzed by the operating frequency in each region. The results of this study will give a very important design rule in the design of linear oscillating machines. It enables us to more accurate machine design and more accurate prediction of machine performances.

Keywords: Equivalent magnetic circuit, finite element analysis, hybrid electric vehicle, free piston engine, cylindrical linear oscillating generator

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1370
2078 On Improving Breast Cancer Prediction Using GRNN-CP

Authors: Kefaya Qaddoum

Abstract:

The aim of this study is to predict breast cancer and to construct a supportive model that will stimulate a more reliable prediction as a factor that is fundamental for public health. In this study, we utilize general regression neural networks (GRNN) to replace the normal predictions with prediction periods to achieve a reasonable percentage of confidence. The mechanism employed here utilises a machine learning system called conformal prediction (CP), in order to assign consistent confidence measures to predictions, which are combined with GRNN. We apply the resulting algorithm to the problem of breast cancer diagnosis. The results show that the prediction constructed by this method is reasonable and could be useful in practice.

Keywords: Neural network, conformal prediction, cancer classification, regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 843
2077 Motor Imaginary Signal Classification Using Adaptive Recursive Bandpass Filter and Adaptive Autoregressive Models for Brain Machine Interface Designs

Authors: Vickneswaran Jeyabalan, Andrews Samraj, Loo Chu Kiong

Abstract:

The noteworthy point in the advancement of Brain Machine Interface (BMI) research is the ability to accurately extract features of the brain signals and to classify them into targeted control action with the easiest procedures since the expected beneficiaries are of disabled. In this paper, a new feature extraction method using the combination of adaptive band pass filters and adaptive autoregressive (AAR) modelling is proposed and applied to the classification of right and left motor imagery signals extracted from the brain. The introduction of the adaptive bandpass filter improves the characterization process of the autocorrelation functions of the AAR models, as it enhances and strengthens the EEG signal, which is noisy and stochastic in nature. The experimental results on the Graz BCI data set have shown that by implementing the proposed feature extraction method, a LDA and SVM classifier outperforms other AAR approaches of the BCI 2003 competition in terms of the mutual information, the competition criterion, or misclassification rate.

Keywords: Adaptive autoregressive, adaptive bandpass filter, brain machine Interface, EEG, motor imaginary.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2909
2076 Voice in Pre-service Teacher Development

Authors: Pintipa Seubsang, Suttipong Boonphadung

Abstract:

Recently, Thai education system is engaged in serious and promising reforms. One of the crucial elements in most of these educational reforms is the teacher professional development. Teachers today are under growing pressure to perform. However, most new teachers are not adequately prepared to meet the expectation. Consequently, this paper seeks to investigate the opinion of mentor teachers and university supervisors about professional development in the aspect of learning management skill of the preservice teachers in Rajabhat Universities, then compare the opinion between the mentor teachers and university supervisors about professional development in the aspect of learning management skill of the pre-service teachers. The study involved a cohort of 40 university supervisors and 77 mentor teachers. The research concludes by showing that mentor teachers viewed pre-service teacher as a professional teacher with an effective learning management skill. However, in the perspective of the university supervisor, pre-service teachers still have inadequate learning management skill.

Keywords: Learning management, Professional development, Pre-service teacher.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1956
2075 Prediction Modeling of Alzheimer’s Disease and Its Prodromal Stages from Multimodal Data with Missing Values

Authors: M. Aghili, S. Tabarestani, C. Freytes, M. Shojaie, M. Cabrerizo, A. Barreto, N. Rishe, R. E. Curiel, D. Loewenstein, R. Duara, M. Adjouadi

Abstract:

A major challenge in medical studies, especially those that are longitudinal, is the problem of missing measurements which hinders the effective application of many machine learning algorithms. Furthermore, recent Alzheimer's Disease studies have focused on the delineation of Early Mild Cognitive Impairment (EMCI) and Late Mild Cognitive Impairment (LMCI) from cognitively normal controls (CN) which is essential for developing effective and early treatment methods. To address the aforementioned challenges, this paper explores the potential of using the eXtreme Gradient Boosting (XGBoost) algorithm in handling missing values in multiclass classification. We seek a generalized classification scheme where all prodromal stages of the disease are considered simultaneously in the classification and decision-making processes. Given the large number of subjects (1631) included in this study and in the presence of almost 28% missing values, we investigated the performance of XGBoost on the classification of the four classes of AD, NC, EMCI, and LMCI. Using 10-fold cross validation technique, XGBoost is shown to outperform other state-of-the-art classification algorithms by 3% in terms of accuracy and F-score. Our model achieved an accuracy of 80.52%, a precision of 80.62% and recall of 80.51%, supporting the more natural and promising multiclass classification.

Keywords: eXtreme Gradient Boosting, missing data, Alzheimer disease, early mild cognitive impairment, late mild cognitive impairment, multiclass classification, ADNI, support vector machine, random forest.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 961
2074 Depth Estimation in DNN Using Stereo Thermal Image Pairs

Authors: Ahmet Faruk Akyuz, Hasan Sakir Bilge

Abstract:

Depth estimation using stereo images is a challenging problem in computer vision. Many different studies have been carried out to solve this problem. With advancing machine learning, tackling this problem is often done with neural network-based solutions. The images used in these studies are mostly in the visible spectrum. However, the need to use the Infrared (IR) spectrum for depth estimation has emerged because it gives better results than visible spectra in some conditions. At this point, we recommend using thermal-thermal (IR) image pairs for depth estimation. In this study, we used two well-known networks (PSMNet, FADNet) with minor modifications to demonstrate the viability of this idea.

Keywords: thermal stereo matching, depth estimation, deep neural networks, CNN

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 705
2073 Combining Diverse Neural Classifiers for Complex Problem Solving: An ECOC Approach

Authors: R. Ebrahimpour, M. Abbasnezhad Arabi, H. Babamiri Moghaddam

Abstract:

Combining classifiers is a useful method for solving complex problems in machine learning. The ECOC (Error Correcting Output Codes) method has been widely used for designing combining classifiers with an emphasis on the diversity of classifiers. In this paper, in contrast to the standard ECOC approach in which individual classifiers are chosen homogeneously, classifiers are selected according to the complexity of the corresponding binary problem. We use SATIMAGE database (containing 6 classes) for our experiments. The recognition error rate in our proposed method is %10.37 which indicates a considerable improvement in comparison with the conventional ECOC and stack generalization methods.

Keywords: Error correcting output code, combining classifiers, neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1402