Search results for: least square support vector machine.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3835

Search results for: least square support vector machine.

3085 Hand Gesture Interpretation Using Sensing Glove Integrated with Machine Learning Algorithms

Authors: Aqsa Ali, Aleem Mushtaq, Attaullah Memon, Monna

Abstract:

In this paper, we present a low cost design for a smart glove that can perform sign language recognition to assist the speech impaired people. Specifically, we have designed and developed an Assistive Hand Gesture Interpreter that recognizes hand movements relevant to the American Sign Language (ASL) and translates them into text for display on a Thin-Film-Transistor Liquid Crystal Display (TFT LCD) screen as well as synthetic speech. Linear Bayes Classifiers and Multilayer Neural Networks have been used to classify 11 feature vectors obtained from the sensors on the glove into one of the 27 ASL alphabets and a predefined gesture for space. Three types of features are used; bending using six bend sensors, orientation in three dimensions using accelerometers and contacts at vital points using contact sensors. To gauge the performance of the presented design, the training database was prepared using five volunteers. The accuracy of the current version on the prepared dataset was found to be up to 99.3% for target user. The solution combines electronics, e-textile technology, sensor technology, embedded system and machine learning techniques to build a low cost wearable glove that is scrupulous, elegant and portable.

Keywords: American sign language, assistive hand gesture interpreter, human-machine interface, machine learning, sensing glove.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2731
3084 Performance Evaluation of a Neural Network based General Purpose Space Vector Modulator

Authors: A.Muthuramalingam, S.Himavathi

Abstract:

Space Vector Modulation (SVM) is an optimum Pulse Width Modulation (PWM) technique for an inverter used in a variable frequency drive applications. It is computationally rigorous and hence limits the inverter switching frequency. Increase in switching frequency can be achieved using Neural Network (NN) based SVM, implemented on application specific chips. This paper proposes a neural network based SVM technique for a Voltage Source Inverter (VSI). The network proposed is independent of switching frequency. Different architectures are investigated keeping the total number of neurons constant. The performance of the inverter is compared for various switching frequencies for different architectures of NN based SVM. From the results obtained, the network with minimum resource and appropriate word length is identified. The bit precision required for this application is identified. The network with 8-bit precision is implemented in the IC XCV 400 and the results are presented. The performance of NN based general purpose SVM with higher bit precision is discussed.

Keywords: NN based SVM, FPGA Implementation, LayerMultiplexing, NN structure and Resource Reduction, PerformanceEvaluation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1491
3083 GIS-based Approach for Land-Use Analysis: A Case Study

Authors: M. Giannopoulou, I. Roukounis, A. Roukouni.

Abstract:

Geographical Information Systems are an integral part of planning in modern technical systems. Nowadays referred to as Spatial Decision Support Systems, as they allow synergy database management systems and models within a single user interface machine and they are important tools in spatial design for evaluating policies and programs at all levels of administration. This work refers to the creation of a Geographical Information System in the context of a broader research in the area of influence of an under construction station of the new metro in the Greek city of Thessaloniki, which included statistical and multivariate data analysis and diagrammatic representation, mapping and interpretation of the results.

Keywords: Databases, Geographical information systems (GIS), Land-use planning, Metro stations

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1604
3082 Experimental Study on the Vibration Isolation Performance of Metal-Net Rubber Vibration Absorber

Authors: Su Yi Ming, Hou Ying, Zou Guang Ping

Abstract:

Metal-net rubber is a new dry friction damping material, compared with the traditional metal rubber, which has high mechanization degree, and the mechanical performance of metal-net rubber is more stable. Through the sine sweep experiment and random vibration experiment of metal-net rubber vibration isolator, the influence of several important factors such as the lines slope, relative density and wire diameter on the transfer rate, natural frequency and root-mean-square response acceleration of metal-net rubber vibration isolation system, were studied through the method of control variables. Also, several relevant change curves under different vibration levels were derived, and the effects of vibration level on the natural frequency and root-mean-square response acceleration were analyzed through the curves.

Keywords: Metal-net rubber vibration isolator, relative density, vibration level, wire diameter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1443
3081 Assessment of Ultra-High Cycle Fatigue Behavior of EN-GJL-250 Cast Iron Using Ultrasonic Fatigue Testing Machine

Authors: Saeedeh Bakhtiari, Johannes Depessemier, Stijn Hertelé, Wim De Waele

Abstract:

High cycle fatigue comprising up to 107 load cycles has been the subject of many studies, and the behavior of many materials was recorded adequately in this regime. However, many applications involve larger numbers of load cycles during the lifetime of machine components. In this ultra-high cycle regime, other failure mechanisms play, and the concept of a fatigue endurance limit (assumed for materials such as steel) is often an oversimplification of reality. When machine component design demands a high geometrical complexity, cast iron grades become interesting candidate materials. Grey cast iron is known for its low cost, high compressive strength, and good damping properties. However, the ultra-high cycle fatigue behavior of cast iron is poorly documented. The current work focuses on the ultra-high cycle fatigue behavior of EN-GJL-250 (GG25) grey cast iron by developing an ultrasonic (20 kHz) fatigue testing system. Moreover, the testing machine is instrumented to measure the temperature and the displacement of  the specimen, and to control the temperature. The high resonance frequency allowed to assess the  behavior of the cast iron of interest within a matter of days for ultra-high numbers of cycles, and repeat the tests to quantify the natural scatter in fatigue resistance.

Keywords: GG25, cast iron, ultra-high cycle fatigue, ultrasonic test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 803
3080 A Diffusion Least-Mean Square Algorithm for Distributed Estimation over Sensor Networks

Authors: Amir Rastegarnia, Mohammad Ali Tinati, Azam Khalili

Abstract:

In this paper we consider the issue of distributed adaptive estimation over sensor networks. To deal with more realistic scenario, different variance for observation noise is assumed for sensors in the network. To solve the problem of different variance of observation noise, the proposed method is divided into two phases: I) Estimating each sensor-s observation noise variance and II) using the estimated variances to obtain the desired parameter. Our proposed algorithm is based on a diffusion least mean square (LMS) implementation with linear combiner model. In the proposed algorithm, the step-size parameter the coefficients of linear combiner are adjusted according to estimated observation noise variances. As the simulation results show, the proposed algorithm considerably improves the diffusion LMS algorithm given in literature.

Keywords: Adaptive filter, distributed estimation, sensor network, diffusion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1864
3079 Gravitational Search Algorithm (GSA) Optimized SSSC Based Facts Controller to Improve Power System Oscillation Stability

Authors: Gayadhar Panda, P. K. Rautraya

Abstract:

In this paper, an investigation into the use of modified Genetic Algorithm optimized SSSC based controller to aid damping of low frequency inter-area oscillations in power systems is presented. Controller design is formulated as a nonlinear constrained optimization problem and modified Genetic Algorithm (MGA) is employed to search for the optimal controller parameters. For evaluation of effectiveness and robustness of proposed controllers, the performance was tested on multi-machine system subjected to different disturbances, loading conditions and system parameter variations. Simulation results are presented to show the fine performance of the proposed SSSC controller in damping the critical modes without significantly deteriorating the damping characteristics of other modes in multi-machine power system.

Keywords: SSSC, FACTS, Controller Design, Damping of Oscillations, Multi-machine system, Modified Genetic Algorithm (MGA).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2034
3078 Psychological Variables of Sport Participation and Involvement among Student-Athletes of Tertiary Institutions in South-West, Nigeria

Authors: Mayowa Adeyeye

Abstract:

This study was conducted to investigate the psychological variables motivating sport participation and involvement among student-athletes of tertiary institutions in southwest Nigeria. One thousand three hundred and fifty (N-1350) studentathletes were randomly selected in all sports from nine tertiary institutions in south-west Nigeria. These tertiary institutions include University of Lagos, Lagos State University, Obafemi Awolowo University, Osun State University, University of Ibadan, University of Agriculture Abeokuta, Federal University of Technology Akungba, University of Ilorin, and Kwara State University. The descriptive survey research method was adopted while a self developed validated Likert type questionnaire named Sport Participation Scale (SPS) was used to elicit opinion from respondents. The test-retest reliability value obtained for the instrument, using Pearson Product Moment Correlation Co-efficient was 0.96. Out of the one thousand three hundred and fifty (N-1350) questionnaire administered, only one thousand two hundred and five (N-1286) were correctly filled, coded and analysed using inferential statistics of Chi-Square (X2) while all the tested hypotheses were set at. 05 alpha level. Based on the findings of this study, the result revealed that several psychological factors influence student athletes to continue participation in sport one which includes love for the game, famous athletes as role model and family support. However, the analysis further revealed that the stipends the student-athletes get from their universities have no influence on their participation and involvement in sport.

Keywords: Family support, peer, role model, sport participation, student-athletes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2967
3077 Community Behaviour and Support towards Island Tourism Development

Authors: Mohd Hafiz Hanafiah, Mohamad Abdullah Hemdi

Abstract:

The tourism industry has been widely used to eradicate poverty, due to the ability to generate income, employment as well as improving the quality of life. The industry has faced rapid growth with support from local residents who were involved directly and indirectly in tourism activities. Their support and behaviour does not only facilitate in boosting tourists’ satisfaction levels, but at the same time it contributes to the word-of-mouth promotion among the visitors. In order to ensure the success of the industry, the involvement and participation of the local communities are pertinent. This paper endeavours on local community attitudes, benefit and their support toward future tourism development in Tioman Island. Through a series of descriptive and factor analyses, various useful understandings on the issues of interest revealed. The findings indicated that community with personal benefit will support future development. Meanwhile, the finding also revealed that the community with negative perception still supports future tourism development due to their over reliance on this sector as their main source of income and destination development means.

Keywords: Personal benefit, perceived impact, future attitudes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2773
3076 Analysis of Current Mirror in 32nm MOSFET and CNTFET Technologies

Authors: Mohini Polimetla, Rajat Mahapatra

Abstract:

There is need to explore emerging technologies based on carbon nanotube electronics as the MOS technology is approaching its limits. As MOS devices scale to the nano ranges, increased short channel effects and process variations considerably effect device and circuit designs. As a promising new transistor, the Carbon Nanotube Field Effect Transistor(CNTFET) avoids most of the fundamental limitations of the Traditional MOSFET devices. In this paper we present the analysis and comparision of a Carbon Nanotube FET(CNTFET) based 10(A current mirror with MOSFET for 32nm technology node. The comparision shows the superiority of the former in terms of 97% increase in output resistance,24% decrease in power dissipation and 40% decrease in minimum voltage required for constant saturation current. Furthermore the effect on performance of current mirror due to change in chirality vector of CNT has also been investigated. The circuit simulations are carried out using HSPICE model.

Keywords: Carbon Nanotube Field Effect Transistor, Chirality Vector, Current Mirror

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3008
3075 Analysis of Feature Space for a 2d/3d Vision based Emotion Recognition Method

Authors: Robert Niese, Ayoub Al-Hamadi, Bernd Michaelis

Abstract:

In modern human computer interaction systems (HCI), emotion recognition is becoming an imperative characteristic. The quest for effective and reliable emotion recognition in HCI has resulted in a need for better face detection, feature extraction and classification. In this paper we present results of feature space analysis after briefly explaining our fully automatic vision based emotion recognition method. We demonstrate the compactness of the feature space and show how the 2d/3d based method achieves superior features for the purpose of emotion classification. Also it is exposed that through feature normalization a widely person independent feature space is created. As a consequence, the classifier architecture has only a minor influence on the classification result. This is particularly elucidated with the help of confusion matrices. For this purpose advanced classification algorithms, such as Support Vector Machines and Artificial Neural Networks are employed, as well as the simple k- Nearest Neighbor classifier.

Keywords: Facial expression analysis, Feature extraction, Image processing, Pattern Recognition, Application.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1923
3074 Grating Scale Thermal Expansion Error Compensation for Large Machine Tools Based on Multiple Temperature Detection

Authors: Wenlong Feng, Zhenchun Du, Jianguo Yang

Abstract:

To decrease the grating scale thermal expansion error, a novel method which based on multiple temperature detection is proposed. Several temperature sensors are installed on the grating scale and the temperatures of these sensors are recorded. The temperatures of every point on the grating scale are calculated by interpolating between adjacent sensors. According to the thermal expansion principle, the grating scale thermal expansion error model can be established by doing the integral for the variations of position and temperature. A novel compensation method is proposed in this paper. By applying the established error model, the grating scale thermal expansion error is decreased by 90% compared with no compensation. The residual positioning error of the grating scale is less than 15μm/10m and the accuracy of the machine tool is significant improved.

Keywords: Thermal expansion error of grating scale, error compensation, machine tools, integral method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1959
3073 Intelligent Fuzzy Input Estimator for the Input Force on the Rigid Bar Structure System

Authors: Ming-Hui Lee, Tsung-Chien Chen, Yuh-Shiou Tai

Abstract:

The intelligent fuzzy input estimator is used to estimate the input force of the rigid bar structural system in this study. The fuzzy Kalman filter without the input term and the fuzzy weighting recursive least square estimator are two main portions of this method. The practicability and accuracy of the proposed method were verified with numerical simulations from which the input forces of a rigid bar structural system were estimated from the output responses. In order to examine the accuracy of the proposed method, a rigid bar structural system is subjected to periodic sinusoidal dynamic loading. The excellent performance of this estimator is demonstrated by comparing it with the use of difference weighting function and improper the initial process noise covariance. The estimated results have a good agreement with the true values in all cases tested.

Keywords: Fuzzy Input Estimator, Kalman Filter, RecursiveLeast Square Estimator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1396
3072 Development of Neural Network Prediction Model of Energy Consumption

Authors: Maryam Jamela Ismail, Rosdiazli Ibrahim, Idris Ismail

Abstract:

In the oil and gas industry, energy prediction can help the distributor and customer to forecast the outgoing and incoming gas through the pipeline. It will also help to eliminate any uncertainties in gas metering for billing purposes. The objective of this paper is to develop Neural Network Model for energy consumption and analyze the performance model. This paper provides a comprehensive review on published research on the energy consumption prediction which focuses on structures and the parameters used in developing Neural Network models. This paper is then focused on the parameter selection of the neural network prediction model development for energy consumption and analysis on the result. The most reliable model that gives the most accurate result is proposed for the prediction. The result shows that the proposed neural network energy prediction model is able to demonstrate an adequate performance with least Root Mean Square Error.

Keywords: Energy Prediction, Multilayer Feedforward, Levenberg-Marquardt, Root Mean Square Error (RMSE)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2643
3071 An Improved Illumination Normalization based on Anisotropic Smoothing for Face Recognition

Authors: Sanghoon Kim, Sun-Tae Chung, Souhwan Jung, Seongwon Cho

Abstract:

Robust face recognition under various illumination environments is very difficult and needs to be accomplished for successful commercialization. In this paper, we propose an improved illumination normalization method for face recognition. Illumination normalization algorithm based on anisotropic smoothing is well known to be effective among illumination normalization methods but deteriorates the intensity contrast of the original image, and incurs less sharp edges. The proposed method in this paper improves the previous anisotropic smoothing-based illumination normalization method so that it increases the intensity contrast and enhances the edges while diminishing the effect of illumination variations. Due to the result of these improvements, face images preprocessed by the proposed illumination normalization method becomes to have more distinctive feature vectors (Gabor feature vectors) for face recognition. Through experiments of face recognition based on Gabor feature vector similarity, the effectiveness of the proposed illumination normalization method is verified.

Keywords: Illumination Normalization, Face Recognition, Anisotropic smoothing, Gabor feature vector.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1549
3070 Programmable Logic Controller for Cassava Centrifugal Machine

Authors: R. Oonsivilai, M. Oonsivilai, J. Sanguemrum, N. Thumsirirat, A. Oonsivilai

Abstract:

Chaiyaphum Starch Co. Ltd. is one of many starch manufacturers that has introduced machinery to aid in manufacturing. Even though machinery has replaced many elements and is now a significant part in manufacturing processes, problems that must be solved with respect to current process flow to increase efficiency still exist. The paper-s aim is to increase productivity while maintaining desired quality of starch, by redesigning the flipping machine-s mechanical control system which has grossly low functional lifetime. Such problems stem from the mechanical control system-s bearings, as fluids and humidity can access into said bearing directly, in tandem with vibrations from the machine-s function itself. The wheel which is used to sense starch thickness occasionally falls from its shaft, due to high speed rotation during operation, while the shaft may bend from impact when processing dried bread. Redesigning its mechanical control system has increased its efficiency, allowing quality thickness measurement while increasing functional lifetime an additional 62 days.

Keywords: Control system, Machinery, Measurement, Potato starch

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2098
3069 Distributional Semantics Approach to Thai Word Sense Disambiguation

Authors: Sunee Pongpinigpinyo, Wanchai Rivepiboon

Abstract:

Word sense disambiguation is one of the most important open problems in natural language processing applications such as information retrieval and machine translation. Many approach strategies can be employed to resolve word ambiguity with a reasonable degree of accuracy. These strategies are: knowledgebased, corpus-based, and hybrid-based. This paper pays attention to the corpus-based strategy that employs an unsupervised learning method for disambiguation. We report our investigation of Latent Semantic Indexing (LSI), an information retrieval technique and unsupervised learning, to the task of Thai noun and verbal word sense disambiguation. The Latent Semantic Indexing has been shown to be efficient and effective for Information Retrieval. For the purposes of this research, we report experiments on two Thai polysemous words, namely  /hua4/ and /kep1/ that are used as a representative of Thai nouns and verbs respectively. The results of these experiments demonstrate the effectiveness and indicate the potential of applying vector-based distributional information measures to semantic disambiguation.

Keywords: Distributional semantics, Latent Semantic Indexing, natural language processing, Polysemous words, unsupervisedlearning, Word Sense Disambiguation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1814
3068 Determination of Water Pollution and Water Quality with Decision Trees

Authors: Çiğdem Bakır, Mecit Yüzkat

Abstract:

With the increasing emphasis on water quality worldwide, the search for and expanding the market for new and intelligent monitoring systems has increased. The current method is the laboratory process, where samples are taken from bodies of water, and tests are carried out in laboratories. This method is time-consuming, a waste of manpower and uneconomical. To solve this problem, we used machine learning methods to detect water pollution in our study. We created decision trees with the Orange3 software used in the study and tried to determine all the factors that cause water pollution. An automatic prediction model based on water quality was developed by taking many model inputs such as water temperature, pH, transparency, conductivity, dissolved oxygen, and ammonia nitrogen with machine learning methods. The proposed approach consists of three stages: Preprocessing of the data used, feature detection and classification. We tried to determine the success of our study with different accuracy metrics and the results were presented comparatively. In addition, we achieved approximately 98% success with the decision tree.

Keywords: Decision tree, water quality, water pollution, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 260
3067 A Method for Improving Dental Crown Fit-Increasing the Robustness

Authors: Kero T., Söderberg R., Andersson M., Lindkvist L.

Abstract:

The introduction of mass-customization has enabled new ways to treat patients within medicine. However, the introduction of industrialized treatments has also meant new obstacles. The purpose of this study was to introduce and theoretically test a method for improving dental crown fit. The optimization method allocates support points in order to check the final variation for dental crowns. Three different types of geometries were tested and compared. The three geometries were also divided into three sub-geometries: Current method, Optimized method and Feasible method. The Optimized method, using the whole surface for support points, provided the best results. The results support the objective of the study. It also seems that the support optimization method can dramatically improve the robustness of dental crown treatments.

Keywords: Bio-medicine, Dentistry, Mass-customization, Optimization and Robust design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1621
3066 Procedure Model for Data-Driven Decision Support Regarding the Integration of Renewable Energies into Industrial Energy Management

Authors: M. Graus, K. Westhoff, X. Xu

Abstract:

The climate change causes a change in all aspects of society. While the expansion of renewable energies proceeds, industry could not be convinced based on general studies about the potential of demand side management to reinforce smart grid considerations in their operational business. In this article, a procedure model for a case-specific data-driven decision support for industrial energy management based on a holistic data analytics approach is presented. The model is executed on the example of the strategic decision problem, to integrate the aspect of renewable energies into industrial energy management. This question is induced due to considerations of changing the electricity contract model from a standard rate to volatile energy prices corresponding to the energy spot market which is increasingly more affected by renewable energies. The procedure model corresponds to a data analytics process consisting on a data model, analysis, simulation and optimization step. This procedure will help to quantify the potentials of sustainable production concepts based on the data from a factory. The model is validated with data from a printer in analogy to a simple production machine. The overall goal is to establish smart grid principles for industry via the transformation from knowledge-driven to data-driven decisions within manufacturing companies.

Keywords: Data analytics, green production, industrial energy management, optimization, renewable energies, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1736
3065 A Study on the Accelerated Life Cycle Test Method of the Motor for Home Appliances by Using Acceleration Factor

Authors: Youn-Sung Kim, Mi-Sung Kim, Jae-Kun Lee

Abstract:

This paper deals with the accelerated life cycle test method of the motor for home appliances that demand high reliability. Life Cycle of parts in home appliances also should be 10 years because life cycle of the home appliances such as washing machine, refrigerator, TV is at least 10 years. In case of washing machine, the life cycle test method of motor is advanced for 3000 cycle test (1cycle = 2hours). However, 3000 cycle test incurs loss for the time and cost. Objectives of this study are to reduce the life cycle test time and the number of test samples, which could be realized by using acceleration factor for the test time and reduction factor for the number of sample.

Keywords: Accelerated life cycle test, motor reliability test, motor for washing machine, BLDC motor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3593
3064 Impact of Government Spending on Private Consumption and on the Economy: The Case of Thailand

Authors: Paitoon Kraipornsak

Abstract:

Government spending is categorized into consumption spending and capital spending. Three categories of private consumption are used: food consumption, nonfood consumption, and services consumption. The estimated model indicates substitution effects of government consumption spending on budget shares of private nonfood consumption and of government capital spending on budget share of private food consumption. However, the results do not indicate whether the negative effects of changes in the budget shares of the nonfood and the food consumption equates to reduce total private consumption. The concept of aggregate demand comprising consumption, investment, government spending (consumption spending and capital spending), export, and import are used to estimate their relationship by using the Vector Error Correction Mechanism. The study found no effect of government capital spending on either the private consumption or the growth of GDP while the government consumption spending has negative effect on the growth of GDP.

Keywords: Complementary effect, government capital spending, government consumption spending, private consumption on food, nonfood, and services, substitution effect, vector error correction mechanism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2203
3063 Effect of Nanoparticle Diameter of Nano-Fluid on Average Nusselt Number in the Chamber

Authors: A. Ghafouri, N. Pourmahmoud, I. Mirzaee

Abstract:

In this numerical study, effects of using Al2O3-water nanofluid on the rate of heat transfer have been investigated. Physical model is a square enclosure with insulated top and bottom horizontal walls, while the vertical walls are kept at different constant temperatures. Two appropriate models are used to evaluate the viscosity and thermal conductivity of nanofluid. The governing stream-vorticity equations are solved using a second order central finite difference scheme, coupled to the conservation of mass and energy. The study has been carried out for the nanoparticle diameter 30, 60 and 90 nm and the solid volume fraction 0 to 0.04. Results are presented by average Nusselt number and normalized Nusselt number in different range of φ and D for mixed convection dominated regime. It is found that different heat transfer rate is predicted when the effect of nanoparticle diameter is taken into account.

Keywords: Nano-fluid, nanoparticle diameter, heat transfer enhancement, square enclosure, Nusselt number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1694
3062 Machine Learning in Production Systems Design Using Genetic Algorithms

Authors: Abu Qudeiri Jaber, Yamamoto Hidehiko Rizauddin Ramli

Abstract:

To create a solution for a specific problem in machine learning, the solution is constructed from the data or by use a search method. Genetic algorithms are a model of machine learning that can be used to find nearest optimal solution. While the great advantage of genetic algorithms is the fact that they find a solution through evolution, this is also the biggest disadvantage. Evolution is inductive, in nature life does not evolve towards a good solution but it evolves away from bad circumstances. This can cause a species to evolve into an evolutionary dead end. In order to reduce the effect of this disadvantage we propose a new a learning tool (criteria) which can be included into the genetic algorithms generations to compare the previous population and the current population and then decide whether is effective to continue with the previous population or the current population, the proposed learning tool is called as Keeping Efficient Population (KEP). We applied a GA based on KEP to the production line layout problem, as a result KEP keep the evaluation direction increases and stops any deviation in the evaluation.

Keywords: Genetic algorithms, Layout problem, Machinelearning, Production system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1629
3061 Flexible Manufacturing System

Authors: Peter Kostal, Karol Velisek

Abstract:

Flexible manufacturing system is a system that is able to respond to changed conditions. In general, this flexibility is divided into two key categories and several subcategories. The first category is the so called machine flexibility which enables to make various products by the given machinery. The second category is routing flexibility enabling to execute the same operation by various machines. Flexible manufacturing systems usually consist of three main parts: CNC machine tools, transport system and control system. A higher level of flexible manufacturing systems is represented by the so called intelligent manufacturing systems.

Keywords: drawing-free manufacturing, flexible manufacturing system, industrial robot, material flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4959
3060 Trust and Reputation Mechanism with Path Optimization in Multipath Routing

Authors: Ramya Dorai, M. Rajaram

Abstract:

A Mobile Adhoc Network (MANET) is a collection of mobile nodes that communicate with each other with wireless links and without pre-existing communication infrastructure. Routing is an important issue which impacts network performance. As MANETs lack central administration and prior organization, their security concerns are different from those of conventional networks. Wireless links make MANETs susceptible to attacks. This study proposes a new trust mechanism to mitigate wormhole attack in MANETs. Different optimization techniques find available optimal path from source to destination. This study extends trust and reputation to an improved link quality and channel utilization based Adhoc Ondemand Multipath Distance Vector (AOMDV). Differential Evolution (DE) is used for optimization.

Keywords: Mobile Adhoc Network (MANET), Adhoc Ondemand Multi-Path Distance Vector (AOMDV), Trust and Reputation, Differential Evolution (DE), Link Quality, Channel Utilization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1659
3059 Position Control of an AC Servo Motor Using VHDL and FPGA

Authors: Kariyappa B. S., Hariprasad S. A., R. Nagaraj

Abstract:

In this paper, a new method of controlling position of AC Servomotor using Field Programmable Gate Array (FPGA). FPGA controller is used to generate direction and the number of pulses required to rotate for a given angle. Pulses are sent as a square wave, the number of pulses determines the angle of rotation and frequency of square wave determines the speed of rotation. The proposed control scheme has been realized using XILINX FPGA SPARTAN XC3S400 and tested using MUMA012PIS model Alternating Current (AC) servomotor. Experimental results show that the position of the AC Servo motor can be controlled effectively. KeywordsAlternating Current (AC), Field Programmable Gate Array (FPGA), Liquid Crystal Display (LCD).

Keywords: Alternating Current (AC), Field Programmable Gate Array (FPGA), Liquid Crystal Display (LCD).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5160
3058 Discussing Embedded versus Central Machine Learning in Wireless Sensor Networks

Authors: Anne-Lena Kampen, Øivind Kure

Abstract:

Machine learning (ML) can be implemented in Wireless Sensor Networks (WSNs) as a central solution or distributed solution where the ML is embedded in the nodes. Embedding improves privacy and may reduce prediction delay. In addition, the number of transmissions is reduced. However, quality factors such as prediction accuracy, fault detection efficiency and coordinated control of the overall system suffer. Here, we discuss and highlight the trade-offs that should be considered when choosing between embedding and centralized ML, especially for multihop networks. In addition, we present estimations that demonstrate the energy trade-offs between embedded and centralized ML. Although the total network energy consumption is lower with central prediction, it makes the network more prone for partitioning due to the high forwarding load on the one-hop nodes. Moreover, the continuous improvements in the number of operations per joule for embedded devices will move the energy balance toward embedded prediction.

Keywords: Central ML, embedded machine learning, energy consumption, local ML, Wireless Sensor Networks, WSN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 827
3057 Advantages of a New Manufacturing Facility for the Production of Nanofiber

Authors: R. Knizek, D. Karhankova

Abstract:

The production of nanofibers and the machinery for their production is a current issue. The pioneer, in the industrial production of nanofibers, is the machinery with the sales descriptions NanospiderTM from the company Elmarco, which came into being in 2008. Most of the production facilities, like NanospiderTM, use electrospinning. There are also other methods of industrial production of nanofibers, such as the centrifugal spinning process, which is used by FibeRio Technology Corporation. However, each method and machine has its advantages, but also disadvantages and that is the reason why a new machine called as Nanomachine, which eliminates the disadvantages of other production facilities producing nanofibers, has been developed.

Keywords: Nanomachine, nanospider, spinning slat, electrospinning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1519
3056 Quranic Braille System

Authors: Abdallah M. Abualkishik, Khairuddin Omar

Abstract:

This article concerned with the translation of Quranic verses to Braille symbols, by using Visual basic program. The system has the ability to translate the special vibration for the Quran. This study limited for the (Noun + Scoon) vibrations. It builds on an existing translation system that combines a finite state machine with left and right context matching and a set of translation rules. This allows to translate the Arabic language from text to Braille symbols after detect the vibration for the Quran verses.

Keywords: Braille, Quran vibration, Finite State Machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3062