Search results for: physics experiment materials
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2791

Search results for: physics experiment materials

2101 An Overview of Nano-Particles Effect on Mechanical Properties of Composites

Authors: Olatunde I. Sekunowo, Stephen I. Durowaye, Ganiyu I. Lawal

Abstract:

Composites depending on the nature of their constituents and mode of production are regarded as one of the advanced materials that drive today’s technology. This paper attempts a short review of the subject matter with a general aim of pushing to the next level the frontier of knowledge as it impacts the technology of nano-particles manufacturing. The objectives entail an effort to; aggregate recent research efforts in this field, analyse research findings and observations, streamline research efforts and support industry in taking decision on areas of fund deployment. It is envisaged that this work will serve as a quick hand-on compendium material for researchers in this field and a guide to relevant government departments wishing to fund a research whose outcomes have the potential of improving the nation’s GDP.

Keywords: Advanced materials, Composites, Mechanical properties, Nano-particles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4476
2100 Study of the Appropriate Factors for Laminated Bamboo Bending by Design of Experiments

Authors: Vanchai Laemlaksakul, Sompoap Talabgaew

Abstract:

This research studied the appropriate factors and conditions for laminated bamboo bending by Design of Experiments (DOE). The interested factors affecting the spring back in laminates bamboo were (1) time, (2) thickness, and (3) frequency. This experiment tested the specimen by using high frequency machine and measured its spring back immediately and next 24 hours for comparing the spring back ratio. Results from the experiments showed that significant factors having major influence to bending of laminates bamboo were thickness and frequency. The appropriate conditions of thickness and frequency were 4 mm. and 1.5 respectively.

Keywords: Bamboo, bending, spring back, design of experiments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1756
2099 Intrinsic Kinetics of Methanol Dehydration over Al2O3 Catalyst

Authors: Liang Zhang, Hai-Tao Zhang, W ei-Yong Ying, Ding-Ye Fang

Abstract:

Dehydration of methanol to dimethyl ether (DME) over a commercial Al2O3 catalyst was studied in an isothermal integral fixed bed reactor. The experiments were performed on the temperature interval 513-613 K, liquid hourly space velocity (LHSV) of 0.9-2.1h-1, pressures between 0.1 and 1.0 MPa. The effect of different operation conditions on the dehydration of methanol was investigated in a laboratory scale experiment. A new intrinsic kinetics equation based on the mechanism of Langmuir-Hinshelwood dissociation adsorption was developed for the dehydration reaction by fitting the expressions to the experimental data. An activation energy of 67.21 kJ/mol was obtained for the catalyst with the best performance. Statistic test showed that this new intrinsic kinetics equation was acceptable.

Keywords: catalyst, dimethyl ether, intrinsic kinetics, methanol

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4622
2098 Tailoring the Sharpness of Tungsten Nanotips via Laser Irradiation Enhanced Etching in KOH

Authors: D. D. Wang, J.C. Lam, Z. H. Mai

Abstract:

Controlled modification of appropriate sharpness for nanotips is of paramount importance to develop novel materials and functional devices at a nanometer resolution. Herein, we present a reliable and unique strategy of laser irradiation enhanced physicochemical etching to manufacture super sharp tungsten tips with reproducible shape and dimension as well as high yields (~80%). The corresponding morphology structure evolution of tungsten tips and laser-tip interaction mechanisms were systematically investigated and discussed using field emission scanning electron microscope (SEM) and physical optics statistics method with different fluences under 532 nm laser irradiation. This work paves the way for exploring more accessible metallic tips applications with tunable apex diameter and aspect ratio, and, furthermore, facilitates the potential sharpening enhancement technique for other materials used in a variety of nanoscale devices.

Keywords: Tungsten tip sharpening, Laser irradiation, Physicochemical etching, Light-matter interaction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1926
2097 The Effectiveness of Tebuconazole and Chitosan in Inhibiting the Growth of Fusarium Species on Winter Wheat Grain under Field Conditions

Authors: Urszula Wachowska, Anna Daria Stasiulewicz-Paluch, Katarzyna Kucharska

Abstract:

A three-year field experiment (2010-2012) was conducted to determine the abundance of epiphytic and endophytic filamentous fungi colonizing the grain of winter wheat cv. Bogatka. Wheat spikes were protected with tebuconazole or chitosan at the watery ripe stage. Untreated plants served as control. Tebuconazole exerted an inhibitory effect primarily on F. culmorum and F. graminearum, and its effectiveness was determined by the pressure from pathogens that infected wheat spikes during the growing season. Chitosan did not suppress the growth of Fusarium species and Alternaria alternata.

Keywords: Winter wheat, tebuconazole, chitosan, Fusarium.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2318
2096 Design and Analysis of an Automobile Bumper with the Capacity of Energy Release Using GMT Materials

Authors: A.R. Mortazavi Moghaddam, M. T. Ahmadian

Abstract:

Bumpers play an important role in preventing the impact energy from being transferred to the automobile and passengers. Saving the impact energy in the bumper to be released in the environment reduces the damages of the automobile and passengers. The goal of this paper is to design a bumper with minimum weight by employing the Glass Material Thermoplastic (GMT) materials. This bumper either absorbs the impact energy with its deformation or transfers it perpendicular to the impact direction. To reach this aim, a mechanism is designed to convert about 80% of the kinetic impact energy to the spring potential energy and release it to the environment in the low impact velocity according to American standard1. In addition, since the residual kinetic energy will be damped with the infinitesimal elastic deformation of the bumper elements, the passengers will not sense any impact. It should be noted that in this paper, modeling, solving and result-s analysis are done in CATIA, LS-DYNA and ANSYS V8.0 software respectively.

Keywords: Bumper, Composite material, Energy Release, GMT, Impact

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6601
2095 The Role of Thermo Priming on Improving Seedling Production Technology (Ispt) in Soybean [Glycine max (L.) Merrill] Seeds

Authors: Behzad Sani, Vida Jodaeian

Abstract:

In order to determine the impact of thermo priming on germination of soybean seeds, an experiment was conducted as a completely randomized design with three replications. The factors of studied included different time thermo priming (control, 5 and 10 minutes) through the placing seeds were exposed to oven. The results showed that the effect of thermo priming was significant on germination percentage, seedling dry weight and seedling vigour in P ≤ 0.05. Mean comparison showed that the highest germination percentage (77%), seedling dry weight (1.39 g) and seedling vigour (107.03) were achieved by 10 minutes thermo priming. 

Keywords: Thermo priming, seedling, seedling production, seedling growth, soybean.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2387
2094 Comprehensive Studies on Mechanical Stress Analysis of Functionally Graded Plates

Authors: Kyung-Su Na, Ji-Hwan Kim

Abstract:

Stress analysis of functionally graded composite plates composed of ceramic, functionally graded material and metal layers is investigated using 3-D finite element method. In FGM layer, material properties are assumed to be varied continuously in the thickness direction according to a simple power law distribution in terms of the volume fraction of a ceramic and metal. The 3-D finite element model is adopted by using an 18-node solid element to analyze more accurately the variation of material properties in the thickness direction. Numerical results are compared for three types of materials. In the analysis, the tensile and the compressive stresses are summarized for various FGM thickness ratios, volume fraction distributions, geometric parameters and mechanical loads.

Keywords: Functionally graded materials, Stress analysis, 3-D finite element method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1714
2093 Contact Drying Simulation of Particulate Materials: A Comprehensive Approach

Authors: Marco Intelvi, Apolinar Picado, Joaquín Martínez

Abstract:

In this work, simulation algorithms for contact drying of agitated particulate materials under vacuum and at atmospheric pressure were developed. The implementation of algorithms gives a predictive estimation of drying rate curves and bulk bed temperature during contact drying. The calculations are based on the penetration model to describe the drying process, where all process parameters such as heat and mass transfer coefficients, effective bed properties, gas and liquid phase properties are estimated with proper correlations. Simulation results were compared with experimental data from the literature. In both cases, simulation results were in good agreement with experimental data. Few deviations were identified and the limitations of the predictive capabilities of the models are discussed. The programs give a good insight of the drying behaviour of the analysed powders.

Keywords: Agitated bed, Atmospheric pressure, Penetrationmodel, Vacuum

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2207
2092 Particle Size Effect on Shear Strength of Granular Materials in Direct Shear Test

Authors: R. Alias, A. Kasa, M. R. Taha

Abstract:

The effect of particle size on shear strength of granular materials are investigated using direct shear tests. Small direct shear test (60 mm by 60 mm by 24 mm deep) were conducted for particles passing the sieves with opening size of 2.36 mm. Meanwhile, particles passing the standard 20 mm sieves were tested using large direct shear test (300 mm by 300 mm by 200 mm deep). The large direct shear tests and the small direct shear tests carried out using the same shearing rate of 0.09 mm/min and similar normal stresses of 100, 200 and 300 kPa. The results show that the peak and residual shear strength increases as particle size increases.

Keywords: Particle size, shear strength, granular material, direct shear test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5212
2091 A Study of Calcination and Carbonation of Cockle Shell

Authors: N.A. Rashidi, M. Mohamed, S.Yusup

Abstract:

Calcium oxide (CaO) as carbon dioxide (CO2) adsorbent at the elevated temperature has been very well-received thus far. The CaO can be synthesized from natural calcium carbonate (CaCO3) sources through the reversible calcination-carbonation process. In the study, cockle shell has been selected as CaO precursors. The objectives of the study are to investigate the performance of calcination and carbonation with respect to different temperature, heating rate, particle size and the duration time. Overall, better performance is shown at the calcination temperature of 850oC for 40 minutes, heating rate of 20oC/min, particle size of < 0.125mm and the carbonation temperature is at 650oC. The synthesized materials have been characterized by nitrogen physisorption and surface morphology analysis. The effectiveness of the synthesized cockle shell in capturing CO2 (0.72 kg CO2/kg adsorbent) which is comparable to the commercialized adsorbent (0.60 kg CO2/kg adsorbent) makes them as the most promising materials for CO2 capture.

Keywords: Calcination, Calcium oxide, Carbonation, Cockle shell

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3559
2090 Mechanical and Thermal Stresses in Functionally Graded Cylinders

Authors: A. Kurşun, E. Kara, E. Çetin, Ş. Aksoy, A. Kesimli

Abstract:

In this study, thermal elastic stress distribution occurred on long hollow cylinders made of functionally graded material (FGM) was analytically defined under thermal, mechanical and thermo mechanical loads. In closed form solutions for elastic stresses and displacements are obtained analytically by using the infinitesimal deformation theory of elasticity. It was assumed that elasticity modulus, thermal expansion coefficient and density of cylinder materials could change in terms of an exponential function as for that Poisson’s ratio was constant. A gradient parameter n is chosen between - 1 and 1. When n equals to zero, the disc becomes isotropic. Circumferential, radial and longitudinal stresses in the FGMs cylinders are depicted in the figures. As a result, the gradient parameters have great effects on the stress systems of FGMs cylinders.

Keywords: Functionally graded materials, hollow cylinder, thermoelasticity, thermomechanical load.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3058
2089 Optimization of Process Parameters for Diesters Biolubricant using D-optimal Design

Authors: Bashar Mudhaffar Abdullah, Jumat Salimon

Abstract:

Optimization study of the diesters biolubricant oleyl 9(12)-hydroxy-10(13)-oleioxy-12(9)-octadecanoate (OLHYOOT) was synthesized in the presence of sulfuric acid (SA) as catalyst has been done. Optimum conditions of the experiment to obtain high yield% of OLHYOOT were predicted at ratio of OL/HYOOA of 1:1 g/g, ratio of SA/HYOOA of 0.20:1 g/g, reaction temperature 110 °C and 4.5 h of reaction time. At this condition, the Yield% of OLHYOOT was 88.7. Disappearance of carboxylic acid (C=O) peak has observed by FTIR with appearance ester (C=O) at 1738 cm-1. 1H NMR spectra analyses confirmed the result of OLHYOOT with appearance ester (-CHOCOR) at 4.05ppm and also the 13C-NMR confirmed the result with appearance ester (C=O) peak at 173.93ppm.

Keywords: Esterification, Diesters, Biolubricant, D-optimaldesign.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2217
2088 Modeling and Simulations of Complex Low- Dimensional systems: Testing the Efficiency of Parallelization

Authors: Ryszard Matysiak, Grzegorz Kamieniarz

Abstract:

The deterministic quantum transfer-matrix (QTM) technique and its mathematical background are presented. This important tool in computational physics can be applied to a class of the real physical low-dimensional magnetic systems described by the Heisenberg hamiltonian which includes the macroscopic molecularbased spin chains, small size magnetic clusters embedded in some supramolecules and other interesting compounds. Using QTM, the spin degrees of freedom are accurately taken into account, yielding the thermodynamical functions at finite temperatures. In order to test the application for the susceptibility calculations to run in the parallel environment, the speed-up and efficiency of parallelization are analyzed on our platform SGI Origin 3800 with p = 128 processor units. Using Message Parallel Interface (MPI) system libraries we find the efficiency of the code of 94% for p = 128 that makes our application highly scalable.

Keywords: Deterministic simulations, low-dimensional magnets, modeling of complex systems, parallelization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1590
2087 Finite Element Study of a DfD Beam-Column Connection

Authors: Zhi Sheng Lin, K. C. G. Ong, Lado Riannevo Chandra, Bee Hong Angeline Tan, Chat Tim Tam, Sze Dai Pang

Abstract:

Design for Disassembly (DfD) aims to reuse the structural components instead of demolition followed by recycling of the demolition debris. This concept preserves the invested embodied energy of materials, thus reducing inputs of new embodied energy during materials reprocessing or remanufacturing. Both analytical and experimental research on a proposed DfD beam-column connection for use in residential apartments is currently investigated at the National University of Singapore in collaboration with the Housing and Development Board of Singapore. The present study reports on the results of a numerical analysis of the proposed connection utilizing finite element analysis. The numerical model was calibrated and validated by comparison against experimental results. Results of a parametric study will also be presented and discussed.

Keywords: Design for Disassembly (DfD), finite element analysis, parametric study.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2032
2086 Crude Oil Price Prediction Using LSTM Networks

Authors: Varun Gupta, Ankit Pandey

Abstract:

Crude oil market is an immensely complex and dynamic environment and thus the task of predicting changes in such an environment becomes challenging with regards to its accuracy. A number of approaches have been adopted to take on that challenge and machine learning has been at the core in many of them. There are plenty of examples of algorithms based on machine learning yielding satisfactory results for such type of prediction. In this paper, we have tried to predict crude oil prices using Long Short-Term Memory (LSTM) based recurrent neural networks. We have tried to experiment with different types of models using different epochs, lookbacks and other tuning methods. The results obtained are promising and presented a reasonably accurate prediction for the price of crude oil in near future.

Keywords: Crude oil price prediction, deep learning, LSTM, recurrent neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3672
2085 Effects of Molybdenum on Phosphorus Concentration in Rice (Oryza sativa L.)

Authors: Hamed Zakikhani, Mohd Khanif Yusop, Amin Soltangheisi

Abstract:

A hydroponic trial was carried out to investigate the effect of molybdenum (Mo) on uptake of phosphorus (P) in different rice cultivars. The experiment was conducted using a randomized complete-block design, with a split-plot arrangement of treatments and three replications. Four rates of Mo (0, 0.01, 0.1 and 1 mg L−1) and five cultivars (MR219, HASHEMI, MR232, FAJRE and MR253) provided the main and sub-plots, respectively. Interaction of molybdenum×variety was significant on shoot phosphorus uptake (p≤0.01). Highest and lowest shoot phosphorus uptake were seen in Mo3V3 (0.6% plant-1) and Mo0V3 (0.14% plant-1) treatments, respectively. Molybdenum did not have a significant effect on root phosphorus content. According to results, application of molybdenum has a synergistic effect on uptake of phosphorus by rice plants.

Keywords: Molybdenum, Phosphorus, Uptake, rice.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2069
2084 Effect of Water- Cement Ratio (w/c) on Mechanical Properties of Self-Compacting Concrete (Case Study)

Authors: Hamed Ahmadi Moghadam, Omolbanin Arasteh Khoshbin

Abstract:

Nowadays, the performance required for concrete structures is more complicated and diversified. Self-compacting concrete is a fluid mixture suitable for placing in structures with congested reinforcement without vibration. Self-compacting concrete development must ensure a good balance between deformability and stability. Also, compatibility is affected by the characteristics of materials and the mix proportions; it becomes necessary to evolve a procedure for mix design of SCC. This paper presents an experimental procedure for the design of self-compacting concrete mixes with different water-cement ratios (w/c) and other constant ratios by local materials. The test results for acceptance characteristics of self-compacting concrete such as slump flow, V-funnel and L-Box are presented. Further, compressive strength, tensile strength and modulus of elasticity of specimens were also determined and results are included here

Keywords: Self-Compacting Concrete, Mix Design, Compressive Strength, Tensile Strength, Modulus of Elasticity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5557
2083 The Influence of Pad Thermal Diffusivity over Heat Transfer into the PCBs Structure

Authors: Mihai Brânzei, Ioan Plotog, Ion Pencea

Abstract:

The Pads have unique values of thermophysical properties (THP) having important contribution over heat transfer into the PCB structure. Materials with high thermal diffusivity (TD) rapidly adjust their temperature to that of their surroundings, because the HT is quick in compare to their volumetric heat capacity (VHC). In the paper is presenting the diffusivity tests (ASTM E1461 flash method) for PCBs with different core materials. In the experiments, the multilayer structure of PCBA was taken into consideration, an equivalent property referring to each of experimental structure be practically measured. Concerning to entire structure, the THP emphasize the major contribution of substrate in establishing of reflow soldering process (RSP) heat transfer necessities. This conclusion offer practical solution for heat transfer time constant calculation as function of thickness and substrate material diffusivity with an acceptable error estimation.

Keywords: heat transfer time constant, packaging, reflowsoldering process, thermal diffusivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2307
2082 Problems and Possible Solutions with the Development of a Computer Model of Quantum Theory

Authors: Hans H. Diel

Abstract:

A computer model of Quantum Theory (QT) has been developed by the author. Major goal of the computer model was support and demonstration of an as large as possible scope of QT. This includes simulations for the major QT (Gedanken-) experiments such as, for example, the famous double-slit experiment. Besides the anticipated difficulties with (1) transforming exacting mathematics into a computer program, two further types of problems showed up, namely (2) areas where QT provides a complete mathematical formalism, but when it comes to concrete applications the equations are not solvable at all, or only with extremely high effort; (3) QT rules which are formulated in natural language and which do not seem to be translatable to precise mathematical expressions, nor to a computer program. The paper lists problems in all three categories and describes also the possible solutions or circumventions developed for the computer model.

Keywords: Computability, Foundation of Quantum Mechanics, Measurement Process, Modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1675
2081 A Preliminary Development of Virtual Sightseeing Website for Thai Temples on Rattanakosin Island

Authors: P. Jomsri

Abstract:

Currently, the sources of cultures and tourist attractions are presented in online documentary form only. In order to make them more virtual, the researcher then collected and presented them in the form of Virtual Temple. The prototype, which is a replica of the actual location, was developed to the website and allows people who are interested in Rattanakosin Island can see in form of Panorama Pan View. By this way, anyone can access the data and appreciate the beauty of Rattanakosin Island in the virtual model like the real place.

The result from the experiment showed that the levels of the knowledge on Thai temples in Rattanakosin Island increased; moreover, the users were highly satisfied with the systems. It can be concluded that virtual temples can support to publicize Thai arts, cultures and travels, as well as it can be utilized effectively.

Keywords: Virtual sightseeing, rattanakosin island, Thai temples.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1440
2080 The Adsorption of Zinc Metal in Waste Water Using ZnCl2 Activated Pomegranate Peel

Authors: S. N. Turkmen, A. S. Kipcak, N. Tugrul, E. M. Derun, S. Piskin

Abstract:

Activated carbon is an amorphous carbon chain which has extremely extended surface area. High surface area of activated carbon is due to the porous structure. Activated carbon, using a variety of materials such as coal and cellulosic materials; can be obtained by both physical and chemical methods. The prepared activated carbon can be used for decolorize, deodorize and also can be used for removal of organic and non-organic pollution. In this study, pomegranate peel was subjected to 800W microwave power for 1 to 4 minutes. Also fresh pomegranate peel was used for the reference material. Then ZnCl2 was used for the chemical activation purpose. After the activation process, activated pomegranate peels were used for the adsorption of Zn metal (40 ppm) in the waste water. As a result of the adsorption experiments, removal of heavy metals ranged from 89% to 85%.

Keywords: Activated carbon, chemical activation, microwave, pomegranate peel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2786
2079 Combined Hydrothermal Synthesis of Zinc and Magnesium Borates at 100oC Using ZnO, MgO and H3BO3

Authors: N. Tugrul, A. S. Kipcak, N. Baran Acarali, E. Moroydor Derun, S. Piskin

Abstract:

Magnesium borate(MB) istechnical ceramic for high heat-resisting, corrosion-resisting, super mechanical strength, superinsulation, light weight, high strength, and high coefficient of elasticity. Zinc borate (ZB) can be used as multi-functional synergistic additives with flame retardant additives in polymers. The most important properties are low solubility in water and high dehydration temperature. ZB dehydrates above 290°C and anhydrous ZB has thermal resistance about 400°C. In this study, the raw materials of ZnO, MgO and H3BO3 were used with mole ratio of 1:1:9. With the starting materials hydrothermal method was applied at a temperature of 100oC. The reaction time was determined as 30, 60, 90 and 120 minutes after some preliminary experiments. After the synthesis, the crystal structure and the morphology of the products were examined by X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR). As a result, the forms of Zinc Oxide Borate Hydrate [Zn3B6O12.3.5H2O], Admontite [MgO(B2O3)3.7(H2O)] and Mcallisterite [Mg2(B6O7(OH)6)2.9(H2O)] were synthesized.

Keywords: Magnesium borate, zinc borate, XRD, FT-IR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2792
2078 Review of Carbon Materials: Application in Alternative Energy Sources and Catalysis

Authors: Marita Pigłowska, Beata Kurc, Maciej Galiński

Abstract:

The application of carbon materials in the branches of the electrochemical industry shows an increasing tendency each year due to the many interesting properties they possess. These are, among others, a well-developed specific surface, porosity, high sorption capacity, good adsorption properties, low bulk density, electrical conductivity and chemical resistance. All these properties allow for their effective use, among others in supercapacitors, which can store electric charges of the order of 100 F due to carbon electrodes constituting the capacitor plates. Coals (including expanded graphite, carbon black, graphite carbon fibers, activated carbon) are commonly used in electrochemical methods of removing oil derivatives from water after tanker disasters, e.g., phenols and their derivatives by their electrochemical anodic oxidation. Phenol can occupy practically the entire surface of carbon material and leave the water clean of hydrophobic impurities. Regeneration of such electrodes is also not complicated, it is carried out by electrochemical methods consisting in unblocking the pores and reducing resistances, and thus their reactivation for subsequent adsorption processes. Graphite is commonly used as an anode material in lithium-ion cells, while due to the limited capacity it offers (372 mAh g-1), new solutions are sought that meet both capacitive, efficiency and economic criteria. Increasingly, biodegradable materials, green materials, biomass, waste (including agricultural waste) are used in order to reuse them and reduce greenhouse effects and, above all, to meet the biodegradability criterion necessary for the production of lithium-ion cells as chemical power sources. The most common of these materials are cellulose, starch, wheat, rice, and corn waste, e.g., from agricultural, paper and pharmaceutical production. Such products are subjected to appropriate treatments depending on the desired application (including chemical, thermal, electrochemical). Starch is a biodegradable polysaccharide that consists of polymeric units such as amylose and amylopectin that build an ordered (linear) and amorphous (branched) structure of the polymer. Carbon is also used as a catalyst. Elemental carbon has become available in many nano-structured forms representing the hybridization combinations found in the primary carbon allotropes, and the materials can be enriched with a large number of surface functional groups. There are many examples of catalytic applications of coal in the literature, but the development of this field has been hampered by the lack of a conceptual approach combining structure and function and a lack of understanding of material synthesis. In the context of catalytic applications, the integrity of carbon environmental management properties and parameters such as metal conductivity range and bond sequence management should be characterized. Such data, along with surface and textured information, can form the basis for the provision of network support services.

Keywords: carbon materials, catalysis, BET, capacitors, lithium ion cell

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1093
2077 The Effect of the Hemispheres of the Brain and the Tone of Voice on Persuasion

Authors: Rica Jell de Laza, Jose Alberto Fernandez, Andrea Marie Mendoza, Qristin Jeuel Regalado

Abstract:

This study investigates whether participants experience different levels of persuasion depending on the hemisphere of the brain and the tone of voice. The experiment was performed on 96 volunteer undergraduate students taking an introductory course in psychology. The participants took part in a 2 x 3 (Hemisphere: left, right x Tone of Voice: positive, neutral, negative) Mixed Factorial Design to measure how much a person was persuaded. Results showed that the hemisphere of the brain and the tone of voice used did not significantly affect the results individually. Furthermore, there was no interaction effect. Therefore, the hemispheres of the brain and the tone of voice employed play insignificant roles in persuading a person.

Keywords: Dichotic listening, brain hemisphere, tone of voice, persuasion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1377
2076 Numerical and Experimental Studies of Joule Heating Effects around Crack and Notch Tips

Authors: Thomas Jin-Chee Liu, Ji-Fu Tseng, Yu-Shen Chen

Abstract:

This paper investigates the thermo-electric effects around the crack and notch tips under the electric current load. The research methods include the finite element analysis and thermal imaging experiment. The finite element solutions show that the electric current density field concentrates at the crack tip. Due to the Joule heating, this electric concentration causes the hot spot at the tip zone. From numerical and experimental results, this hot spot is identified. The temperature of the hot spot is affected by the electric load, operation time and geometry of the sample.

Keywords: Thermo-electric, Joule heating, crack tip, notch tip.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1438
2075 Enhanced Magnetoelastic Response near Morphotropic Phase Boundary in Ferromagnetic Materials: Experimental and Theoretical Analysis

Authors: Murtaza Adil, Sen Yang, Zhou Chao, Song Xiaoping

Abstract:

The morphotropic phase boundary (MPB) recently has attracted constant interest in ferromagnetic systems for obtaining enhanced large magnetoelastic response. In the present study, structural and magnetoelastic properties of MPB involved ferromagnetic Tb1-xGdxFe2 (0≤x≤1) system has been investigated. The change of easy magnetic direction from <111> to <100> with increasing x up MPB composition of x=0.9 is detected by step-scanned [440] synchrotron X-ray diffraction reflections. The Gd substitution for Tb changes the composition for the anisotropy compensation near MPB composition of x=0.9, which was confirmed by the analysis of detailed scanned XRD, magnetization curves and the calculation of the first anisotropy constant K1. The spin configuration diagram accompanied with different crystal structures for Tb1-xGdxFe2 was designed. The calculated first anisotropy constant K1 shows a minimum value at MPB composition of x=0.9. In addition, the large ratio between magnetostriction, and the absolute values of the first anisotropy constant │λS∕K1│ appears at MPB composition, which makes it a potential material for magnetostrictive application. Based on experimental results, a theoretically approach was also proposed to signify that the facilitated magnetization rotation and enhanced magnetoelastic effect near MPB composition are a consequence of the anisotropic flattening of free energy of ferromagnetic crystal. Our work specifies the universal existence of MPB in ferromagnetic materials which is important for substantial improvement of magnetic and magnetostrictive properties and may provide a new route to develop advanced functional materials.

Keywords: Free energy, lattice distortion, magnetic anisotropy, magnetostriction, morphotropic phase boundary.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1221
2074 Study of Mechanical Properties for the Aluminum Bronze Matrix Composites of Hot Pressing

Authors: Shenq Yih Luo, Chung Hsien Lu

Abstract:

The aluminum bronze matrix alumina composites using hot press and resin infiltration were investigated to study their porosities, hardness, bending strengths, and microstructures. The experiment results show that the hardness of the sintered composites with the decrease of porosity increases. The composites without and with resin infiltration have about HRF 42-61 of about 34-40% of porosity and about HRF 62-83 of about 30-36% of porosity, respectively. Besides, the alumina composites contain a more amount of iron and nickel powders would cause a lower bending strength due to forming some weaker bonding among the iron, nickel, copper, aluminum under this hot pressing of shorter time.

Keywords: Aluminum bronze matrix composite, bending strength, hot pressing, porosity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2329
2073 Edge Detection Algorithm Based on Wavelet De-nosing Applied tothe X-ray Image Enhancement of the Electric Equipment

Authors: Fei Xue, Hong Yu, Da-da Wang, Wei Zhang, Rong-min Zou, Xiao-lanCai

Abstract:

The X-ray technology has been used in non-destructive evaluation in the Power System, in which a visual non-destructive inspection method for the electrical equipment is provided. However, lots of noise is existed in the images that are got from the X-ray digital images equipment. Therefore, the auto defect detection which based on these images will be very difficult to proceed. A theory on X-ray image de-noising algorithm based on wavelet transform is proposed in this paper. Then the edge detection algorithm is used so that the defect can be pushed out. The result of experiment shows that the method which utilized by this paper is very useful for de-noising on the X-ray images.

Keywords: de-noising, edge detection, wavelet transform, X-ray

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1517
2072 Motor Skill Adaptation Depends On the Level of Learning

Authors: Herbert Ugrinowitsch, Suziane Peixoto dos Santos-Naves, Michele Viviene Carbinatto, Rodolfo NovellinoBenda, Go Tani

Abstract:

An experiment was conducted to examine the effect of the level of performance stabilization on the human adaptability to perceptual-motor perturbation in a complex coincident timing task. Three levels of performance stabilization were established operationally: pre-stabilization, stabilization, and super-stabilization groups. Each group practiced the task until reached its level of stabilization in a constant sequence of movements and under a constant time constraint before exposure to perturbation. The results clearly showed that performance stabilization is a pre-condition for adaptation. Moreover, variability before reaching stabilization is harmful to adaptation and persistent variability after stabilization is beneficial. Moreover, the behavior of variability is specific to each measure.

Keywords: Adaptation, motor skill, perturbation, stabilization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1762