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Abstract—We introduce a novel approach to measuring how
humans learn based on techniques from information theory and
apply it to the oriental game of Go. We show that the total amount
of information observable in human strategies, called the strategic
information, remains constant for populations of players of differing
skill levels for well studied patterns of play. This is despite the very
large amount of knowledge required to progress from the recreational
players at one end of our spectrum to the very best and most
experienced players in the world at the other and is in contrast to
the idea that having more knowledge might imply more ‘certainty’
in what move to play next. We show this is true for very local
up to medium sized board patterns, across a variety of different
moves using 80,000 game records. Consequences for theoretical and
practical AI are outlined.

Keywords—Board Games, Cognitive Capacity, Decision Theory,
Information Theory.

I. INTRODUCTION

The game of Go has been played in the Asian region for
more than 2,500 years and has a prominent place within the
culture of this region. In recent years it has become one of
the most popular board games in the Orient where there are
world titles, professional players as well as thriving online
communities. There are also competitive matches between the
various artificial intelligence (AI) programs in order to decide
which AI is the best in the world. In this respect Go has
taken up the mantel from Chess as one of the grand challenges
of AI [1] as well as providing a rich source of information
for the study of human cognitive behaviour in psychology [2]
and neuroscience [3], [4]. From these recent studies and from
reviews such as Burmeister and Wiles’ work [5] Go will form
a cornerstone problem for practical applications of AI and
expert systems.

II. THE GAME OF GO AND AI

A. The Game of Go

Go is usually played on a square board composed of a 19×
19 grid pattern although 7 × 7, 9 × 9 and other sizes are less
frequently used. Each player has a designated set of coloured
‘stones’, either black or white, and play begins with black
placing a stone on one of the intersections of the board. Play
is taken in turns until both players pass consecutively at which
point the game stops and the board is scored. The objective is
to capture more territory than your opponent by surrounding
territory with your stones, see1 for a basic introduction to game
and its rules.
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Only a small number of additional concepts are required
for our work. First, all players that will be of interest are
ranked. Amateur ranks who are beginner to an intermediate
level of play range from 30 kyu - 1 kyu, 30 kyu being the
lowest and 1 kyu being the highest in rank. There are a further
eight amateur ranks at the ‘Dan’ level, 1-Dan through to 8-
Dan in ascending order of skill. There are also the ranks 1-
Dan through 9-Dan of the professional players, the next step
after the amateur ranks. A player becomes a professional by
receiving a diploma through one of the professional Go associ-
ations. The competition is extremely high for this certification
and there are comparatively very few westerners who have
achieved a professional ranking.

B. Recent Developments in Go AI

Up until very recently it was possible for a human player
with much less than a years experience to easily beat the
worlds best computer software at the game. However, recent
advances in brute force search algorithms has lead to signifi-
cant improvements in this area.

In particular, the software program MoGo has recently won
against several professional players. In 2008 MoGo won one
game out of three against Catalin Taranu, a 5-Dan professional
on a 9 × 9 board. MoGo lost a 19 × 19 game against the
same opponent despite a nine stone handicap. Later that year
MoGo won against Myungwan Kim, an 8-Dan professional,
on a 19 × 19 board with a nine stone handicap. This second
competition was run using a much more powerful computer
than the first, the Huygens supercomputer provided by SARA
and NCF2. MoGo has also won against Zhou Junxun, a 9-
Dan professional, in a seven stone handicap game3. Other
successful computer Go players include “The Many Faces of
Go” and “Crazy Stone”, see4 and references therein for the
most recent results.

Results such as these have inspired recent comments by
Feng-Hsiung Hsu, the principal designer of Deep Blue which
in 1997 defeated then world champion Garry Kasparov at
chess. He as suggested that Go will fall to ‘hard AI’, just
as Chess did, within the next ten years5.

Supposing this is an accurate estimate, there is then a race
on to see which of two possible strategies can first address
AI expertise in the game of Go. One is the direct tree search
method and the recent successful variations thereof [6], [7]
which involve little or no modelling of human strategies.
The alternative is the development of psychologically based
models which emphasises both the strengths and weaknesses

2www.cs.unimaas.nl/g.chaslot/muyungwan-mogo/
3nwo.nl/nwohome.nsf/pages/NWOA 7PLLJY Eng
4en.wikipedia.org/wiki/Computer Go#Recent results
5www.spectrum.ieee.org/computing/software/cracking-go
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of humans [8]. It is this second issue to which this work is
targeted, emphasising the observable limitations of human play
and how that might inform AI models of expert players.

Of particular interest to the AI and cognitive sciences
communities is the complexity of Go. This is especially
important due to the ability of humans to be able to reduce
this complexity to a manageable level while still being capable
of defeating the very best AIs at the top level. Chess [9] has
a state space complexity of 1043 and a game tree complexity
of 10120. In comparison, Go [10] has a state space complexity
of 10171 and a game tree complexity of 10360. How humans
are able to reduce this complexity, and how this evolves as
a player’s rank increases, is a fundamental question for the
development of artificial learning systems that are able to
develop and eventually behave more like humans.

III. THEORETICAL FRAMEWORK

Our method of analysis is statistical in nature. We are
interested in the observed probability distributions over move
choices for given board configurations. The stochasticity has
two distinct contributions, the psychological uncertainty of
each individual player and the stochasticity that arises from
sampling from a population. Accepting the latter as an under-
stood property of population sampling, we briefly discuss the
former.

Psychologically players are influenced by mood, temper-
ament and biological imperatives such as thirst and hunger.
At a more pragmatic level, position assessment, tactical play,
inferences about the other player’s strategies all play their
part in influencing how individuals choose their next moves.
It is also true in principle that for every board configuration
there is an optimal move. However people do not exhaustively
search all possible alternatives for the perfect move. So despite
the fact that Go is a game of perfect information, in practice
there is always some uncertainty as to whether any particular
move is the ‘perfect’ move. These considerations lead us to
believe that there will always be a naturally stochastic nature
to decisions made in games such as Go.

The methods developed in this work do not distinguish be-
tween these two sources of noise in player’s choice of strategy.
However we are looking to understand how a population of
players behave, not necessarily the individuals. With this in
mind we next introduce how we measure the difference in
strategy choice between different populations of players.

A. An Entropic Measure of Skill

First we introduce some notation. We divide the Go board
up into i ∈ {1, . . . , n} regions where the region defined as the
whole board has the unique label r. The union of all ri is a
complete cover of the board, i.e.

⋃
i ri = r, however it is not

necessarily true that the intersection of all regions is an empty
set. Given the ith region of the board ri, the set of legal moves
available in that region belong to a set Ωi where σj ∈ Ωi is
one of the possible legal choices of moves in ri. We reserve
σ to denote a discrete stochastic variable and σj a specific
outcome of a random event, i.e. the probability mass function
is p(σj) = Pr{σ = σj}, σj ∈ Ωi,

∑
j p(σj) = 1, p(σj) ≥

0 ∀ j. By a move made in a given ri we mean the next stone
to appear in ri, regardless of how many moves have since
been played elsewhere on the board outside of ri.

We are concerned with different distributions over the
same Ωi called p(σ). Given an arbitrary function g :
Ωi → IR the expectation of g(σ) for a known p(σ) is:
Ep[g(σ)] =

∑
σj∈Ωi

p(σj)g(σj). For the specific case of
g(σ) = − ln(p(σ)) we define the entropy as [11]:

H(p(σ)) = Ep[− ln(p(σ))], (1)

= −
∑

σj∈Ωi

p(σj) ln(p(σj)) (2)

Grünwald and Dawid [12] call − ln(p(σi)) the log-loss func-
tion. Furthermore, given a second probability distribution
m(σ) and we take the expectation of g(σ) = ln p(σ)

m(σ) we get
the relative entropy between p(σ) and m(σ) defined as:

D(p(σ) ||m(σ)) = Ep

[
ln

p(σ)
m(σ)

]
(3)

The relative entropy is a measure of the divergence of p(σ)
from m(σ) and it is this divergence which we shall use to
measure the differences between players of different ranks. It
has been known since its inception [13] that this divergence
measures the (average) amount of information required to
discriminate p(σ) from m(σ).

There are properties of the relative entropy that should be
remarked upon. If p(σ) = m(σ) the relative entropy is zero
and therefore the distributions are indistinguishable. For any
p(σ) �= m(σ) we have: Ep

[
ln p(σ)

m(σ)

]
> 0, that is for fixed

m(σ), D(p(σ) ||m(σ)) is minimised when p(σ) = m(σ). In
general m(σ) will be taken to be our reference distribution,
it is the distribution over moves played by the best players in
our data-set, and so D(p(σ) ||m(σ)) measures the divergence
of distribution p(σ) from that of the best players, m(σ).

In our data we are confronted with having potentially
infinite values for D(p(σ)||m(σ)) when m(σi) = 0. To
address this we adjust equation 3 in the following way:

Ds(p(σ)||m(σ)) = Ep

[
ln

p(σ)
0.5(m(σ) + p(σ))

]
(4)

This is called the Jensen-Shannon Divergence [14]. For the
purposes of this work, this alternative formulation maintains
the useful properties of equation 3 while ensuring the diver-
gence is always finite.

The principle of measuring relative entropy and its relation-
ship to player rank can be made more precise. Suppose we
are given a reference distribution p∞(σ) representing an all
knowing oracle of ‘infinite’ skill. We also posit a (countably)
infinite sequence of probability density functions, one for each
hypothetical player: {p1(σ), p2(σ), . . . , pn(σ), . . .} where n
indexes a player’s relative skill, low numbers equate to low
skill, higher numbers equate to higher skill. If the probability
density functions pn(σ) embodies all relevant game knowl-
edge possessed by a player of skill n, then the following limit
is approached monotonically:

lim
n→∞Ds(pn(σ) || p∞(σ)) = 0 (5)
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That is to say the sum total of knowledge a player has
embodied in pn(σ) which can be observed in a player’s choice
of moves should approach that of the oracle as skill increases.
In practice there is no infinite sequence of players or player
ranks from which to construct this sequence of distributions.
Equally, there is no realistic single probability distribution
which encompasses all game knowledge, nor is there a true
oracle. Instead we group together various players into clusters
based on their rank and use the distributions over moves over
a variety of different board positions as a proxy for the game
knowledge obtained by players at the aggregate level. Finally
we take the very best players in the world as a proxy for the
oracle.

IV. METHODOLOGY

The source of games we used for our analysis come from
the GoGod6 commercial database and Pandanet7, an internet
Go server for playing online. The GoGod collection has
approximately 54,000 professional games and we were able to
collect approximately 25,000 amateur games where the rank
is 2 kyu or greater.

We collected the games into the following categories based
on player ranks with the total number of games in parentheses:
2 kyu (6,262), 1 kyu (5,982), 1-2 Dan amateur (18,577), 3-8
Dan amateur (7,521), 1-4 Dan professional (4,352), 5-7 Dan
professional (6,221), 8-9 Dan professional (15,761).

We considered four different, commonly occurring, patterns
in Go for the analysis. The subset of the board they were taken
from ranged in size from 3 × 5 to 9 × 9, i.e. a maximum
of almost a quarter of the board, and these sub-regions of
the board correspond to the ri discussed earlier. We began
by choosing the size of the region of the board to consider
and the pattern of stones we wanted in place in that region
before starting. Potentially, all of these patterns could occur
at any stage of the game. However the corner positions are
more likely during the beginning of the game and the smaller
positions are more likely up until the end game when the board
becomes quite crowded. This enables us to study patterns of
play that are spread across a large range of the game. This is
particularly important as the very stages of Go for which no
formal results are known (e.g. the work of Berlekamp [15])
are the subject of this study.

The smallest two patterns are the Skip One pattern and the
Knight pattern so named for the work in [16]. Skip One is
where two stones of the same colour are separated by an
empty position. The Knight configuration is two stones of
the same colour separated by two empty positions in one
direction and one empty position in the orthogonal direction.
In Figure 1 these two starting configurations are given by the
two un-numbered black stones. Note that unlike the other two
starting positions (discussed next), these two positions can
occur anywhere on the board.

Similarly we considered two intermediate board sizes as
shown in Figure 2. These corner positions are known as
Joseki, they are well studied patterns of moves and there are

6http:www.gogod.co.uk
7http:www.pandanet.co.jp

many texts analysing their strategic importance. Note that the
beginning configurations of these board patterns only contain
two stones. These two stones in the these two patterns are in
the same spatial relationship to each other as the two stones
used in the smaller two pattern configurations except for the
difference in stone colour, region size and the location of the
board edge. These differences provide for a different context
for similar physical configurations of the stones.

For each pattern of stones on the board and for each group
of games taken from a set of players of a given range of
ranks we constructed probability distributions of where within
each region of the board the next moves were played. These
distributions were then compared using the Jensen-Shannon
divergence of equation 4. The most probable next move as
made by the 8-9 Dan professionals is then used to update
the board for all ranks. The next move distribution is derived
from this new board configuration for all of the player ranks
and these distributions are again compared. This process is
repeated for 6 moves and the average of equation 4 is then
taken over these 6 moves. This gives us the average relative
entropy for each rank of players for each board configuration
relative to the 8-9 Dan professionals.

Fig. 1. The ‘Skip One’ continuation (left) and the ‘Knight’ continuation
(right). The numbers are the ranked order of next moves for professionals of
rank 8 or 9 Dan professionals.

Fig. 2. The ‘Avalanche’ Joseki (left) and the ‘4-4 High Approach’ Joseki
(right). The numbers are the ranked order of next moves for professionals of
rank 8 or 9 Dan professionals.

Looking at Figures 1 and 2 we can see both the initial
configuration of the board (the stones with no numbers) as
well as the most probable sequence of moves used by 8-9
Dan professionals (the numbered stones). The numbers on the
board where there are no stones is the ordered set of next
moves.

To demonstrate the idea, Figure 3 shows three probability
distributions for where the next move will be, one for the
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group of players of rank 8-9 Dan professional, one for the
group of rank 1-4 Dan professional and one for the group of
players of rank 3-8 Dan amateur. We label the lower ranked
distributions p(σ) and the 8-9Dan professional distribution
m(σ) and use equation 4 to measure the relative divergence
of one distribution of moves form another. The 8-9 Dan
professionals are the best players and we will always use them
as our reference distribution m(σ).
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Fig. 3. Three different probability distributions for the 1st move in the
Avalanche Joseki. Equation 4 compares ‘P 8-9 Dan’ to ‘A 3-8 Dan’ and ‘P
8-9 Dan’ to ‘P 1-4 Dan’
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Fig. 4. A plot of the absolute entropies for all four pattern sizes, averaged
over each sequence of moves. Note the ‘Average’ curve, taken over the other
four curves, is flat to within the standard error.

V. RESULTS

Figure 4 shows the first measurements we took of the
average of the absolute entropies of the distributions calculated
using equation 1. The error bars are constructed from the
standard error analysis for entropies as outlined in [17]. This
allows us to see that there is almost no relative change in the
total information content of the moves made in the various sub-
regions of the boards as the rank of the players increases. Note
that each curve (except the ‘Average’) represents an average
entropy measured over a total of five or six move distributions,

so the curves in this figure aggregate 23 measures of entropy
for the distribution over next moves.

Figure 5 shows the principal result of our methodology.
The most important point is that the average over all board
configurations and sizes (the ‘Average’ curve) shows a mono-
tonic downward trend as the rank of the players approaches
the 8-9 Dan professionals. This indicates that the distributions
over move choices consistently moves towards that of the best
players as the lower ranked players improve in their expertise.
This is in line with the discussion regarding how the measure
of the information contained in players move choices should
approach a theoretical oracle, here taken to be the 8-9 Dan
professionals.
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Fig. 5. The relative entropy curves and the average relative entropy curve
for the four different pattern sizes used.

Figure 3 illustrates what is occurring here in the case of
three different distributions over move choices taken over the
same board configuration. The 3-8 Dan amateur players have
an almost flat distribution across moves 1, 2 and 3. However
the 1-4 Dan professionals make a very sharp distinction in
their choices between move 1 and all other possible moves
and this distinction is even more pronounced for the 8-9
Dan professional players. Clearly in going from amateur to
professional there is a significant shift in the way players
choose their moves and this change in strategic behaviour can
be sharply distinguished by the relative entropy.

VI. DISCUSSION

We introduced a novel approach to the analysis of the
changing strategic behaviour of players in the game of Go.
Our findings show that using relative entropy reflects how
the knowledge acquisition of the players, as observed in their
choices over possible moves, progressively changes to more
accurately correspond to the choice made by the very best
players. This is an important principle which often underlies
many models of knowledge acquisition used in artificial intel-
ligence studies.

Note that these results are dependent on having taken the
averages over the results we have found. As such we do not
mean that specific instances of patterns or specific distributions
of moves will not give different results, but that on average,
over a sufficiently large number of game records and moves,
our conclusions are consistent with the data.
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A. The Strategic Information

However, we believe that a result of greater theoretical
and practical importance can be derived from the relationship
between the decreasing relative entropy of figure 5, which
while interesting is also to be expected, and the flat nature
of the absolute entropy. We argue that this is related to the
finite capacity of a player’s strategic ‘notepad’, i.e. the total
volume of information that a player is able to manipulate when
considering potential strategies.

Assume instead two alternatives to this result, that either
the absolute entropy increases or decreases with player rank.
Decreasing (average) entropy with player rank would imply
that a skilled player is becoming (on average) more predictable
as their skill increases, a counter-intuitive result given how we
usually think of expertise, particularly in a competitive game.
However an increasing entropy would imply that a player is
becoming more random in their move choices. While there
may be ways to explain such a result8 this seems to us not
very convincing.

So we look back and consider equation 5 again.
We apply a further constraint on the nature of pn(σ):
−∑

σj∈Ω pn(σj) ln(pn(σj)) = c for some constant c (as
shown by figure 4, c ≈ 1.3 nats or approximately 1.88 bits).
With this constraint we restrict the total amount of information
contained within the distribution pn(σ) to c and we regard c as
the strategic information of our theoretical players discussed
in conjunction with equation 5. With this constraint, p∞(σ)
of the oracle is then a perfectly optimised configuration given
a finite information capacity.

Given that within our results we observe a change in player’s
strategic behaviour as their rank increases, and that it changes
to more closely approximate the best players, an explanation is
needed as to why the absolute entropy is relatively unchanged.
A plausible conclusion is that our data for the relative entropy
reflects equation 5 and our result for the absolute entropy
reflects a finite strategic capacity of the players, i.e. expertise
is not simply about acquiring and storing information, but it is
tightly tied to how that information is structured and utilised
within a system of limited capacity.

We are cautious regarding our interpretation of the absolute
entropy. While it is clear that the average is reasonably flat, it
might be the case that there are other move distributions over
other board configurations which are not flat. We believe that
this might well be the case, but if the entropy were calculated
for each distribution for all possible board configurations then
theoretically this encompasses all game knowledge at a certain
skill level. In this way what we mean by strategic information
is simply the average (or perhaps total) capacity over all
configurations.

B. Constraint Development as Players Learn

We have also observed that players learn to differentiate
between different strategic choices and the relationships these
choices have to the board at large. As an example consider
Figure 3. Here the more junior players are in a certain sense

8i.e. a skilled player is able to obfuscate their thinking to make it look
random when in fact a careful strategy is being played

indifferent to the first 3 most likely strategies as seen by their
relatively flat distribution over these 3 moves. By comparison
the professionals are able to sharply distinguish between these
three choices, and the 8-9 Dan professionals much more so
than the 1-4 Dan professionals.

This suggests that there is at least one implicit constraint
which has been learned by the professionals and enables them
to strategically distinguish between these three choices. Recall
that the Avalanche Joseki is contained by a corner area of
size 7 × 7 which defines the ri discussed earlier. The learned
constraint(s) might be that either professionals understand
something about the stones in the region we are considering
or that they understand something about the region outside of
the area considered (any part of the board other than ri).

We consider the first of these two alternatives highly un-
likely. The first move in the Avalanche Joseki is made when
there are only two stones, one black one white, in ri (see the
left panel of Figure 2). It seems unlikely that the very best
amateurs are unaware of the best move to play in a given
region when there are only two stones present.

This suggests the reason for the professionals to differ so
significantly from the amateurs is due to the professionals’
more refined sensibility regarding the larger board strategy. In
particular it seems likely that professionals both choose their
moves within ri and how they build other groups on the board
to reflect a more directed goal for the whole board. This seems
plausible as it is part of the received wisdom of Go that this is
one of the hardest and last of the skills a Go player masters.

These findings are important for the purposes of machine
learning in complex environments. The way in which informa-
tion is integrated as well as what information is integrated is
intimately tied to what we learn and when we learn it. Being
able to objectively measure strategic behaviour for players of
different ranks, from the very local up to a quarter of the board,
will be vital to how we model learning in artificial systems.

It is also interesting to note the average relative entropy
shown in Figure 5. The larger the divergence between two
distributions, the larger the ‘informational gap’ that exists be-
tween two distributions. In practical terms this is an indicator
of how much more information is required in order to move
from one distribution to the other. So the smallest patterns have
the smallest informational gap and the largest board patterns
have the largest informational gap. This might be expected a-
priori, however it also might indicate a necessary condition on
how the game is learned: from the bottom up rather than from
the top down.

C. Information Theory and Human Cognition

The information theoretical approach to data on player’s
decisions has deep relevance to human cognition. The view
of human cognition and decision making as “information
processing” goes back at least to the psychological studies
of the 1960’s where Rapaport, Messick and Fitts published a
considerable body of work. For example Messick and Rapa-
port [18] showed a relationship between the (absolute) entropy
and reward for a 10 alternative choice task. The application
of information theory to the theoretical and practical study
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of neural network dynamics is also an important part of the
current literature (e.g. [19]).

More than this previous work, the method employed here is
qualitatively different from these studies: here we have taken
a real world problem where the complexity of the task tests
the abilities of even the most well trained humans and we
have been able to analyse their collective behaviour according
to the (relative) quality of play. What we have been able
to show is that the information capacity of players, at least
for the common patterns analysed above, is constant across
many moves in local areas. This is in agreement with the
capacity limitations that has been observed in individuals [20]
and has been developed in the Bayesian analysis of con-
ceptual chunks [21]. Importantly, these cognitive limitations
of human information processing have been used to build
successful game playing AI systems that reflect real human
limitations [8].

An interesting observation is the relationship between the
(absolute) entropy H(p(σ)) of the observed distribution over
moves and the mutual information I(σ;σ) between σ, the set
of possible outcomes of the next move, and σ, the set of
stones on the board before the next move is played. The joint
probability between the prior state of the board and the next
move is q(σ, σ) and the marginal distribution over the prior
state of the board is p(σ). The Mutual information is defined
as:

I(σ; σ) = H(p(σ)) − H(p(σ)|p(σ)). (6)

The second term on the right-hand-side is the conditional
entropy of p(σ) given p(σ). This term measures how much
of the information contained in p(σ) is not explainable by
knowing p(σ). If H(p(σ)|p(σ)) = 0 then p(σ) is completely
determined by p(σ), see [11]. Equation 6 measures the inde-
pendence of the next move from the current state of the board.
Note that H(p(σ)) is constant across the board configurations
and the local pattern configuration (i.e. within ri) is held
constant in each case. This implies that mutual information
only increases if the next move is more tightly dependent on
the current board state.

We can conclude that it is the context of the board outside
of ri and how it is coupled to the next move in a local
area that differentiates the rank of the players. This provides
a precise way to demonstrate the qualitative discussion of
the previous section regarding the global context. While this
outcome may be obvious to game players, in computational
terms it is not a trivial observation that Figure 5 measures
the changing amount of information being used to understand
the global relationships on the board in ‘nats’ and how these
relationships influence the next move in a local context.

D. Further Work
This work will be extended in a number of different ways.

First we will consider larger board patterns, possibly even
whole board configurations if sufficient data can be obtained.
The difficulty with these larger board spaces lies in how
quickly they become unique, making reliable statistics very
difficult to generate. This will enable us to establish the consis-
tency of our results at all scales of the game. Furthermore we

wish to establish if there are any other observable phenomena
which can be uncovered and analysed using this or any other
information theoretical techniques. Beyond this, developing a
computational model which simulates these results in an AI
would usefully shed light on the advantages and disadvantages
of this as a cognitive strategy.
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