Search results for: Knowledge mining
1585 Learning Mandarin Chinese as a Foreign Language in a Bilingual Context: Adult Learners’ Perceptions of the Use of L1 Maltese and L2 English in Mandarin Chinese Lessons in Malta
Authors: Christiana Gauci-Sciberras
Abstract:
The first language (L1) could be used in foreign language teaching and learning as a pedagogical tool to scaffold new knowledge in the target language (TL) upon linguistic knowledge that the learner already has. In a bilingual context, code-switching between the two languages usually occurs in classrooms. One of the reasons for code-switching is because both languages are used for scaffolding new knowledge. This research paper aims to find out why both the L1 (Maltese) and the L2 (English) are used in the classroom of Mandarin Chinese as a foreign language (CFL) in the bilingual context of Malta. This research paper also aims to find out the learners’ perceptions of the use of a bilingual medium of instruction. Two research methods were used to collect qualitative data; semi-structured interviews with adult learners of Mandarin Chinese and lesson observations. These two research methods were used so that the data collected in the interviews would be triangulated with data collected in lesson observations. The L1 (Maltese) is the language of instruction mostly used. The teacher and the learners switch to the L2 (English) or to any other foreign language according to the need at a particular instance during the lesson.
Keywords: Chinese, bilingual, pedagogical purpose of L1 and L2, CFL acquisition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5071584 Business Rules for Data Warehouse
Authors: Rajeev Kaula
Abstract:
Business rules and data warehouse are concepts and technologies that impact a wide variety of organizational tasks. In general, each area has evolved independently, impacting application development and decision-making. Generating knowledge from data warehouse is a complex process. This paper outlines an approach to ease import of information and knowledge from a data warehouse star schema through an inference class of business rules. The paper utilizes the Oracle database for illustrating the working of the concepts. The star schema structure and the business rules are stored within a relational database. The approach is explained through a prototype in Oracle-s PL/SQL Server Pages.Keywords: Business Rules, Data warehouse, PL/SQL ServerPages, Relational model, Web Application.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29861583 Low Light Image Enhancement with Multi-Stage Interconnected Autoencoders Integration in Pix-to-Pix GAN
Authors: Muhammad Atif, Cang Yan
Abstract:
The enhancement of low-light images is a significant area of study aimed at enhancing the quality of captured images in challenging lighting environments. Recently, methods based on Convolutional Neural Networks (CNN) have gained prominence as they offer state-of-the-art performance. However, many approaches based on CNN rely on increasing the size and complexity of the neural network. In this study, we propose an alternative method for improving low-light images using an Autoencoders-based multiscale knowledge transfer model. Our method leverages the power of three autoencoders, where the encoders of the first two autoencoders are directly connected to the decoder of the third autoencoder. Additionally, the decoder of the first two autoencoders is connected to the encoder of the third autoencoder. This architecture enables effective knowledge transfer, allowing the third autoencoder to learn and benefit from the enhanced knowledge extracted by the first two autoencoders. We further integrate the proposed model into the Pix-to-Pix GAN framework. By integrating our proposed model as the generator in the GAN framework, we aim to produce enhanced images that not only exhibit improved visual quality but also possess a more authentic and realistic appearance. These experimental results, both qualitative and quantitative, show that our method is better than the state-of-the-art methodologies.
Keywords: Low light image enhancement, deep learning, convolutional neural network, image processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 551582 Hybrid Structure Learning Approach for Assessing the Phosphate Laundries Impact
Authors: Emna Benmohamed, Hela Ltifi, Mounir Ben Ayed
Abstract:
Bayesian Network (BN) is one of the most efficient classification methods. It is widely used in several fields (i.e., medical diagnostics, risk analysis, bioinformatics research). The BN is defined as a probabilistic graphical model that represents a formalism for reasoning under uncertainty. This classification method has a high-performance rate in the extraction of new knowledge from data. The construction of this model consists of two phases for structure learning and parameter learning. For solving this problem, the K2 algorithm is one of the representative data-driven algorithms, which is based on score and search approach. In addition, the integration of the expert's knowledge in the structure learning process allows the obtainment of the highest accuracy. In this paper, we propose a hybrid approach combining the improvement of the K2 algorithm called K2 algorithm for Parents and Children search (K2PC) and the expert-driven method for learning the structure of BN. The evaluation of the experimental results, using the well-known benchmarks, proves that our K2PC algorithm has better performance in terms of correct structure detection. The real application of our model shows its efficiency in the analysis of the phosphate laundry effluents' impact on the watershed in the Gafsa area (southwestern Tunisia).
Keywords: Classification, Bayesian network; structure learning, K2 algorithm, expert knowledge, surface water analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5141581 A Proposed Optimized and Efficient Intrusion Detection System for Wireless Sensor Network
Authors: Abdulaziz Alsadhan, Naveed Khan
Abstract:
In recent years intrusions on computer network are the major security threat. Hence, it is important to impede such intrusions. The hindrance of such intrusions entirely relies on its detection, which is primary concern of any security tool like Intrusion detection system (IDS). Therefore, it is imperative to accurately detect network attack. Numerous intrusion detection techniques are available but the main issue is their performance. The performance of IDS can be improved by increasing the accurate detection rate and reducing false positive. The existing intrusion detection techniques have the limitation of usage of raw dataset for classification. The classifier may get jumble due to redundancy, which results incorrect classification. To minimize this problem, Principle component analysis (PCA), Linear Discriminant Analysis (LDA) and Local Binary Pattern (LBP) can be applied to transform raw features into principle features space and select the features based on their sensitivity. Eigen values can be used to determine the sensitivity. To further classify, the selected features greedy search, back elimination, and Particle Swarm Optimization (PSO) can be used to obtain a subset of features with optimal sensitivity and highest discriminatory power. This optimal feature subset is used to perform classification. For classification purpose, Support Vector Machine (SVM) and Multilayer Perceptron (MLP) are used due to its proven ability in classification. The Knowledge Discovery and Data mining (KDD’99) cup dataset was considered as a benchmark for evaluating security detection mechanisms. The proposed approach can provide an optimal intrusion detection mechanism that outperforms the existing approaches and has the capability to minimize the number of features and maximize the detection rates.
Keywords: Particle Swarm Optimization (PSO), Principle component analysis (PCA), Linear Discriminant Analysis (LDA), Local Binary Pattern (LBP), Support Vector Machine (SVM), Multilayer Perceptron (MLP).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27681580 Performance Appraisal System using Multifactorial Evaluation Model
Abstract:
Performance appraisal of employee is important in managing the human resource of an organization. With the change towards knowledge-based capitalism, maintaining talented knowledge workers is critical. However, management classification of “outstanding", “poor" and “average" performance may not be an easy decision. Besides that, superior might also tend to judge the work performance of their subordinates informally and arbitrarily especially without the existence of a system of appraisal. In this paper, we propose a performance appraisal system using multifactorial evaluation model in dealing with appraisal grades which are often express vaguely in linguistic terms. The proposed model is for evaluating staff performance based on specific performance appraisal criteria. The project was collaboration with one of the Information and Communication Technology company in Malaysia with reference to its performance appraisal process.Keywords: Multifactorial Evaluation Model, performance appraisal system, decision support system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42691579 Teaching Project of Architecture in Portugal: Future Perspectives and the Revolution of New Generations
Authors: Patricia Diogo
Abstract:
As teachers and researchers, we often find ourselves grappling with a central question about what it truly means to teach project in architecture in Portugal in the 21st century. It is a question that transcends the simple transmission of technical knowledge or even the sharing of our personal experiences. Rather, it is about developing a teaching pedagogy that responds to and reflects the profound social, environmental, and technological shifts we are currently navigating. Teaching architecture in Portugal today is not a mere continuation of tradition; it is, in essence, a living laboratory of innovation. Each new generation of students enters our classrooms with a hunger not just for design techniques, but for meaning—seeking to understand the role they can play in reshaping our physical and cultural environments. They are not passive recipients of knowledge, but active participants in the creation of a more sustainable, ethical, and thoughtful architecture.
Keywords: Architecture, heritage, memories, project studio, teaching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 411578 Comparing the Educational Effectiveness of eHealth to Deliver Health Knowledge between Higher Literacy Users and Lower Literacy Users
Authors: Yah-Ling Hung
Abstract:
eHealth is undoubtedly emerging as a promising vehicle to provide information for individual self-care management. However, the accessing ability, reading strategies and navigating behavior between higher literacy users and lower literacy users are significantly different. Yet, ways to tailor audiences’ health literacy and develop appropriate eHealth to feed their need become a big challenge. The purpose of this study is to compare the educational effectiveness of eHealth to deliver health knowledge between higher literacy users and lower literacy users, thus establishing useful design strategies of eHealth for users with different level of health literacy. The study was implemented in four stages, the first of which developed a website as the testing media to introduce health care knowledge relating to children’s allergy. Secondly, a reliability and validity test was conducted to make sure that all of the questions in the questionnaire were good indicators. Thirdly, a pre-post knowledge test was conducted with 66 participants, 33 users with higher literacy and 33 users with lower literacy respectively. Finally, a usability evaluation survey was undertaken to explore the criteria used by users with different levels of health literacy to evaluate eHealth. The results demonstrated that the eHealth Intervention in both groups had a positive outcome. There was no significant difference between the effectiveness of eHealth intervention between users with higher literacy and users with lower literacy. However, the average mean of lower literacy group was marginally higher than the average mean of higher literacy group. The findings also showed that the criteria used to evaluate eHealth could be analyzed in terms of the quality of information, appearance, appeal and interaction, but the users with lower literacy have different evaluation criteria from those with higher literacy. This is an interdisciplinary research which proposes the sequential key steps that incorporate the planning, developing and accessing issues that need to be considered when designing eHealth for patients with varying degrees of health literacy.Keywords: eHealth, health intervention, health literacy, usability evaluation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8881577 Strategic Information in the Game of Go
Authors: Michael Harre, Terry Bossomaier, Ranqing Chu, Allan Snyder
Abstract:
We introduce a novel approach to measuring how humans learn based on techniques from information theory and apply it to the oriental game of Go. We show that the total amount of information observable in human strategies, called the strategic information, remains constant for populations of players of differing skill levels for well studied patterns of play. This is despite the very large amount of knowledge required to progress from the recreational players at one end of our spectrum to the very best and most experienced players in the world at the other and is in contrast to the idea that having more knowledge might imply more 'certainty' in what move to play next. We show this is true for very local up to medium sized board patterns, across a variety of different moves using 80,000 game records. Consequences for theoretical and practical AI are outlined.Keywords: Board Games, Cognitive Capacity, Decision Theory, Information Theory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15251576 Mining Sequential Patterns Using I-PrefixSpan
Authors: Dhany Saputra, Dayang R. A. Rambli, Oi Mean Foong
Abstract:
In this paper, we propose an improvement of pattern growth-based PrefixSpan algorithm, called I-PrefixSpan. The general idea of I-PrefixSpan is to use sufficient data structure for Seq-Tree framework and separator database to reduce the execution time and memory usage. Thus, with I-PrefixSpan there is no in-memory database stored after index set is constructed. The experimental result shows that using Java 2, this method improves the speed of PrefixSpan up to almost two orders of magnitude as well as the memory usage to more than one order of magnitude.Keywords: ArrayList, ArrayIntList, minimum support, sequence database, sequential patterns.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15661575 Authenticity Issues of Social Media: Credibility, Quality and Reality
Authors: Shahrinaz Ismail, Roslina Abdul Latif
Abstract:
Social media has led to paradigm shifts in ways people work and do business, interact and socialize, learn and obtain knowledge. So much so that social media has established itself as an important spatial extension of this nation-s historicity and challenges. Regardless of the enabling reputation and recommendation features through social networks embedded in the social media system, the overflow of broadcasted and publicized media contents turns the table around from engendering trust to doubting the trust system. When the trust is at doubt, the effects include deactivation of accounts and creation of multiple profiles, which lead to the overflow of 'ghost' contents (i.e. “the abundance of abandoned ships"). In most literature, the study of trust can be related to culture; hence the difference between Western-s “openness" and Eastern-s “blue-chip" concepts in networking and relationships. From a survey on issues and challenges among Malaysian social media users, 'authenticity' emerges as one of the main factors that causes and is caused by other factors. The other issue that has surfaced is credibility either in terms of message/content and source. Another is the quality of the knowledge that is shared. This paper explores the terrains of this critical space which in recent years has been dominated increasingly by, arguably, social networks embedded in the social media system, the overflow of broadcasted and publicized media content.Keywords: Authenticity, credibility, knowledge quality and social media.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 45551574 Decision Rule Induction in a Learning Content Management System
Authors: Nittaya Kerdprasop, Narin Muenrat, Kittisak Kerdprasop
Abstract:
A learning content management system (LCMS) is an environment to support web-based learning content development. Primary function of the system is to manage the learning process as well as to generate content customized to meet a unique requirement of each learner. Among the available supporting tools offered by several vendors, we propose to enhance the LCMS functionality to individualize the presented content with the induction ability. Our induction technique is based on rough set theory. The induced rules are intended to be the supportive knowledge for guiding the content flow planning. They can also be used as decision rules to help content developers on managing content delivered to individual learner.Keywords: Decision rules, Knowledge induction, Learning content management system, Rough set.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15681573 Destination Port Detection for Vessels: An Analytic Tool for Optimizing Port Authorities Resources
Authors: Lubna Eljabu, Mohammad Etemad, Stan Matwin
Abstract:
Port authorities have many challenges in congested ports to allocate their resources to provide a safe and secure loading/unloading procedure for cargo vessels. Selecting a destination port is the decision of a vessel master based on many factors such as weather, wavelength and changes of priorities. Having access to a tool which leverages Automatic Identification System (AIS) messages to monitor vessel’s movements and accurately predict their next destination port promotes an effective resource allocation process for port authorities. In this research, we propose a method, namely, Reference Route of Trajectory (RRoT) to assist port authorities in predicting inflow and outflow traffic in their local environment by monitoring AIS messages. Our RRo method creates a reference route based on historical AIS messages. It utilizes some of the best trajectory similarity measures to identify the destination of a vessel using their recent movement. We evaluated five different similarity measures such as Discrete Frechet Distance (DFD), Dynamic Time ´ Warping (DTW), Partial Curve Mapping (PCM), Area between two curves (Area) and Curve length (CL). Our experiments show that our method identifies the destination port with an accuracy of 98.97% and an f-measure of 99.08% using Dynamic Time Warping (DTW) similarity measure.
Keywords: Spatial temporal data mining, trajectory mining, trajectory similarity, resource optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7001572 The Analysis of Different Classes of Weighted Fuzzy Petri Nets and Their Features
Authors: Yurii Bloshko, Oksana Olar
Abstract:
This paper presents the analysis of six different classes of Petri nets: fuzzy Petri nets (FPN), generalized fuzzy Petri nets (GFPN), parameterized fuzzy Petri nets (PFPN), T2GFPN, flexible generalized fuzzy Petri nets (FGFPN), binary Petri nets (BPN). These classes were simulated in the special software PNeS® for the analysis of its pros and cons on the example of models which are dedicated to the decision-making process of passenger transport logistics. The paper includes the analysis of two approaches: when input values are filled with the experts’ knowledge; when fuzzy expectations represented by output values are added to the point. These approaches fulfill the possibilities of triples of functions which are replaced with different combinations of t-/s-norms.
Keywords: Fuzzy petri net, intelligent computational techniques, knowledge representation, triangular norms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4561571 Expression of Security Policy in Medical Systems for Electronic Healthcare Records
Authors: Nathan C. Lea, Tony Austin, Stephen Hailes, Dipak Kalra
Abstract:
This paper introduces a tool that is being developed for the expression of information security policy controls that govern electronic healthcare records. By reference to published findings, the paper introduces the theory behind the use of knowledge management for automatic and consistent security policy assertion using the formalism called the Secutype; the development of the tool and functionality is discussed; some examples of Secutypes generated by the tool are provided; proposed integration with existing medical record systems is described. The paper is concluded with a section on further work and critique of the work achieved to date.
Keywords: Information Security Policy, Electronic Healthcare Records, Knowledge Management, Archetypes, Secutypes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13531570 Efficient STAKCERT KDD Processes in Worm Detection
Authors: Madihah Mohd Saudi, Andrea J Cullen, Mike E Woodward
Abstract:
This paper presents a new STAKCERT KDD processes for worm detection. The enhancement introduced in the data-preprocessing resulted in the formation of a new STAKCERT model for worm detection. In this paper we explained in detail how all the processes involved in the STAKCERT KDD processes are applied within the STAKCERT model for worm detection. Based on the experiment conducted, the STAKCERT model yielded a 98.13% accuracy rate for worm detection by integrating the STAKCERT KDD processes.Keywords: data mining, incident response, KDD processes, security metrics and worm detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16561569 Topics of Blockchain Technology to Teach at Community College
Authors: Penn P. Wu, Jeannie Jo
Abstract:
Blockchain technology has rapidly gained popularity in industry. This paper attempts to assist academia to answer four questions. First, should community colleges begin offering education to nurture blockchain-literate students for the job market? Second, what are the appropriate topical areas to cover? Third, should it be an individual course? And forth, should it be a technical or management course? This paper starts with identifying the knowledge domains of blockchain technology and the topical areas each domain has, and continues with placing them in appropriate academic territories (Computer Sciences vs. Business) and subjects (programming, management, marketing, and laws), and then develops an evaluation model to determine the appropriate topical area for community colleges to teach. The evaluation is based on seven factors: maturity of technology, impacts on management, real-world applications, subject classification, knowledge prerequisites, textbook readiness, and recommended pedagogies. The evaluation results point to an interesting direction that offering an introductory course is an ideal option to guide students through the learning journey of what blockchain is and how it applies to business. Such an introductory course does not need to engage students in the discussions of mathematics and sciences that make blockchain technologies possible. While it is inevitable to brief technical topics to help students build a solid knowledge foundation of blockchain technologies, community colleges should avoid offering students a course centered on the discussion of developing blockchain applications.
Keywords: Blockchain, pedagogies, blockchain technologies, blockchain course, blockchain pedagogies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9341568 Sfard’s Commognitive Framework as a Method of Discourse Analysis in Mathematics
Authors: Dong-Joong Kim, Sangho Choi, Woong Lim
Abstract:
This paper discusses Sfard’s commognitive approach and provides an empirical study as an example to illustrate the theory as method. Traditionally, research in mathematics education focused on the acquisition of mathematical knowledge and the didactic process of knowledge transfer. Through attending to a distinctive form of language in mathematics, as well as mathematics as a discursive subject, alternative views of making meaning in mathematics have emerged; these views are therefore “critical,” as in critical discourse analysis. The commognitive discourse analysis method has the potential to bring more clarity to our understanding of students’ mathematical thinking and the process through which students are socialized into school mathematics.
Keywords: Commognitive framework, discourse analysis, mathematical discourse, mathematics education.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21921567 An Integrated Natural Language Processing Approach for Conversation System
Authors: Zhi Teng, Ye Liu, Fuji Ren
Abstract:
The main aim of this research is to investigate a novel technique for implementing a more natural and intelligent conversation system. Conversation systems are designed to converse like a human as much as their intelligent allows. Sometimes, we can think that they are the embodiment of Turing-s vision. It usually to return a predetermined answer in a predetermined order, but conversations abound with uncertainties of various kinds. This research will focus on an integrated natural language processing approach. This approach includes an integrated knowledge-base construction module, a conversation understanding and generator module, and a state manager module. We discuss effectiveness of this approach based on an experiment.
Keywords: Conversation System, integrated knowledge-base construction, conversation understanding and generator, state manager
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17311566 Dynamical Analysis of Circadian Gene Expression
Authors: Carla Layana Luis Diambra
Abstract:
Microarrays technique allows the simultaneous measurements of the expression levels of thousands of mRNAs. By mining this data one can identify the dynamics of the gene expression time series. By recourse of principal component analysis, we uncover the circadian rhythmic patterns underlying the gene expression profiles from Cyanobacterium Synechocystis. We applied PCA to reduce the dimensionality of the data set. Examination of the components also provides insight into the underlying factors measured in the experiments. Our results suggest that all rhythmic content of data can be reduced to three main components.
Keywords: circadian rhythms, clustering, gene expression, PCA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15931565 Statistical Study of Drink Markets: Case Study
Authors: Seyed Habib A. Rahmati, Arash Haji Karimi, Reza Saffari, Zeeya Rashvand
Abstract:
An important official knowledge in each country is to have a comprehensive knowledge about markets of each group of products. Drink markets are one the most important markets of each country as a sub-group of nourishment markets. This paper is going to study these markets in Iran. To do so, first, two drink products are selected as pilot, including milk and concentrate. Then, for each product, two groups of information are estimated for the last five years, including 1) total consumption (demand) and 2) total production. Finally, the two groups of productions are compared statistically by means of two statistical tests called t test and Mann- Whitney test. The implemented Different related tables and figures are also illustrated to show the method more explicitly.Keywords: Market evaluation, Drink, Estimation, Mann- Whitney test
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13461564 Competency-Based Social Work Practice and Challenges in Child Case Management: Studies in the Districts Social Welfare Services, Malaysia
Authors: S. Brahim, M. S. Mohamad, E. Zakaria, N. Sarnon@Kusenin
Abstract:
This study aimed to explore the practical experience of child welfare caseworkers and professionalism in child case management in Malaysia. This paper discussed the specific social work practice competency and the challenges faced by child caseworkers in the fieldwork. This research was qualitative with grounded theory approach. Four sessions of focused group discussion (FGD) were conducted involving a total of 27 caseworkers (child protector and probation officers) in the Klang Valley. The study found that the four basic principles of knowledge in child case management namely: 1. knowledge in child case management; 2. professional values of caseworkers towards children; 3. skills in managing cases; and 4. culturally competent practice in child case management. In addition, major challenges faced by the child case manager are the capacity and commitment of the family in children’s rehabilitation program, the credibility of caseworkers are being challenged, and the challenges of support system from intra and interagency. This study is important for policy makers to take into account the capacity and the needs of the child’s caseworker in accordance with the national social work competency framework. It is expected that case management services for children will improve systematically in line with national standards.Keywords: Social work practice, child case management, competency-based knowledge, and professionalism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29081563 Customer Knowledge and Service Development, the Web 2.0 Role in Co-production
Authors: Roberto Boselli, Mirko Cesarini, Mario Mezzanzanica
Abstract:
The paper is concerned with relationships between SSME and ICTs and focuses on the role of Web 2.0 tools in the service development process. The research presented aims at exploring how collaborative technologies can support and improve service processes, highlighting customer centrality and value coproduction. The core idea of the paper is the centrality of user participation and the collaborative technologies as enabling factors; Wikipedia is analyzed as an example. The result of such analysis is the identification and description of a pattern characterising specific services in which users collaborate by means of web tools with value co-producers during the service process. The pattern of collaborative co-production concerning several categories of services including knowledge based services is then discussed.Keywords: Service Interaction Patterns, Services Science, Web2.0 tools, Service Development Process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17281562 Public Art and Public Space in an Emerging Knowledge Economy: The Case of Doha
Authors: Anna Grichting, Sara Al Sada, Angelica Caccam, Urshi Khan
Abstract:
Qatar, a Gulf country highly dependent on its oil and gas revenues – is looking to innovate, diversify, and ultimately reach its aim of creating a knowledge economy to prepare for its post-oil era. One area that the country is investing in is Contemporary Art, and world renowned artists such as Damien Hirst and Richard Serra – have been commissioned to design site-specific art for the public spaces of the city of Doha as well as in more remote desert locations. This research discusses the changing presence, role and context of public art in Doha, both from a historical and cultural overview, and the different forms and media as well as the typologies of urban and public spaces in which the art is installed. It examines the process of implementing site-specific artworks, looking at questions of scale, history, social meaning and formal aesthetics. The methodologies combine theoretical research on the understanding of public art and its role and placement in public space, as well as empirical research on contemporary public art projects in Doha, based on documentation and interviews and as well as site and context analysis of the urban or architectural spaces within which the art is situated. Surveys and interviews – using social media - in different segments of the contemporary Qatari society, including all nationalities and social groups, are used to measure and qualify the impacts and effects on the population.
Keywords: Contemporary Public Art, Knowledge Economy, Public Realm, Site Specific Art Works.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23741561 Financial Literacy of Students of Finance: An Empirical Study from the Czech Republic
Authors: Barbora Chmelíková
Abstract:
Financial literacy is a widely discussed topic on the national and international level by governments, organizations and academia. For this reason, this study analyses financial knowledge, financial behavior, and financial attitudes of students of finance. The aim of the paper is to determine whether the financial literacy of university students studying finance differs from the level of financial literacy in selected OECD countries. The research was conducted at Masaryk University in the Czech Republic. The empirical study comprises questions related to several aspects of financial literacy, such as financial knowledge, personal finance behavior, or decisionmaking. The results indicate that improvement in financial literacy of university students is still required, even though their major is finance related.Keywords: Financial literacy, financial behavior, personal finance management, university students.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23951560 An Appraisal of Coal Fly Ash Soil Amendment Technology (FASAT) of Central Institute of Mining and Fuel Research (CIMFR)
Authors: L.C. Ram, R.E. Masto, Smriti Singh, R.C. Tripathi, S.K. Jha, N.K. Srivastava, A.K. Sinha, V.A. Selvi, A. Sinha
Abstract:
Coal will continue to be the predominant source of global energy for coming several decades. The huge generation of fly ash (FA) from combustion of coal in thermal power plants (TPPs) is apprehended to pose the concerns of its disposal and utilization. FA application based on its typical characteristics as soil ameliorant for agriculture and forestry is the potential area, and hence the global attempt. The inferences drawn suffer from the variations of ash characteristics, soil types, and agro-climatic conditions; thereby correlating the effects of ash between various plant species and soil types is difficult. Indian FAs have low bulk density, high water holding capacity and porosity, rich silt-sized particles, alkaline nature, negligible solubility, and reasonable plant nutrients. Findings of the demonstrations trials for more than two decades from lab/pot to field scale long-term experiments are developed as FA soil amendment technology (FASAT) by Central Institute of Mining and Fuel Research (CIMFR), Dhanbad. Performance of different crops and plant species in cultivable and problematic soils, are encouraging, eco-friendly, and being adopted by the farmers. FA application includes ash alone and in combination with inorganic/organic amendments; combination treatments including bio-solids perform better than FA alone. Optimum dose being up to 100 t/ha for cultivable land and up to/ or above 200 t/ha of FA for waste/degraded land/mine refuse, depending on the characteristics of ash and soil. The elemental toxicity in Indian FA is usually not of much concern owing to alkaline ashes, oxide forms of elements, and elemental concentration within the threshold limits for soil application. Combating toxicity, if any, is possible through combination treatments with organic materials and phytoremediation. Government initiatives through extension programme involving farmers and ash generating organizations need to be acceleratedKeywords: Fly ash, soil quality, CIMFR, FASAT, agriculture, forestry, toxicity, remediation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30641559 Sustainability Management for Wine Production: A Case of Thailand
Authors: Muthatakul Metasit, Setthasakko Watchaneeporn
Abstract:
At present, increased concerns about global environmental problems have magnified the importance of sustainability management. To move towards sustainability, companies need to look at everything from a holistic perspective in order to understand the interconnections between economic growth and environmental and social sustainability. This paper aims to gain an understanding of key determinants that drive sustainability management and barriers that hinder its development. It employs semi-structured interviews with key informants, site observation and documentation. The informants are production, marketing and environmental managers of the leading wine producer, which aims to become an Asia-s leader in wine & wine based products. It is found that corporate image and top management leadership are the primary factors influencing the adoption of sustainability management. Lack of environmental knowledge and inefficient communication are identified as barriers.Keywords: Environmental, knowledge; Sustainability management; Top management leadership; Wine industry
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20611558 Towards An Integrated Model for Academia- Industry Interface in India
Authors: Vinay K. Nangia, Cashmira Pramanik
Abstract:
Academia-industry relationship is not like that of technology donator-acceptor, but is of interactive and collaborative nature, acknowledging and ensuring mutual respect for each other-s role and contributions with an eye to attaining the true purpose of such relationships, namely, bringing about research-outcome synergy. Indeed, academia-industry interactions are a system that requires active and collaborative participations of all the stakeholders. This paper examines various issues associated with academic institutions and industry collaboration with special attention to the nature of resources and potentialities of stakeholders in the context of knowledge management. This paper also explores the barriers of academia-industry interaction. It identifies potential areas where industry-s participation with academia would be most effective for synergism. Lastly, this paper proposes an integrated model of several new collaborative approaches that are possible, mainly in the Indian scenario to strengthen academia-industry interface.Keywords: academia-industry, interface, knowledge economy, technology transfer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 61921557 An Attribute-Centre Based Decision Tree Classification Algorithm
Authors: Gökhan Silahtaroğlu
Abstract:
Decision tree algorithms have very important place at classification model of data mining. In literature, algorithms use entropy concept or gini index to form the tree. The shape of the classes and their closeness to each other some of the factors that affect the performance of the algorithm. In this paper we introduce a new decision tree algorithm which employs data (attribute) folding method and variation of the class variables over the branches to be created. A comparative performance analysis has been held between the proposed algorithm and C4.5.Keywords: Classification, decision tree, split, pruning, entropy, gini.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13701556 Combining Bagging and Boosting
Authors: S. B. Kotsiantis, P. E. Pintelas
Abstract:
Bagging and boosting are among the most popular resampling ensemble methods that generate and combine a diversity of classifiers using the same learning algorithm for the base-classifiers. Boosting algorithms are considered stronger than bagging on noisefree data. However, there are strong empirical indications that bagging is much more robust than boosting in noisy settings. For this reason, in this work we built an ensemble using a voting methodology of bagging and boosting ensembles with 10 subclassifiers in each one. We performed a comparison with simple bagging and boosting ensembles with 25 sub-classifiers, as well as other well known combining methods, on standard benchmark datasets and the proposed technique was the most accurate.
Keywords: data mining, machine learning, pattern recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2564