Search results for: deep learning algorithms
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3576

Search results for: deep learning algorithms

2826 Object Localization in Medical Images Using Genetic Algorithms

Authors: George Karkavitsas, Maria Rangoussi

Abstract:

We present a genetic algorithm application to the problem of object registration (i.e., object detection, localization and recognition) in a class of medical images containing various types of blood cells. The genetic algorithm approach taken here is seen to be most appropriate for this type of image, due to the characteristics of the objects. Successful cell registration results on real life microscope images of blood cells show the potential of the proposed approach.

Keywords: Genetic algorithms, object registration, pattern recognition, blood cell microscope images.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1969
2825 Productivity Effect of Urea Deep Placement Technology: An Empirical Analysis from Irrigation Rice Farmers in the Northern Region of Ghana

Authors: Shaibu Baanni Azumah, Ignatius Tindjina, Stella Obanyi, Tara N. Wood

Abstract:

This study examined the effect of Urea Deep Placement (UDP) technology on the output of irrigated rice farmers in the northern region of Ghana. Multi-stage sampling technique was used to select 142 rice farmers from the Golinga and Bontanga irrigation schemes, around Tamale. A treatment effect model was estimated at two stages; firstly, to determine the factors that influenced farmers’ decision to adopt the UDP technology and secondly, to determine the effect of the adoption of the UDP technology on the output of rice farmers. The significant variables that influenced rice farmers’ adoption of the UPD technology were sex of the farmer, land ownership, off-farm activity, extension service, farmer group participation and training. The results also revealed that farm size and the adoption of UDP technology significantly influenced the output of rice farmers in the northern region of Ghana. In addition to the potential of the technology to improve yields, it also presents an employment opportunity for women and youth, who are engaged in the deep placement of Urea Super Granules (USG), as well as in the transplantation of rice. It is recommended that the government of Ghana work closely with the IFDC to embed the UDP technology in the national agricultural programmes and policies. The study also recommends an effective collaboration between the government, through the Ministry of Food and Agriculture (MoFA) and the International Fertilizer Development Center (IFDC) to train agricultural extension agents on UDP technology in the rice producing areas of the country.

Keywords: Northern Ghana, output, irrigation rice farmers, treatment effect model, urea deep placement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1129
2824 An Application of Path Planning Algorithms for Autonomous Inspection of Buried Pipes with Swarm Robots

Authors: Richard Molyneux, Christopher Parrott, Kirill Horoshenkov

Abstract:

This paper aims to demonstrate how various algorithms can be implemented within swarms of autonomous robots to provide continuous inspection within underground pipeline networks. Current methods of fault detection within pipes are costly, time consuming and inefficient. As such, solutions tend toward a more reactive approach, repairing faults, as opposed to proactively seeking leaks and blockages. The paper presents an efficient inspection method, showing that autonomous swarm robotics is a viable way of monitoring underground infrastructure. Tailored adaptations of various Vehicle Routing Problems (VRP) and path-planning algorithms provide a customised inspection procedure for complicated networks of underground pipes. The performance of multiple algorithms is compared to determine their effectiveness and feasibility. Notable inspirations come from ant colonies and stigmergy, graph theory, the k-Chinese Postman Problem ( -CPP) and traffic theory. Unlike most swarm behaviours which rely on fast communication between agents, underground pipe networks are a highly challenging communication environment with extremely limited communication ranges. This is due to the extreme variability in the pipe conditions and relatively high attenuation of acoustic and radio waves with which robots would usually communicate. This paper illustrates how to optimise the inspection process and how to increase the frequency with which the robots pass each other, without compromising the routes they are able to take to cover the whole network.

Keywords: Autonomous inspection, buried pipes, stigmergy, swarm intelligence, vehicle routing problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1014
2823 Reducing Cognitive Load in Learning Computer Programming

Authors: Muhammed Yousoof, Mohd Sapiyan, Khaja Kamaluddin

Abstract:

Many difficulties are faced in the process of learning computer programming. This paper will propose a system framework intended to reduce cognitive load in learning programming. In first section focus is given on the process of learning and the shortcomings of the current approaches to learning programming. Finally the proposed prototype is suggested along with the justification of the prototype. In the proposed prototype the concept map is used as visualization metaphor. Concept maps are similar to the mental schema in long term memory and hence it can reduce cognitive load well. In addition other method such as part code method is also proposed in this framework to can reduce cognitive load.

Keywords: Cognitive load, concept maps, working memory, split attention effect, partial code programs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2594
2822 Mining Educational Data to Analyze the Student Motivation Behavior

Authors: Kunyanuth Kularbphettong, Cholticha Tongsiri

Abstract:

The purpose of this research aims to discover the knowledge for analysis student motivation behavior on e-Learning based on Data Mining Techniques, in case of the Information Technology for Communication and Learning Course at Suan Sunandha Rajabhat University. The data mining techniques was applied in this research including association rules, classification techniques. The results showed that using data mining technique can indicate the important variables that influence the student motivation behavior on e-Learning.

Keywords: association rule mining, classification techniques, e- Learning, Moodle log Motivation Behavior

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3093
2821 MCOKE: Multi-Cluster Overlapping K-Means Extension Algorithm

Authors: Said Baadel, Fadi Thabtah, Joan Lu

Abstract:

Clustering involves the partitioning of n objects into k clusters. Many clustering algorithms use hard-partitioning techniques where each object is assigned to one cluster. In this paper we propose an overlapping algorithm MCOKE which allows objects to belong to one or more clusters. The algorithm is different from fuzzy clustering techniques because objects that overlap are assigned a membership value of 1 (one) as opposed to a fuzzy membership degree. The algorithm is also different from other overlapping algorithms that require a similarity threshold be defined a priori which can be difficult to determine by novice users.

Keywords: Data mining, k-means, MCOKE, overlapping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2755
2820 Cluster-Based Multi-Path Routing Algorithm in Wireless Sensor Networks

Authors: Si-Gwan Kim

Abstract:

Small-size and low-power sensors with sensing, signal processing and wireless communication capabilities is suitable for the wireless sensor networks. Due to the limited resources and battery constraints, complex routing algorithms used for the ad-hoc networks cannot be employed in sensor networks. In this paper, we propose node-disjoint multi-path hexagon-based routing algorithms in wireless sensor networks. We suggest the details of the algorithm and compare it with other works. Simulation results show that the proposed scheme achieves better performance in terms of efficiency and message delivery ratio.

Keywords: Clustering, multi-path, routing protocol, sensor network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2471
2819 Computer Aided Language Learning System for Arabic for Second Language Learners

Authors: Osama Abufanas

Abstract:

This paper aims to build an Arabic learning language tool using Flash CS4 professional software with action script 3.0 programming language, based on the Computer Aided Language Learning (CALL) material. An extra intention is to provide a primary tool and focus on learning Arabic as a second language to adults. It contains letters, words and sentences at the first stage. This includes interactive practices, which evaluates learners’ comprehension of the Arabic language. The system was examined and it was found that the language structure was correct and learners were satisfied regarding the system tools. The learners found the system tools efficient and simple to use. The paper's main conclusion illustrates that CALL can be applied without any hesitation to second language learners

Keywords: Arabic Language, Computer Aided Language Learning (CALL), Learner, Material.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2728
2818 CAD/CAM Algorithms for 3D Woven Multilayer Textile Structures

Authors: Martin A. Smith, Xiaogang Chen

Abstract:

This paper proposes new algorithms for the computeraided design and manufacture (CAD/CAM) of 3D woven multi-layer textile structures. Existing commercial CAD/CAM systems are often restricted to the design and manufacture of 2D weaves. Those CAD/CAM systems that do support the design and manufacture of 3D multi-layer weaves are often limited to manual editing of design paper grids on the computer display and weave retrieval from stored archives. This complex design activity is time-consuming, tedious and error-prone and requires considerable experience and skill of a technical weaver. Recent research reported in the literature has addressed some of the shortcomings of commercial 3D multi-layer weave CAD/CAM systems. However, earlier research results have shown the need for further work on weave specification, weave generation, yarn path editing and layer binding. Analysis of 3D multi-layer weaves in this research has led to the design and development of efficient and robust algorithms for the CAD/CAM of 3D woven multi-layer textile structures. The resulting algorithmically generated weave designs can be used as a basis for lifting plans that can be loaded onto looms equipped with electronic shedding mechanisms for the CAM of 3D woven multi-layer textile structures.

Keywords: CAD/CAM, Multi-layer, Textile, Weave.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2571
2817 Evaluation of Energy and Environmental Aspects of Reduced Tillage Systems Applied in Maize Cultivation

Authors: E. Sarauskis, L. Masilionyte, Z. Kriauciuniene, K. Romaneckas, S. Buragiene

Abstract:

In maize growing technologies, tillage technological operations are the most time-consuming and require the greatest fuel input. Substitution of conventional tillage, involving deep ploughing, by other reduced tillage methods can reduce technological production costs, diminish soil degradation and environmental pollution from greenhouse gas emissions, as well as improve economic competitiveness of agricultural produce.

Experiments designed to assess energy and environmental aspects associated with different reduced tillage systems, applied in maize cultivation were conducted at Aleksandras Stulginskis University taking into account Lithuania’s economic and climate conditions. The study involved 5 tillage treatments: deep ploughing (DP, control), shallow ploughing (SP), deep cultivation (DC), shallow cultivation (SC) and no-tillage (NT).

Our experimental evidence suggests that with the application of reduced tillage systems it is feasible to reduce fuel consumption by 13-58% and working time input by 8.4% to nearly 3-fold, to reduce the cost price of maize cultivation technological operations, decrease environmental pollution with CO2 gas by 30 to 146 kg ha-1, compared with the deep ploughing.

Keywords: Reduced tillage, energy and environmental assessment, fuel consumption, CO2 emission, maize.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2094
2816 The Use of Webquests in Developing Inquiry Based Learning: Views of Teachers and Students in Qatar

Authors: Abdullah Abu-Tineh, Carol Murphy, Nigel Calder, Nasser Mansour

Abstract:

This paper reports on an aspect of e-learning in developing inquiry-based learning (IBL). We present data on the views of teachers and students in Qatar following a professional development programme intended to help teachers implement IBL in their science and mathematics classrooms. Key to this programme was the use of WebQuests. Views of the teachers and students suggested that WebQuests helped students to develop technical skills, work collaboratively and become independent in their learning. The use of WebQuests also enabled a combination of digital and non-digital tools that helped students connect ideas and enhance their understanding of topics.

Keywords: Digital technology, inquiry-based learning, mathematics and science education, professional development.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 753
2815 An Empirical Study on Switching Activation Functions in Shallow and Deep Neural Networks

Authors: Apoorva Vinod, Archana Mathur, Snehanshu Saha

Abstract:

Though there exists a plethora of Activation Functions (AFs) used in single and multiple hidden layer Neural Networks (NN), their behavior always raised curiosity, whether used in combination or singly. The popular AFs – Sigmoid, ReLU, and Tanh – have performed prominently well for shallow and deep architectures. Most of the time, AFs are used singly in multi-layered NN, and, to the best of our knowledge, their performance is never studied and analyzed deeply when used in combination. In this manuscript, we experiment on multi-layered NN architecture (both on shallow and deep architectures; Convolutional NN and VGG16) and investigate how well the network responds to using two different AFs (Sigmoid-Tanh, Tanh-ReLU, ReLU-Sigmoid) used alternately against a traditional, single (Sigmoid-Sigmoid, Tanh-Tanh, ReLU-ReLU) combination. Our results show that on using two different AFs, the network achieves better accuracy, substantially lower loss, and faster convergence on 4 computer vision (CV) and 15 Non-CV (NCV) datasets. When using different AFs, not only was the accuracy greater by 6-7%, but we also accomplished convergence twice as fast. We present a case study to investigate the probability of networks suffering vanishing and exploding gradients when using two different AFs. Additionally, we theoretically showed that a composition of two or more AFs satisfies Universal Approximation Theorem (UAT).

Keywords: Activation Function, Universal Approximation function, Neural Networks, convergence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 154
2814 Predictive Analysis for Big Data: Extension of Classification and Regression Trees Algorithm

Authors: Ameur Abdelkader, Abed Bouarfa Hafida

Abstract:

Since its inception, predictive analysis has revolutionized the IT industry through its robustness and decision-making facilities. It involves the application of a set of data processing techniques and algorithms in order to create predictive models. Its principle is based on finding relationships between explanatory variables and the predicted variables. Past occurrences are exploited to predict and to derive the unknown outcome. With the advent of big data, many studies have suggested the use of predictive analytics in order to process and analyze big data. Nevertheless, they have been curbed by the limits of classical methods of predictive analysis in case of a large amount of data. In fact, because of their volumes, their nature (semi or unstructured) and their variety, it is impossible to analyze efficiently big data via classical methods of predictive analysis. The authors attribute this weakness to the fact that predictive analysis algorithms do not allow the parallelization and distribution of calculation. In this paper, we propose to extend the predictive analysis algorithm, Classification And Regression Trees (CART), in order to adapt it for big data analysis. The major changes of this algorithm are presented and then a version of the extended algorithm is defined in order to make it applicable for a huge quantity of data.

Keywords: Predictive analysis, big data, predictive analysis algorithms. CART algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1075
2813 Towards a Computational Model of Consciousness: Global Abstraction Workspace

Authors: Halim Djerroud, Arab Ali Cherif

Abstract:

We assume that conscious functions are implemented automatically. In other words that consciousness as well as the non-consciousness aspect of human thought, planning and perception, are produced by biologically adaptive algorithms. We propose that the mechanisms of consciousness can be produced using similar adaptive algorithms to those executed by the mechanism. In this paper, we present a computational model of consciousness, the ”Global Abstraction Workspace” which is an internal environmental modelling perceived as a multi-agent system. This system is able to evolve and generate new data and processes as well as actions in the environment.

Keywords: Artificial consciousness, cognitive architecture, global abstraction workspace, mutli-agents system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1584
2812 Experience-based Learning Program for Electronic Circuit Design

Authors: Koyu Chinen, Haruka Mikamori

Abstract:

A new multi-step comprehensive experience-based learning program was developed and carried out so that the students understood about what was the principle of the circuit function and how the designed circuit was used in actual advanced applications.

Keywords: Electronic circuit education, Experience based learning, Comprehensive education,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1359
2811 Design of a Statistics Lecture for Multidisciplinary Postgraduate Students Using a Range of Tools and Techniques

Authors: S. Assi, M. Haffar

Abstract:

Teaching statistics is a critical and challenging issue especially to students from multidisciplinary and diverse postgraduate backgrounds. Postgraduate research students require statistics not only for the design of experiments; but also for data analysis. Students often perceive statistics as a complex and technical subject; thus, they leave data analysis to the last moment. The lecture needs to be simple and inclusive at the same time to make it comprehendible and address the learning needs of each student. Therefore, the aim of this work was to design a simple and comprehendible statistics lecture to postgraduate research students regarding ‘Research plan, design and data collection’. The lecture adopted the constructive alignment learning theory which facilitated the learning environments for the students. The learning environment utilized a student-centered approach and used interactive learning environment with in-class discussion, handouts and electronic voting system handsets. For evaluation of the lecture, formative assessment was made with in-class discussions and poll questions which were introduced during and after the lecture. The whole approach showed to be effective in creating a learning environment to the students who were able to apply the concepts addressed to their individual research projects.

Keywords: Teaching, statistics, lecture, multidisciplinary, postgraduate, learning theory, learning environment, student-centered approach, data analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1135
2810 Optimization of Unweighted Minimum Vertex Cover

Authors: S. Balaji, V. Swaminathan, K. Kannan

Abstract:

The Minimum Vertex Cover (MVC) problem is a classic graph optimization NP - complete problem. In this paper a competent algorithm, called Vertex Support Algorithm (VSA), is designed to find the smallest vertex cover of a graph. The VSA is tested on a large number of random graphs and DIMACS benchmark graphs. Comparative study of this algorithm with the other existing methods has been carried out. Extensive simulation results show that the VSA can yield better solutions than other existing algorithms found in the literature for solving the minimum vertex cover problem.

Keywords: vertex cover, vertex support, approximation algorithms, NP - complete problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2490
2809 Singularity Loci of Actuation Schemes for 3RRR Planar Parallel Manipulator

Authors: S. Ramana Babu, V. Ramachandra Raju, K. Ramji

Abstract:

This paper presents the effect of actuation schemes on the performance of parallel manipulators and also how the singularity loci have been changed in the reachable workspace of the manipulator with the choice of actuation scheme to drive the manipulator. The performance of the eight possible actuation schemes of 3RRR planar parallel manipulator is compared with each other. The optimal design problem is formulated to find the manipulator geometry that maximizes the singularity free conditioned workspace for all the eight actuation cases, the optimization problem is solved by using genetic algorithms.

Keywords: Actuation schemes, GCI, genetic algorithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1627
2808 Using Multi-Thread Technology Realize Most Short-Path Parallel Algorithm

Authors: Chang-le Lu, Yong Chen

Abstract:

The shortest path question is in a graph theory model question, and it is applied in many fields. The most short-path question may divide into two kinds: Single sources most short-path, all apexes to most short-path. This article mainly introduces the problem of all apexes to most short-path, and gives a new parallel algorithm of all apexes to most short-path according to the Dijkstra algorithm. At last this paper realizes the parallel algorithms in the technology of C # multithreading.

Keywords: Dijkstra algorithm, parallel algorithms, multi-thread technology, most short-path, ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2111
2807 On-Road Text Detection Platform for Driver Assistance Systems

Authors: Guezouli Larbi, Belkacem Soundes

Abstract:

The automation of the text detection process can help the human in his driving task. Its application can be very useful to help drivers to have more information about their environment by facilitating the reading of road signs such as directional signs, events, stores, etc. In this paper, a system consisting of two stages has been proposed. In the first one, we used pseudo-Zernike moments to pinpoint areas of the image that may contain text. The architecture of this part is based on three main steps, region of interest (ROI) detection, text localization, and non-text region filtering. Then, in the second step, we present a convolutional neural network architecture (On-Road Text Detection Network - ORTDN) which is considered as a classification phase. The results show that the proposed framework achieved ≈ 35 fps and an mAP of ≈ 90%, thus a low computational time with competitive accuracy.

Keywords: Text detection, CNN, PZM, deep learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 163
2806 Study on Evaluating the Utilization of Social Media Tools (SMT) in Collaborative Learning Case Study: Faculty of Medicine, King Khalid University

Authors: Vasanthi Muniasamy, Intisar Magboul Ejalani, M. Anandhavalli, K. Gauthaman

Abstract:

Social Media (SM) is websites increasingly popular and built to allow people to express themselves and to interact socially with others. Most SMT are dominated by youth particularly College students. The proliferation of popular social media tools, which can accessed from any communication devices has become pervasive in the lives of today’s student life. Connecting traditional education to social media tools are a relatively new era and any collaborative tool could be used for learning activities. This study focuses (i) how the social media tools are useful for the learning activities of the students of faculty of medicine in King Khalid University (ii) whether the social media affects the collaborative learning with interaction among students, among course instructor, their engagement, perceived ease of use and perceived ease of usefulness (TAM) (iii) overall, the students satisfy with this collaborative learning through Social media.

Keywords: Social Media, Web 2.0, Perceived ease of use, perceived usefulness, Collaborative Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2315
2805 Methods and Algorithms of Ensuring Data Privacy in AI-Based Healthcare Systems and Technologies

Authors: Omar Farshad Jeelani, Makaire Njie, Viktoriia M. Korzhuk

Abstract:

Recently, the application of AI-powered algorithms in healthcare continues to flourish. Particularly, access to healthcare information, including patient health history, diagnostic data, and PII (Personally Identifiable Information) is paramount in the delivery of efficient patient outcomes. However, as the exchange of healthcare information between patients and healthcare providers through AI-powered solutions increases, protecting a person’s information and their privacy has become even more important. Arguably, the increased adoption of healthcare AI has resulted in a significant concentration on the security risks and protection measures to the security and privacy of healthcare data, leading to escalated analyses and enforcement. Since these challenges are brought by the use of AI-based healthcare solutions to manage healthcare data, AI-based data protection measures are used to resolve the underlying problems. Consequently, these projects propose AI-powered safeguards and policies/laws to protect the privacy of healthcare data. The project present the best-in-school techniques used to preserve data privacy of AI-powered healthcare applications. Popular privacy-protecting methods like Federated learning, cryptography techniques, differential privacy methods, and hybrid methods are discussed together with potential cyber threats, data security concerns, and prospects. Also, the project discusses some of the relevant data security acts/laws that govern the collection, storage, and processing of healthcare data to guarantee owners’ privacy is preserved. This inquiry discusses various gaps and uncertainties associated with healthcare AI data collection procedures, and identifies potential correction/mitigation measures.

Keywords: Data privacy, artificial intelligence, healthcare AI, data sharing, healthcare organizations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 116
2804 Self-Assembling Hypernetworks for Cognitive Learning of Linguistic Memory

Authors: Byoung-Tak Zhang, Chan-Hoon Park

Abstract:

Hypernetworks are a generalized graph structure representing higher-order interactions between variables. We present a method for self-organizing hypernetworks to learn an associative memory of sentences and to recall the sentences from this memory. This learning method is inspired by the “mental chemistry" model of cognition and the “molecular self-assembly" technology in biochemistry. Simulation experiments are performed on a corpus of natural-language dialogues of approximately 300K sentences collected from TV drama captions. We report on the sentence completion performance as a function of the order of word-interaction and the size of the learning corpus, and discuss the plausibility of this architecture as a cognitive model of language learning and memory.

Keywords: Linguistic recall memory, sentence completion task, self-organizing hypernetworks, cognitive learning and memory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1497
2803 Toward a Model for Knowledge Development in Virtual Environments: Strategies for Student Ownership

Authors: N.B. Adams

Abstract:

This article discusses the concept of student ownership of knowledge and seeks to determine how to move students from knowledge acquisition to knowledge application and ultimately to knowledge generation in a virtual setting. Instructional strategies for fostering student engagement in a virtual environment are critical to the learner-s strategic ownership of the knowledge. A number of relevant theories that focus on learning, affect, needs and adult concerns are presented to provide a basis for exploring the transfer of knowledge from teacher to learner. A model under development is presented that combines the dimensions of knowledge approach, the teacher-student relationship with regards to knowledge authority and teaching approach to demonstrate the recursive and scaffolded design for creation of virtual learning environments.

Keywords: Virtual learning environments, learning theory, teaching model, online learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1868
2802 Subjective Quality Assessment for Impaired Videos with Varying Spatial and Temporal Information

Authors: Muhammad Rehan Usman, Muhammad Arslan Usman, Soo Young Shin

Abstract:

The new era of digital communication has brought up many challenges that network operators need to overcome. The high demand of mobile data rates require improved networks, which is a challenge for the operators in terms of maintaining the quality of experience (QoE) for their consumers. In live video transmission, there is a sheer need for live surveillance of the videos in order to maintain the quality of the network. For this purpose objective algorithms are employed to monitor the quality of the videos that are transmitted over a network. In order to test these objective algorithms, subjective quality assessment of the streamed videos is required, as the human eye is the best source of perceptual assessment. In this paper we have conducted subjective evaluation of videos with varying spatial and temporal impairments. These videos were impaired with frame freezing distortions so that the impact of frame freezing on the quality of experience could be studied. We present subjective Mean Opinion Score (MOS) for these videos that can be used for fine tuning the objective algorithms for video quality assessment.

Keywords: Frame freezing, mean opinion score, objective assessment, subjective evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1796
2801 Low Complexity Peak-to-Average Power Ratio Reduction in Orthogonal Frequency Division Multiplexing System by Simultaneously Applying Partial Transmit Sequence and Clipping Algorithms

Authors: V. Sudha, D. Sriram Kumar

Abstract:

Orthogonal Frequency Division Multiplexing (OFDM) has been used in many advanced wireless communication systems due to its high spectral efficiency and robustness to frequency selective fading channels. However, the major concern with OFDM system is the high peak-to-average power ratio (PAPR) of the transmitted signal. Some of the popular techniques used for PAPR reduction in OFDM system are conventional partial transmit sequences (CPTS) and clipping. In this paper, a parallel combination/hybrid scheme of PAPR reduction using clipping and CPTS algorithms is proposed. The proposed method intelligently applies both the algorithms in order to reduce both PAPR as well as computational complexity. The proposed scheme slightly degrades bit error rate (BER) performance due to clipping operation and it can be reduced by selecting an appropriate value of the clipping ratio (CR). The simulation results show that the proposed algorithm achieves significant PAPR reduction with much reduced computational complexity.

Keywords: CCDF, OFDM, PAPR, PTS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1369
2800 Approximating Fixed Points by a Two-Step Iterative Algorithm

Authors: Safeer Hussain Khan

Abstract:

In this paper, we introduce a two-step iterative algorithm to prove a strong convergence result for approximating common fixed points of three contractive-like operators. Our algorithm basically generalizes an existing algorithm..Our iterative algorithm also contains two famous iterative algorithms: Mann iterative algorithm and Ishikawa iterative algorithm. Thus our result generalizes the corresponding results proved for the above three iterative algorithms to a class of more general operators. At the end, we remark that nothing prevents us to extend our result to the case of the iterative algorithm with error terms.

Keywords: Contractive-like operator, iterative algorithm, fixed point, strong convergence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2022
2799 Comparative Study Using Weka for Red Blood Cells Classification

Authors: Jameela Ali Alkrimi, Hamid A. Jalab, Loay E. George, Abdul Rahim Ahmad, Azizah Suliman, Karim Al-Jashamy

Abstract:

Red blood cells (RBC) are the most common types of blood cells and are the most intensively studied in cell biology. The lack of RBCs is a condition in which the amount of hemoglobin level is lower than normal and is referred to as “anemia”. Abnormalities in RBCs will affect the exchange of oxygen. This paper presents a comparative study for various techniques for classifying the RBCs as normal or abnormal (anemic) using WEKA. WEKA is an open source consists of different machine learning algorithms for data mining applications. The algorithms tested are Radial Basis Function neural network, Support vector machine, and K-Nearest Neighbors algorithm. Two sets of combined features were utilized for classification of blood cells images. The first set, exclusively consist of geometrical features, was used to identify whether the tested blood cell has a spherical shape or non-spherical cells. While the second set, consist mainly of textural features was used to recognize the types of the spherical cells. We have provided an evaluation based on applying these classification methods to our RBCs image dataset which were obtained from Serdang Hospital - Malaysia, and measuring the accuracy of test results. The best achieved classification rates are 97%, 98%, and 79% for Support vector machines, Radial Basis Function neural network, and K-Nearest Neighbors algorithm respectively.

Keywords: K-Nearest Neighbors, Neural Network, Radial Basis Function, Red blood cells, Support vector machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2995
2798 The Efficacy of Technology in Enhancing the Development and Learning of Children (0 – 5 Years)

Authors: Adesina, Olusola Joseph

Abstract:

The use of Technological tools in the classroom setting has drawn the interest of researchers all over the world in the recent time. Technology has been identified in the recent time as potentials tools to aid learning especially during early childhood stage. The main objective of this is to assist the upcoming younger generations to acquire necessary skills for cognitive development which later enhances effective teaching learning process. The integration of Technology in early childhood requires a careful selection of devices that will both assist the children and the teachers or care givers. This paper therefore, examines some selected literature evidences and highlighted the efficacy of various technologies tools in enhancing the development and learning of children (0 – 5 years). Conclusion and recommendations were also drawn in this paper. 

Keywords: Development, Efficacy, Learning, Technological Device.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1524
2797 A Novel In-Place Sorting Algorithm with O(n log z) Comparisons and O(n log z) Moves

Authors: Hanan Ahmed-Hosni Mahmoud, Nadia Al-Ghreimil

Abstract:

In-place sorting algorithms play an important role in many fields such as very large database systems, data warehouses, data mining, etc. Such algorithms maximize the size of data that can be processed in main memory without input/output operations. In this paper, a novel in-place sorting algorithm is presented. The algorithm comprises two phases; rearranging the input unsorted array in place, resulting segments that are ordered relative to each other but whose elements are yet to be sorted. The first phase requires linear time, while, in the second phase, elements of each segment are sorted inplace in the order of z log (z), where z is the size of the segment, and O(1) auxiliary storage. The algorithm performs, in the worst case, for an array of size n, an O(n log z) element comparisons and O(n log z) element moves. Further, no auxiliary arithmetic operations with indices are required. Besides these theoretical achievements of this algorithm, it is of practical interest, because of its simplicity. Experimental results also show that it outperforms other in-place sorting algorithms. Finally, the analysis of time and space complexity, and required number of moves are presented, along with the auxiliary storage requirements of the proposed algorithm.

Keywords: Auxiliary storage sorting, in-place sorting, sorting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1910