Search results for: Business Intelligence.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1432

Search results for: Business Intelligence.

652 The Importance of Changing the Traditional Mode of Higher Education in Bangladesh: Creating Huge Job Opportunities for Home and Abroad

Authors: M. M. Shahidul Hassan, Omiya Hassan

Abstract:

Bangladesh has set its goal to reach upper middle-income country status by 2024. To attain this status, the country must satisfy the World Bank requirement of achieving minimum Gross National Income (GNI). Number of youth job seekers in the country is increasing. University graduates are looking for decent jobs. So, the vital issue of this country is to understand how the GNI and jobs can be increased. The objective of this paper is to address these issues and find ways to create more job opportunities for youths at home and abroad which will increase the country’s GNI. The paper studies proportion of different goods Bangladesh exported, and also the percentage of employment in different sectors. The data used here for the purpose of analysis have been collected from the available literature. These data are then plotted and analyzed. Through these studies, it is concluded that growth in sectors like agricultural, ready-made garments (RMG), jute industries and fisheries are declining and the business community is not interested in setting up capital-intensive industries. Under this situation, the country needs to explore other business opportunities for a higher economic growth rate. Knowledge can substitute the physical resource. Since the country consists of the large youth population, higher education will play a key role in economic development. It now needs graduates with higher-order skills with innovative quality. Such dispositions demand changes in a university’s curriculum, teaching and assessment method which will function young generations as active learners and creators. By bringing these changes in higher education, a knowledge-based society can be created. The application of such knowledge and creativity will then become the commodity of Bangladesh which will help to reach its goal as an upper middle-income country.

Keywords: Bangladesh, economic sectors, economic growth, higher education, knowledge-based economy, massifcation of higher education, teaching and learning, universities’ role in society.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 979
651 Trace Emergence of Ants- Traffic Flow, based upon Exclusion Process

Authors: Ali Lemouari, Mohamed Benmohamed

Abstract:

Biological evolution has generated a rich variety of successful solutions; from nature, optimized strategies can be inspired. One interesting example is the ant colonies, which are able to exhibit a collective intelligence, still that their dynamic is simple. The emergence of different patterns depends on the pheromone trail, leaved by the foragers. It serves as positive feedback mechanism for sharing information. In this paper, we use the dynamic of TASEP as a model of interaction at a low level of the collective environment in the ant-s traffic flow. This work consists of modifying the movement rules of particles “ants" belonging to the TASEP model, so that it adopts with the natural movement of ants. Therefore, as to respect the constraints of having no more than one particle per a given site, and in order to avoid collision within a bidirectional circulation, we suggested two strategies: decease strategy and waiting strategy. As a third work stage, this is devoted to the study of these two proposed strategies- stability. As a final work stage, we applied the first strategy to the whole environment, in order to get to the emergence of traffic flow, which is a way of learning.

Keywords: Ants system, emergence, exclusion process, pheromone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1327
650 AI Tutor: A Computer Science Domain Knowledge Graph-Based QA System on JADE platform

Authors: Yingqi Cui, Changran Huang, Raymond Lee

Abstract:

In this paper, we proposed an AI Tutor using ontology and natural language process techniques to generate a computer science domain knowledge graph and answer users’ questions based on the knowledge graph. We define eight types of relation to extract relationships between entities according to the computer science domain text. The AI tutor is separated into two agents: learning agent and Question-Answer (QA) agent and developed on JADE (a multi-agent system) platform. The learning agent is responsible for reading text to extract information and generate a corresponding knowledge graph by defined patterns. The QA agent can understand the users’ questions and answer humans’ questions based on the knowledge graph generated by the learning agent.

Keywords: Artificial intelligence, natural language process, knowledge graph, agent, QA system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 894
649 RASPE – Risk Advisory Smart System for Pipeline Projects in Egypt

Authors: Nael Y. Zabel, Maged E. Georgy, Moheeb E. Ibrahim

Abstract:

A knowledge-based expert system with the acronym RASPE is developed as an application tool to help decision makers in construction companies make informed decisions about managing risks in pipeline construction projects. Choosing to use expert systems from all available artificial intelligence techniques is due to the fact that an expert system is more suited to representing a domain’s knowledge and the reasoning behind domain-specific decisions. The knowledge-based expert system can capture the knowledge in the form of conditional rules which represent various project scenarios and potential risk mitigation/response actions. The built knowledge in RASPE is utilized through the underlying inference engine that allows the firing of rules relevant to a project scenario into consideration. Paper provides an overview of the knowledge acquisition process and goes about describing the knowledge structure which is divided up into four major modules. The paper shows one module in full detail for illustration purposes and concludes with insightful remarks.

Keywords: Expert System, Knowledge Management, Pipeline Projects, Risk Mismanagement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2298
648 Key Performance Indicators and the Model for Achieving Digital Inclusion for Smart Cities

Authors: Khalid Obaed Mahmod, Mesut Cevik

Abstract:

The term smart city has appeared recently and was accompanied by many definitions and concepts, but as a simplified and clear definition, it can be said that the smart city is a geographical location that has gained efficiency and flexibility in providing public services to citizens through its use of technological and communication technologies, and this is what distinguishes it from other cities. Smart cities connect the various components of the city through the main and sub networks in addition to a set of applications, and thus are able to collect data that is the basis for providing technological solutions to manage resources and provide services. The basis of the work of the smart city is the use of artificial intelligence (AI) and the technology of the Internet of Things (IoT). The work presents the concept of smart cities, the pillars, standards and evaluation indicators on which smart cities depend, and the reasons that prompted the world to move towards its establishment. It also provides a simplified hypothetical way to measure the ideal smart city model by defining some indicators and key pillars, simulating them with logic circuits and testing them to determine if the city can be considered an ideal smart city or not.

Keywords: Evaluation indicators, logic gates, performance factors, pillars, smart city.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 351
647 Spatio-Temporal Orientation Development during the Physical Education Class, with 5th and 6th Form Pupils

Authors: Constantin Pehoiu

Abstract:

School physical education, through its objectives and contents, efficiently valorizes the pupils- abilities, developing them, especially the coordinative skill component, which is the basis of movement learning, of the development of the daily motility and also of the special, refined motility required by the practice of certain sports. Medium school age offers the nervous and motor substratum needed for the acquisition of complex motor habits, a substratum that is essential for the coordinative skill. Individuals differ as to the level at which this function is performed, the extent to which this function turns an individual into a person that is adapted and adaptable to complex and various situations. Spatio-temporal orientation, together with movement combination and coupling, and with kinesthetic, balance, motor reaction, movement transformation and rhythm differentiation form the coordinative skills. From our viewpoint, these are characteristic features with high levels of manifestation in a complex psychomotor act - valorizing the quality of one-s talent - as well as indices pertaining to one-s psychomotor intelligence and creativity.

Keywords: development, lesson, spatio-temporal orientation, physical education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2136
646 Evaluation of New Product Development Projects using Artificial Intelligence and Fuzzy Logic

Authors: Orhan Feyzioğlu, Gülçin Büyüközkan

Abstract:

As a vital activity for companies, new product development (NPD) is also a very risky process due to the high uncertainty degree encountered at every development stage and the inevitable dependence on how previous steps are successfully accomplished. Hence, there is an apparent need to evaluate new product initiatives systematically and make accurate decisions under uncertainty. Another major concern is the time pressure to launch a significant number of new products to preserve and increase the competitive power of the company. In this work, we propose an integrated decision-making framework based on neural networks and fuzzy logic to make appropriate decisions and accelerate the evaluation process. We are especially interested in the two initial stages where new product ideas are selected (go/no go decision) and the implementation order of the corresponding projects are determined. We show that this two-staged intelligent approach allows practitioners to roughly and quickly separate good and bad product ideas by making use of previous experiences, and then, analyze a more shortened list rigorously.

Keywords: Decision Making, Neural Networks, Fuzzy Theory and Systems, Choquet Integral, New Product Development.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2833
645 Hippocratic Database: A Privacy-Aware Database

Authors: Norjihan Abdul Ghani, Zailani Mohd Sidek

Abstract:

Nowadays, organizations and business has several motivating factors to protect an individual-s privacy. Confidentiality refers to type of sharing information to third parties. This is always referring to private information, especially for personal information that usually needs to keep as a private. Because of the important of privacy concerns today, we need to design a database system that suits with privacy. Agrawal et. al. has introduced Hippocratic Database also we refer here as a privacy-aware database. This paper will explain how HD can be a future trend for web-based application to enhance their privacy level of trustworthiness among internet users.

Keywords: Hippocratic database, privacy, privacy-aware.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1832
644 Analysis of Genotype Size for an Evolvable Hardware System

Authors: Emanuele Stomeo, Tatiana Kalganova, Cyrille Lambert

Abstract:

The evolution of logic circuits, which falls under the heading of evolvable hardware, is carried out by evolutionary algorithms. These algorithms are able to automatically configure reconfigurable devices. One of main difficulties in developing evolvable hardware with the ability to design functional electrical circuits is to choose the most favourable EA features such as fitness function, chromosome representations, population size, genetic operators and individual selection. Until now several researchers from the evolvable hardware community have used and tuned these parameters and various rules on how to select the value of a particular parameter have been proposed. However, to date, no one has presented a study regarding the size of the chromosome representation (circuit layout) to be used as a platform for the evolution in order to increase the evolvability, reduce the number of generations and optimize the digital logic circuits through reducing the number of logic gates. In this paper this topic has been thoroughly investigated and the optimal parameters for these EA features have been proposed. The evolution of logic circuits has been carried out by an extrinsic evolvable hardware system which uses (1+λ) evolution strategy as the core of the evolution.

Keywords: Evolvable hardware, genotype size, computational intelligence, design of logic circuits.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1661
643 A Comparison of Different Soft Computing Models for Credit Scoring

Authors: Nnamdi I. Nwulu, Shola G. Oroja

Abstract:

It has become crucial over the years for nations to improve their credit scoring methods and techniques in light of the increasing volatility of the global economy. Statistical methods or tools have been the favoured means for this; however artificial intelligence or soft computing based techniques are becoming increasingly preferred due to their proficient and precise nature and relative simplicity. This work presents a comparison between Support Vector Machines and Artificial Neural Networks two popular soft computing models when applied to credit scoring. Amidst the different criteria-s that can be used for comparisons; accuracy, computational complexity and processing times are the selected criteria used to evaluate both models. Furthermore the German credit scoring dataset which is a real world dataset is used to train and test both developed models. Experimental results obtained from our study suggest that although both soft computing models could be used with a high degree of accuracy, Artificial Neural Networks deliver better results than Support Vector Machines.

Keywords: Artificial Neural Networks, Credit Scoring, SoftComputing Models, Support Vector Machines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2129
642 Internet of Things Applications on Supply Chain Management

Authors: B. Cortés, A. Boza, D. Pérez, L. Cuenca

Abstract:

The Internet of Things (IoT) field has been applied in industries with different purposes. Sensing Enterprise (SE) is an attribute of an enterprise or a network that allows it to react to business stimuli originating on the Internet. These fields have come into focus recently on the enterprises, and there is some evidence of the use and implications in supply chain management, while finding it as an interesting aspect to work on. This paper presents a revision and proposals of IoT applications in supply chain management.

Keywords: Internet of Things, Sensing Enterprises, Supply Chain Management, Industrial, Production Systems, Sensor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5424
641 Multiclass Support Vector Machines with Simultaneous Multi-Factors Optimization for Corporate Credit Ratings

Authors: Hyunchul Ahn, William X. S. Wong

Abstract:

Corporate credit rating prediction is one of the most important topics, which has been studied by researchers in the last decade. Over the last decade, researchers are pushing the limit to enhance the exactness of the corporate credit rating prediction model by applying several data-driven tools including statistical and artificial intelligence methods. Among them, multiclass support vector machine (MSVM) has been widely applied due to its good predictability. However, heuristics, for example, parameters of a kernel function, appropriate feature and instance subset, has become the main reason for the critics on MSVM, as they have dictate the MSVM architectural variables. This study presents a hybrid MSVM model that is intended to optimize all the parameter such as feature selection, instance selection, and kernel parameter. Our model adopts genetic algorithm (GA) to simultaneously optimize multiple heterogeneous design factors of MSVM.

Keywords: Corporate credit rating prediction, feature selection, genetic algorithms, instance selection, multiclass support vector machines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1411
640 Movement Optimization of Robotic Arm Movement Using Soft Computing

Authors: V. K. Banga

Abstract:

Robots are now playing a very promising role in industries. Robots are commonly used in applications in repeated operations or where operation by human is either risky or not feasible. In most of the industrial applications, robotic arm manipulators are widely used. Robotic arm manipulator with two link or three link structures is commonly used due to their low degrees-of-freedom (DOF) movement. As the DOF of robotic arm increased, complexity increases. Instrumentation involved with robotics plays very important role in order to interact with outer environment. In this work, optimal control for movement of various DOFs of robotic arm using various soft computing techniques has been presented. We have discussed about different robotic structures having various DOF robotics arm movement. Further stress is on kinematics of the arm structures i.e. forward kinematics and inverse kinematics. Trajectory planning of robotic arms using soft computing techniques is demonstrating the flexibility of this technique. The performance is optimized for all possible input values and results in optimized movement as resultant output. In conclusion, soft computing has been playing very important role for achieving optimized movement of robotic arm. It also requires very limited knowledge of the system to implement soft computing techniques.

Keywords: Artificial intelligence, kinematics, robotic arm, neural networks, fuzzy logic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1778
639 A Petri Net Representation of a Web-Service- Based Emergency Management System in Railway Station

Authors: Suparna Karmakar, Ranjan Dasgupta

Abstract:

Railway Stations are prone to emergency due to various reasons and proper monitor of railway stations are of immense importance from various angles. A Petri-net representation of a web-service-based Emergency management system has been proposed in this paper which will help in monitoring situation of train, track, signal etc. and in case of any emergency, necessary resources can be dispatched.

Keywords: Business process, Petri net, Rail Station Emergency Management, Web service based system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1734
638 The Knowledge Representation of the Genetic Regulatory Networks Based on Ontology

Authors: Ines Hamdi, Mohamed Ben Ahmed

Abstract:

The understanding of the system level of biological behavior and phenomenon variously needs some elements such as gene sequence, protein structure, gene functions and metabolic pathways. Challenging problems are representing, learning and reasoning about these biochemical reactions, gene and protein structure, genotype and relation between the phenotype, and expression system on those interactions. The goal of our work is to understand the behaviors of the interactions networks and to model their evolution in time and in space. We propose in this study an ontological meta-model for the knowledge representation of the genetic regulatory networks. Ontology in artificial intelligence means the fundamental categories and relations that provide a framework for knowledge models. Domain ontology's are now commonly used to enable heterogeneous information resources, such as knowledge-based systems, to communicate with each other. The interest of our model is to represent the spatial, temporal and spatio-temporal knowledge. We validated our propositions in the genetic regulatory network of the Aarbidosis thaliana flower

Keywords: Ontological model, spatio-temporal modeling, Genetic Regulatory Networks (GRNs), knowledge representation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1485
637 Performance Management Guide for Research and Development Process

Authors: Heejung Lee

Abstract:

Performance management seems to be essential in business area and is also an exciting topic. Despite significant and myriads of research efforts, performance management guide today as a rigorous approach is still in an immature state and metrics are often selected based on intuitive and heuristic approach. In R&D side, the difficulty to guide the proper performance management is even more increasing due to the natural characteristics of R&D such as unique or domain-specific problems. In our approach, we present R&D performance management guide considering various characteristics of R&D side: performance evaluation objectives, dimensions, metrics, and uncertainties of R&D sector.

Keywords: Performance management, R&D, metrics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1550
636 Evolved Bat Algorithm Based Adaptive Fuzzy Sliding Mode Control with LMI Criterion

Authors: P.-W. Tsai, C.-Y. Chen, C.-W. Chen

Abstract:

In this paper, the stability analysis of a GA-Based adaptive fuzzy sliding model controller for a nonlinear system is discussed. First, a nonlinear plant is well-approximated and described with a reference model and a fuzzy model, both involving FLC rules. Then, FLC rules and the consequent parameter are decided on via an Evolved Bat Algorithm (EBA). After this, we guarantee a new tracking performance inequality for the control system. The tracking problem is characterized to solve an eigenvalue problem (EVP). Next, an adaptive fuzzy sliding model controller (AFSMC) is proposed to stabilize the system so as to achieve good control performance. Lyapunov’s direct method can be used to ensure the stability of the nonlinear system. It is shown that the stability analysis can reduce nonlinear systems into a linear matrix inequality (LMI) problem. Finally, a numerical simulation is provided to demonstrate the control methodology.

Keywords: Adaptive fuzzy sliding mode control, Lyapunov direct method, swarm intelligence, evolved bat algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2070
635 A Local Decisional Algorithm Using Agent- Based Management in Constrained Energy Environment

Authors: C. Adam, G. Henri, T. Levent, J-B Mauro, A-L Mayet

Abstract:

Energy Efficiency Management is the heart of a worldwide problem. The capability of a multi-agent system as a technology to manage the micro-grid operation has already been proved. This paper deals with the implementation of a decisional pattern applied to a multi-agent system which provides intelligence to a distributed local energy network considered at local consumer level. Development of multi-agent application involves agent specifications, analysis, design, and realization. Furthermore, it can be implemented by following several decisional patterns. The purpose of present article is to suggest a new approach for a decisional pattern involving a multi-agent system to control a distributed local energy network in a decentralized competitive system. The proposed solution is the result of a dichotomous approach based on environment observation. It uses an iterative process to solve automatic learning problems and converges monotonically very fast to system attracting operation point.

Keywords: Energy Efficiency Management, Distributed Smart- Grid, Multi-Agent System, Decisional Decentralized Competitive System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1413
634 Malaria Parasite Detection Using Deep Learning Methods

Authors: Kaustubh Chakradeo, Michael Delves, Sofya Titarenko

Abstract:

Malaria is a serious disease which affects hundreds of millions of people around the world, each year. If not treated in time, it can be fatal. Despite recent developments in malaria diagnostics, the microscopy method to detect malaria remains the most common. Unfortunately, the accuracy of microscopic diagnostics is dependent on the skill of the microscopist and limits the throughput of malaria diagnosis. With the development of Artificial Intelligence tools and Deep Learning techniques in particular, it is possible to lower the cost, while achieving an overall higher accuracy. In this paper, we present a VGG-based model and compare it with previously developed models for identifying infected cells. Our model surpasses most previously developed models in a range of the accuracy metrics. The model has an advantage of being constructed from a relatively small number of layers. This reduces the computer resources and computational time. Moreover, we test our model on two types of datasets and argue that the currently developed deep-learning-based methods cannot efficiently distinguish between infected and contaminated cells. A more precise study of suspicious regions is required.

Keywords: Malaria, deep learning, DL, convolution neural network, CNN, thin blood smears.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 655
633 A Two-Phase Mechanism for Agent's Action Selection in Soccer Simulation

Authors: Vahid Salmani, Mahmoud Naghibzadeh, Farid Seifi, Amirhossein Taherinia

Abstract:

Soccer simulation is an effort to motivate researchers and practitioners to do artificial and robotic intelligence research; and at the same time put into practice and test the results. Many researchers and practitioners throughout the world are continuously working to polish their ideas and improve their implemented systems. At the same time, new groups are forming and they bring bright new thoughts to the field. The research includes designing and executing robotic soccer simulation algorithms. In our research, a soccer simulation player is considered to be an intelligent agent that is capable of receiving information from the environment, analyze it and to choose the best action from a set of possible ones, for its next move. We concentrate on developing a two-phase method for the soccer player agent to choose its best next move. The method is then implemented into our software system called Nexus simulation team of Ferdowsi University. This system is based on TsinghuAeolus[1] team that was the champion of the world RoboCup soccer simulation contest in 2001 and 2002.

Keywords: RoboCup, Soccer simulation, multi-agent environment, intelligent soccer agent, ball controller agent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1545
632 One Hour Ahead Load Forecasting Using Artificial Neural Network for the Western Area of Saudi Arabia

Authors: A. J. Al-Shareef, E. A. Mohamed, E. Al-Judaibi

Abstract:

Load forecasting has become in recent years one of the major areas of research in electrical engineering. Most traditional forecasting models and artificial intelligence neural network techniques have been tried out in this task. Artificial neural networks (ANN) have lately received much attention, and a great number of papers have reported successful experiments and practical tests. This article presents the development of an ANN-based short-term load forecasting model with improved generalization technique for the Regional Power Control Center of Saudi Electricity Company, Western Operation Area (SEC-WOA). The proposed ANN is trained with weather-related data and historical electric load-related data using the data from the calendar years 2001, 2002, 2003, and 2004 for training. The model tested for one week at five different seasons, typically, winter, spring, summer, Ramadan and fall seasons, and the mean absolute average error for one hour-ahead load forecasting found 1.12%.

Keywords: Artificial neural networks, short-term load forecasting, back propagation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2112
631 Domain Knowledge Representation through Multiple Sub Ontologies: An Application Interoperability

Authors: Sunitha Abburu, Golla Suresh Babu

Abstract:

The issues that limit application interoperability is lack of common vocabulary, common structure, application domain knowledge ontology based semantic technology provides solutions that resolves application interoperability issues. Ontology is broadly used in diverse applications such as artificial intelligence, bioinformatics, biomedical, information integration, etc. Ontology can be used to interpret the knowledge of various domains. To reuse, enrich the available ontologies and reduce the duplication of ontologies of the same domain, there is a strong need to integrate the ontologies of the particular domain. The integrated ontology gives complete knowledge about the domain by sharing this comprehensive domain ontology among the groups. As per the literature survey there is no well-defined methodology to represent knowledge of a whole domain. The current research addresses a systematic methodology for knowledge representation using multiple sub-ontologies at different levels that addresses application interoperability and enables semantic information retrieval. The current method represents complete knowledge of a domain by importing concepts from multiple sub ontologies of same and relative domains that reduces ontology duplication, rework, implementation cost through ontology reusability.

Keywords: Knowledge acquisition, knowledge representation, knowledge transfer, ontologies, semantics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 970
630 Knowledge Reactor: A Contextual Computing Work in Progress for Eldercare

Authors: Scott N. Gerard, Aliza Heching, Susann M. Keohane, Samuel S. Adams

Abstract:

The world-wide population of people over 60 years of age is growing rapidly. The explosion is placing increasingly onerous demands on individual families, multiple industries and entire countries. Current, human-intensive approaches to eldercare are not sustainable, but IoT and AI technologies can help. The Knowledge Reactor (KR) is a contextual, data fusion engine built to address this and other similar problems. It fuses and centralizes IoT and System of Record/Engagement data into a reactive knowledge graph. Cognitive applications and services are constructed with its multiagent architecture. The KR can scale-up and scaledown, because it exploits container-based, horizontally scalable services for graph store (JanusGraph) and pub-sub (Kafka) technologies. While the KR can be applied to many domains that require IoT and AI technologies, this paper describes how the KR specifically supports the challenging domain of cognitive eldercare. Rule- and machine learning-based analytics infer activities of daily living from IoT sensor readings. KR scalability, adaptability, flexibility and usability are demonstrated.

Keywords: Ambient sensing, AI, artificial intelligence, eldercare, IoT, internet of things, knowledge graph.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1044
629 The Characteristics of the Factors that Govern the Preferred Force in the Social Force Model of Pedestrian Movement

Authors: Zarita Zainuddin, Mohammed Mahmod Shuaib, Ibtesam M. Abu-Sulyman

Abstract:

The social force model which belongs to the microscopic pedestrian studies has been considered as the supremacy by many researchers and due to the main feature of reproducing the self-organized phenomena resulted from pedestrian dynamic. The Preferred Force which is a measurement of pedestrian-s motivation to adapt his actual velocity to his desired velocity is an essential term on which the model was set up. This Force has gone through stages of development: first of all, Helbing and Molnar (1995) have modeled the original force for the normal situation. Second, Helbing and his co-workers (2000) have incorporated the panic situation into this force by incorporating the panic parameter to account for the panic situations. Third, Lakoba and Kaup (2005) have provided the pedestrians some kind of intelligence by incorporating aspects of the decision-making capability. In this paper, the authors analyze the most important incorporations into the model regarding the preferred force. They make comparisons between the different factors of these incorporations. Furthermore, to enhance the decision-making ability of the pedestrians, they introduce additional features such as the familiarity factor to the preferred force to let it appear more representative of what actually happens in reality.

Keywords: Pedestrian movement, social force model, preferredforce, familiarity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1247
628 Semantic Web as an Enabling Technology for Better e-Services Addoption

Authors: Luka Pavlič, Marjan Heričko

Abstract:

E-services have significantly changed the way of doing business in recent years. We can, however, observe poor use of these services. There is a large gap between supply and actual eservices usage. This is why we started a project to provide an environment that will encourage the use of e-services. We believe that only providing e-service does not automatically mean consumers would use them. This paper shows the origins of our project and its current position. We discuss the decision of using semantic web technologies and their potential to improve e-services usage. We also present current knowledge base and its real-world classification. In the paper, we discuss further work to be done in the project. Current state of the project is promising.

Keywords: E-Services, E-Services Repository, Ontologies, Semantic Web

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1400
627 Dynamic Capitalization and Visualization Strategy in Collaborative Knowledge Management System for EI Process

Authors: Bolanle F. Oladejo, Victor T. Odumuyiwa, Amos A. David

Abstract:

Knowledge is attributed to human whose problemsolving behavior is subjective and complex. In today-s knowledge economy, the need to manage knowledge produced by a community of actors cannot be overemphasized. This is due to the fact that actors possess some level of tacit knowledge which is generally difficult to articulate. Problem-solving requires searching and sharing of knowledge among a group of actors in a particular context. Knowledge expressed within the context of a problem resolution must be capitalized for future reuse. In this paper, an approach that permits dynamic capitalization of relevant and reliable actors- knowledge in solving decision problem following Economic Intelligence process is proposed. Knowledge annotation method and temporal attributes are used for handling the complexity in the communication among actors and in contextualizing expressed knowledge. A prototype is built to demonstrate the functionalities of a collaborative Knowledge Management system based on this approach. It is tested with sample cases and the result showed that dynamic capitalization leads to knowledge validation hence increasing reliability of captured knowledge for reuse. The system can be adapted to various domains.

Keywords: Actors' communication, knowledge annotation, recursive knowledge capitalization, visualization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1368
626 Impact of Similarity Ratings on Human Judgement

Authors: Ian A. McCulloh, Madelaine Zinser, Jesse Patsolic, Michael Ramos

Abstract:

Recommender systems are a common artificial intelligence (AI) application. For any given input, a search system will return a rank-ordered list of similar items. As users review returned items, they must decide when to halt the search and either revise search terms or conclude their requirement is novel with no similar items in the database. We present a statistically designed experiment that investigates the impact of similarity ratings on human judgement to conclude a search item is novel and halt the search. In the study, 450 participants were recruited from Amazon Mechanical Turk to render judgement across 12 decision tasks. We find the inclusion of ratings increases the human perception that items are novel. Percent similarity increases novelty discernment when compared with star-rated similarity or the absence of a rating. Ratings reduce the time to decide and improve decision confidence. This suggests that the inclusion of similarity ratings can aid human decision-makers in knowledge search tasks.

Keywords: Ratings, rankings, crowdsourcing, empirical studies, user studies, similarity measures, human-centered computing, novelty in information retrieval.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 424
625 The Importance of Cultural Adaptation of B2C E-Services Design in Germany

Authors: Rasha Alhendawi, Kyrill Meyer

Abstract:

This research will give the introductory ideas for cultural adaption of B2C E-Service design in Germany. By the intense competition of E-Service development, many companies have realized the importance of understanding the emotional and cultural characteristics of their customers. Ignoring customers’ needs and requirements throughout the E-Service design can lead to faults, mistakes, and gaps. The term of E-Service usability now is changed not only to develop high quality E-Services, but also to be extended to include customer satisfaction and provide for them to feel local.

Keywords: Human Computer Interaction (HCI), Usability, Cultural usability, E-Services, Business-to-Consumer (B2C), EServices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2187
624 Assesing Extension of Meeting System Performance in Information Technology in Defense and Aerospace Project

Authors: Hakan Gürkan, Ahmet Denker

Abstract:

The Ministry of Defense (MoD) spends hundreds of millions of dollars on software to support its infrastructure, operate its weapons and provide command, control, communications, computing, intelligence, surveillance, and reconnaissance (C4ISR) functions. These and other all new advanced systems have a common critical component is information technology. Defense and Aerospace environment is continuously striving to keep up with increasingly sophisticated Information Technology (IT) in order to remain effective in today-s dynamic and unpredictable threat environment. This makes it one of the largest and fastest growing expenses of Defense. Hundreds of millions of dollars spent a year on IT projects. But, too many of those millions are wasted on costly mistakes. Systems that do not work properly, new components that are not compatible with old once, trendily new applications that do not really satisfy defense needs or lost though poorly managed contracts. This paper investigates and compiles the effective strategies that aim to end exasperation with low returns and high cost of Information Technology Acquisition for defense; it tries to show how to maximize value while reducing time and expenditure.

Keywords: Iterative Process, Acquisition Management, Project management, Software Economics, Requirement analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1243
623 Circular Economy Maturity Models: A Systematic Literature Review

Authors: D. Kreutzer, S. Müller-Abdelrazeq, I. Isenhardt

Abstract:

Resource scarcity, energy transition and the planned climate neutrality pose enormous challenges for manufacturing companies. In order to achieve these goals and a holistic sustainable development, the European Union has listed the circular economy as part of the Circular Economy Action Plan. In addition to a reduction in resource consumption, reduced emissions of greenhouse gases and a reduced volume of waste, the principles of the circular economy also offer enormous economic potential for companies, such as the generation of new circular business models. However, many manufacturing companies, especially small and medium-sized enterprises, do not have the necessary capacity to plan their transformation. They need support and strategies on the path to circular transformation because this change affects not only production but also the entire company. Maturity models offer an approach to determine the current status of companies’ transformation processes. In addition, companies can use the models to identify transformation strategies and thus promote the transformation process. While maturity models are established in other areas, e.g., IT or project management, only a few circular economy maturity models can be found in the scientific literature. The aim of this paper is to analyze the identified maturity models of the circular economy through a systematic literature review (SLR) and, besides other aspects, to check their completeness as well as their quality. For this purpose, circular economy maturity models at the company's (micro) level were identified from the literature, compared, and analyzed with regard to their theoretical and methodological structure. A specific focus was placed, on the one hand, on the analysis of the business units considered in the respective models and, on the other hand, on the underlying metrics and indicators in order to determine the individual maturity level of the entire company. The results of the literature review show, for instance, a significant difference in the number and types of indicators as well as their metrics. For example, most models use subjective indicators and very few objective indicators in their surveys. It was also found that there are rarely well-founded thresholds between the levels. Based on the generated results, concrete ideas and proposals for a research agenda in the field of circular economy maturity models are made.

Keywords: Circular economy, maturity model, maturity assessment, systematic literature review.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 222