Search results for: objectionable Web content classification
2038 Region-Based Segmentation of Generic Video Scenes Indexing
Authors: Aree A. Mohammed
Abstract:
In this work we develop an object extraction method and propose efficient algorithms for object motion characterization. The set of proposed tools serves as a basis for development of objectbased functionalities for manipulation of video content. The estimators by different algorithms are compared in terms of quality and performance and tested on real video sequences. The proposed method will be useful for the latest standards of encoding and description of multimedia content – MPEG4 and MPEG7.Keywords: Object extraction, Video indexing, Segmentation, Optical flow, Motion estimators.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13602037 Adaptive Network Intrusion Detection Learning: Attribute Selection and Classification
Authors: Dewan Md. Farid, Jerome Darmont, Nouria Harbi, Nguyen Huu Hoa, Mohammad Zahidur Rahman
Abstract:
In this paper, a new learning approach for network intrusion detection using naïve Bayesian classifier and ID3 algorithm is presented, which identifies effective attributes from the training dataset, calculates the conditional probabilities for the best attribute values, and then correctly classifies all the examples of training and testing dataset. Most of the current intrusion detection datasets are dynamic, complex and contain large number of attributes. Some of the attributes may be redundant or contribute little for detection making. It has been successfully tested that significant attribute selection is important to design a real world intrusion detection systems (IDS). The purpose of this study is to identify effective attributes from the training dataset to build a classifier for network intrusion detection using data mining algorithms. The experimental results on KDD99 benchmark intrusion detection dataset demonstrate that this new approach achieves high classification rates and reduce false positives using limited computational resources.Keywords: Attributes selection, Conditional probabilities, information gain, network intrusion detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27032036 An Effective Islanding Detection and Classification Method Using Neuro-Phase Space Technique
Authors: Aziah Khamis, H. Shareef
Abstract:
The purpose of planned islanding is to construct a power island during system disturbances which are commonly formed for maintenance purpose. However, in most of the cases island mode operation is not allowed. Therefore distributed generators (DGs) must sense the unplanned disconnection from the main grid. Passive technique is the most commonly used method for this purpose. However, it needs improvement in order to identify the islanding condition. In this paper an effective method for identification of islanding condition based on phase space and neural network techniques has been developed. The captured voltage waveforms at the coupling points of DGs are processed to extract the required features. For this purposed a method known as the phase space techniques is used. Based on extracted features, two neural network configuration namely radial basis function and probabilistic neural networks are trained to recognize the waveform class. According to the test result, the investigated technique can provide satisfactory identification of the islanding condition in the distribution system.Keywords: Classification, Islanding detection, Neural network, Phase space.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21362035 Bayesian Networks for Earthquake Magnitude Classification in a Early Warning System
Authors: G. Zazzaro, F.M. Pisano, G. Romano
Abstract:
During last decades, worldwide researchers dedicated efforts to develop machine-based seismic Early Warning systems, aiming at reducing the huge human losses and economic damages. The elaboration time of seismic waveforms is to be reduced in order to increase the time interval available for the activation of safety measures. This paper suggests a Data Mining model able to correctly and quickly estimate dangerousness of the running seismic event. Several thousand seismic recordings of Japanese and Italian earthquakes were analyzed and a model was obtained by means of a Bayesian Network (BN), which was tested just over the first recordings of seismic events in order to reduce the decision time and the test results were very satisfactory. The model was integrated within an Early Warning System prototype able to collect and elaborate data from a seismic sensor network, estimate the dangerousness of the running earthquake and take the decision of activating the warning promptly.Keywords: Bayesian Networks, Decision Support System, Magnitude Classification, Seismic Early Warning System
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36062034 Solid State Fermentation of Cassava Peel with Trichoderma viride (ATCC 36316) for Protein Enrichment
Authors: Olufunke O. Ezekiel, Ogugua C. Aworh
Abstract:
Solid state fermentation of cassava peel with emphasis on protein enrichment using Trichoderma viride was evaluated. The effect of five variables: moisture content, pH, particle size (p), nitrogen source and incubation temperature; on the true protein and total sugars of cassava peel was investigated. The optimum fermentation period was established to be 8 days. Total sugars were 5-fold higher at pH 6 relative to pH 4 and 7-fold higher when cassava peels were fermented at 30oC relative to 25oC as well as using ammonium sulfate as the nitrogen source relative to urea or a combination of both. Total sugars ranged between 123.21mg/g at 50% initial moisture content to 374mg/g at 60% and from 190.59mg/g with particle size range of 2.00>p>1.41mm to 310.10mg/g with 4.00>p>3.35mm.True protein ranged from 229.70 mg/g at pH 4 to 284.05 mg/g at pH 6; from 200.87 mg/g with urea as nitrogen source and to 254.50mg/g with ammonium sulfate; from 213.82mg/g at 50% initial moisture content to 254.50mg/g at 60% moisture content, from 205.75mg/g in cassava peel with 5.6>p> 4.75mm to 268.30 in cassava peel with particle size 4.00>p>3.35mm, from 207.57mg/g at 25oC to 254.50mg/g at 30oC Cassava peel with particle size 4.00>p>3.35 mm and initial moisture content of 60% at pH 6.0, 30oC incubation temperature with ammonium sulfate (10g N / kg substrate) was most suitable for protein enrichment with Trichoderma viride. Crude protein increased from 4.21 % in unfermented cassava peel samples to 10.43 % in fermented samples.
Keywords: Cassava peel, Solid state fermentation, Trichoderma viride, Total sugars, True protein.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33582033 Classification of Political Affiliations by Reduced Number of Features
Authors: Vesile Evrim, Aliyu Awwal
Abstract:
By the evolvement in technology, the way of expressing opinions switched direction to the digital world. The domain of politics, as one of the hottest topics of opinion mining research, merged together with the behavior analysis for affiliation determination in texts, which constitutes the subject of this paper. This study aims to classify the text in news/blogs either as Republican or Democrat with the minimum number of features. As an initial set, 68 features which 64 were constituted by Linguistic Inquiry and Word Count (LIWC) features were tested against 14 benchmark classification algorithms. In the later experiments, the dimensions of the feature vector reduced based on the 7 feature selection algorithms. The results show that the “Decision Tree”, “Rule Induction” and “M5 Rule” classifiers when used with “SVM” and “IGR” feature selection algorithms performed the best up to 82.5% accuracy on a given dataset. Further tests on a single feature and the linguistic based feature sets showed the similar results. The feature “Function”, as an aggregate feature of the linguistic category, was found as the most differentiating feature among the 68 features with the accuracy of 81% in classifying articles either as Republican or Democrat.Keywords: Politics, machine learning, feature selection, LIWC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23732032 Genetic Folding: Analyzing the Mercer-s Kernels Effect in Support Vector Machine using Genetic Folding
Authors: Mohd A. Mezher, Maysam F. Abbod
Abstract:
Genetic Folding (GF) a new class of EA named as is introduced for the first time. It is based on chromosomes composed of floating genes structurally organized in a parent form and separated by dots. Although, the genotype/phenotype system of GF generates a kernel expression, which is the objective function of superior classifier. In this work the question of the satisfying mapping-s rules in evolving populations is addressed by analyzing populations undergoing either Mercer-s or none Mercer-s rule. The results presented here show that populations undergoing Mercer-s rules improve practically models selection of Support Vector Machine (SVM). The experiment is trained multi-classification problem and tested on nonlinear Ionosphere dataset. The target of this paper is to answer the question of evolving Mercer-s rule in SVM addressed using either genetic folding satisfied kernel-s rules or not applied to complicated domains and problems.Keywords: Genetic Folding, GF, Evolutionary Algorithms, Support Vector Machine, Genetic Algorithm, Genetic Programming, Multi-Classification, Mercer's Rules
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16372031 Deep Web Content Mining
Authors: Shohreh Ajoudanian, Mohammad Davarpanah Jazi
Abstract:
The rapid expansion of the web is causing the constant growth of information, leading to several problems such as increased difficulty of extracting potentially useful knowledge. Web content mining confronts this problem gathering explicit information from different web sites for its access and knowledge discovery. Query interfaces of web databases share common building blocks. After extracting information with parsing approach, we use a new data mining algorithm to match a large number of schemas in databases at a time. Using this algorithm increases the speed of information matching. In addition, instead of simple 1:1 matching, they do complex (m:n) matching between query interfaces. In this paper we present a novel correlation mining algorithm that matches correlated attributes with smaller cost. This algorithm uses Jaccard measure to distinguish positive and negative correlated attributes. After that, system matches the user query with different query interfaces in special domain and finally chooses the nearest query interface with user query to answer to it.Keywords: Content mining, complex matching, correlation mining, information extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22862030 Automatic Musical Genre Classification Using Divergence and Average Information Measures
Authors: Hassan Ezzaidi, Jean Rouat
Abstract:
Recently many research has been conducted to retrieve pertinent parameters and adequate models for automatic music genre classification. In this paper, two measures based upon information theory concepts are investigated for mapping the features space to decision space. A Gaussian Mixture Model (GMM) is used as a baseline and reference system. Various strategies are proposed for training and testing sessions with matched or mismatched conditions, long training and long testing, long training and short testing. For all experiments, the file sections used for testing are never been used during training. With matched conditions all examined measures yield the best and similar scores (almost 100%). With mismatched conditions, the proposed measures yield better scores than the GMM baseline system, especially for the short testing case. It is also observed that the average discrimination information measure is most appropriate for music category classifications and on the other hand the divergence measure is more suitable for music subcategory classifications.Keywords: Audio feature, information measures, music genre.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15822029 Structural Investigation of Na2O–B2O3–SiO2 Glasses Doped with NdF3
Authors: M. S. Gaafar, S. Y. Marzouk
Abstract:
Sodium borosilicate glasses doped with different content of NdF3 mol % have been prepared by rapid quenching method. Ultrasonic velocities (both longitudinal and shear) measurements have been carried out at room temperature and at ultrasonic frequency of 4 MHz. Elastic moduli, Debye temperature, softening temperature and Poisson's ratio have been obtained as a function of NdF3 modifier content. Results showed that the elastic moduli, Debye temperature, softening temperature and Poisson's ratio have very slight change with the change of NdF3 mol % content. Based on FTIR spectroscopy and theoretical (Bond compression) model, quantitative analysis has been carried out in order to obtain more information about the structure of these glasses. The study indicated that the structure of these glasses is mainly composed of SiO4 units with four bridging oxygens (Q4), and with three bridging and one nonbridging oxygens (Q3).Keywords: Borosilicate glasses, ultrasonic velocity, elastic moduli, FTIR spectroscopy, bond compression model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17582028 Social Network Management Enhances Customer Relationship
Authors: Srisawas Siriporn, Rotchanakitumnuai Siriluck
Abstract:
The study aims to develop a framework of social network management to enhance customer relationship. Social network management of this research is derived from social network site management, individual and organization social network usage motivation. The survey was conducted with organization employees who have used social network to interact with customers. The results reveal that content, link, privacy and security, page design and interactivity are the major issues of social network site management. Content, link, privacy and security, individual and organization motivation have major impacts on encouraging business knowledge sharing among employees. Moreover, Page design and interactivity, content, organization motivation and knowledge sharing can improve customer relationships.Keywords: Social network management, social network site, motivation, knowledge sharing, customer relationship
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21622027 Solvent Effect on Antioxidant Activity and Total Phenolic Content of Betula alba and Convolvulus arvensi
Authors: Mohd Azman A. Nurul, Husni Shafik, Almajano P. Maria, Gallego G. Maria
Abstract:
The potential of using herbal Betula alba (BA) and Convolvulus arvensis (CA) as a natural antioxidant for food applications were investigated. Each plant extract was prepared by using pure ethanol, different concentration of ethanol aqueous solutions, including 50% and 75%, 50% methanol aqueous and water. Total phenolic content (TPC) was determined using Folin–Ciocalteau method and antioxidant activity were analyzed by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals, trolox equivalent antioxidant capacity (TEAC), Oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) respectively. Ethanol extract of CA exhibited the highest TPC and antioxidant activity; however BA showed varies of antioxidant activity value in each assay. The BA and CA exhibit the potential sources of natural antioxidant for food commodities.
Keywords: Solvent effect, Antioxidant activity, Betula Alba, Convolvulus arvensis, Total Phenolic Content.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38522026 Reducing SAGE Data Using Genetic Algorithms
Authors: Cheng-Hong Yang, Tsung-Mu Shih, Li-Yeh Chuang
Abstract:
Serial Analysis of Gene Expression is a powerful quantification technique for generating cell or tissue gene expression data. The profile of the gene expression of cell or tissue in several different states is difficult for biologists to analyze because of the large number of genes typically involved. However, feature selection in machine learning can successfully reduce this problem. The method allows reducing the features (genes) in specific SAGE data, and determines only relevant genes. In this study, we used a genetic algorithm to implement feature selection, and evaluate the classification accuracy of the selected features with the K-nearest neighbor method. In order to validate the proposed method, we used two SAGE data sets for testing. The results of this study conclusively prove that the number of features of the original SAGE data set can be significantly reduced and higher classification accuracy can be achieved.Keywords: Serial Analysis of Gene Expression, Feature selection, Genetic Algorithm, K-nearest neighbor method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16152025 Classification of Health Risk Factors to Predict the Risk of Falling in Older Adults
Authors: L. Lindsay, S. A. Coleman, D. Kerr, B. J. Taylor, A. Moorhead
Abstract:
Cognitive decline and frailty is apparent in older adults leading to an increased likelihood of the risk of falling. Currently health care professionals have to make professional decisions regarding such risks, and hence make difficult decisions regarding the future welfare of the ageing population. This study uses health data from The Irish Longitudinal Study on Ageing (TILDA), focusing on adults over the age of 50 years, in order to analyse health risk factors and predict the likelihood of falls. This prediction is based on the use of machine learning algorithms whereby health risk factors are used as inputs to predict the likelihood of falling. Initial results show that health risk factors such as long-term health issues contribute to the number of falls. The identification of such health risk factors has the potential to inform health and social care professionals, older people and their family members in order to mitigate daily living risks.
Keywords: Classification, falls, health risk factors, machine learning, older adults.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10632024 Improving Fake News Detection Using K-means and Support Vector Machine Approaches
Authors: Kasra Majbouri Yazdi, Adel Majbouri Yazdi, Saeid Khodayi, Jingyu Hou, Wanlei Zhou, Saeed Saedy
Abstract:
Fake news and false information are big challenges of all types of media, especially social media. There is a lot of false information, fake likes, views and duplicated accounts as big social networks such as Facebook and Twitter admitted. Most information appearing on social media is doubtful and in some cases misleading. They need to be detected as soon as possible to avoid a negative impact on society. The dimensions of the fake news datasets are growing rapidly, so to obtain a better result of detecting false information with less computation time and complexity, the dimensions need to be reduced. One of the best techniques of reducing data size is using feature selection method. The aim of this technique is to choose a feature subset from the original set to improve the classification performance. In this paper, a feature selection method is proposed with the integration of K-means clustering and Support Vector Machine (SVM) approaches which work in four steps. First, the similarities between all features are calculated. Then, features are divided into several clusters. Next, the final feature set is selected from all clusters, and finally, fake news is classified based on the final feature subset using the SVM method. The proposed method was evaluated by comparing its performance with other state-of-the-art methods on several specific benchmark datasets and the outcome showed a better classification of false information for our work. The detection performance was improved in two aspects. On the one hand, the detection runtime process decreased, and on the other hand, the classification accuracy increased because of the elimination of redundant features and the reduction of datasets dimensions.
Keywords: Fake news detection, feature selection, support vector machine, K-means clustering, machine learning, social media.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 45472023 Assessing Land Cover Change Trajectories in Olomouc, Czech Republic
Authors: Mukesh Singh Boori, Vít Voženílek
Abstract:
Olomouc is a unique and complex landmark with widespread forestation and land use. This research work was conducted to assess important and complex land use change trajectories in Olomouc region. Multi-temporal satellite data from 1991, 2001 and 2013 were used to extract land use/cover types by object oriented classification method. To achieve the objectives, three different aspects were used: (1) Calculate the quantity of each transition; (2) Allocate location based landscape pattern (3) Compare land use/cover evaluation procedure. Land cover change trajectories shows that 16.69% agriculture, 54.33% forest and 21.98% other areas (settlement, pasture and water-body) were stable in all three decade. Approximately 30% of the study area maintained as a same land cove type from 1991 to 2013. Here broad scale of political and socioeconomic factors was also affect the rate and direction of landscape changes. Distance from the settlements was the most important predictor of land cover change trajectories. This showed that most of landscape trajectories were caused by socio-economic activities and mainly led to virtuous change on the ecological environment.
Keywords: Remote Sensing, land use/cover, Change trajectories, Image classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28732022 Antioxidant Properties and Nutritive Values of Raw and Cooked Pool Barb (Puntius sophore) of Eastern Himalayas
Authors: Ch. Sarojnalini, Wahengbam Sarjubala Devi
Abstract:
Antioxidant properties and nutritive values of raw and cooked Pool barb, Puntius sophore (Hamilton-Buchanan) of Eastern Himalayas, India were determined. Antioxidant activity of the methanol extract of the raw, steamed, fried and curried Pool barb was evaluated by using 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging assay. In DPPH scavenging assay the IC50 value of the raw, steamed, fried and curried Pool barb was 1.66 micro-gram/ml, 16.09 micro-gram/ml, 8.99 micro-gram/ml, 0.59 micro-gram/ml whereas the IC50 of the reference ascorbic acid was 46.66miro-gram/ml. These results showed that the fish have high antioxidant activity. Protein content was found highest in raw (20.50±0.08%) and lowest in curried (18.66±0.13%). Moisture content in raw, fried and curried was 76.35±0.09, 46.27±0.14 and 57.46±0.24 respectively. Lipid content was recorded 2.46±0.14% in raw and 21.76±0.10% in curried. Ash content varied from 12.57±0.11 to 22.53±0.07%. The total amino acids varied from 36.79±0.02 and 288.43±0.12 mg/100g. Eleven essential mineral elements were found abundant in all the samples. The samples had considerable amount of Fe ranging from 152.17 to 320.39 milli-gram/100gram, Ca 902.06 to 1356.02 milli-gram/100gram, Zn 91.07 to 138.14 milli-gram/100gram, K 193.25 to 261.56 milli-gram/100gram, Mg 225.06 to 229.10 milli-gram/100gram. Ni was not detected in the curried fish. The Mg and K contents were significantly decreased in frying method; however the Fe, Cu, Ca, Co and Mn contents were increased significantly in all the cooked samples. The Mg and Na contents were significantly increased in curried sample and the Cr content was decreased significantly (p<0.05) in all the cooked samples.
Keywords: Antioxidant property, Pool barb, minerals, amino acids, proximate composition, cooking methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27272021 Development of Fuzzy Logic Control Ontology for E-Learning
Authors: Muhammad Sollehhuddin A. Jalil, Mohd Ibrahim Shapiai, Rubiyah Yusof
Abstract:
Nowadays, ontology is common in many areas like artificial intelligence, bioinformatics, e-commerce, education and many more. Ontology is one of the focus areas in the field of Information Retrieval. The purpose of an ontology is to describe a conceptual representation of concepts and their relationships within a particular domain. In other words, ontology provides a common vocabulary for anyone who needs to share information in the domain. There are several ontology domains in various fields including engineering and non-engineering knowledge. However, there are only a few available ontology for engineering knowledge. Fuzzy logic as engineering knowledge is still not available as ontology domain. In general, fuzzy logic requires step-by-step guidelines and instructions of lab experiments. In this study, we presented domain ontology for Fuzzy Logic Control (FLC) knowledge. We give Table of Content (ToC) with middle strategy based on the Uschold and King method to develop FLC ontology. The proposed framework is developed using Protégé as the ontology tool. The Protégé’s ontology reasoner, known as the Pellet reasoner is then used to validate the presented framework. The presented framework offers better performance based on consistency and classification parameter index. In general, this ontology can provide a platform to anyone who needs to understand FLC knowledge.
Keywords: Engineering knowledge, fuzzy logic control ontology, ontology development, table of contents.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11792020 Genetic Content-Based MP3 Audio Watermarking in MDCT Domain
Authors: N. Moghadam, H. Sadeghi
Abstract:
In this paper a novel scheme for watermarking digital audio during its compression to MPEG-1 Layer III format is proposed. For this purpose we slightly modify some of the selected MDCT coefficients, which are used during MPEG audio compression procedure. Due to the possibility of modifying different MDCT coefficients, there will be different choices for embedding the watermark into audio data, considering robustness and transparency factors. Our proposed method uses a genetic algorithm to select the best coefficients to embed the watermark. This genetic selection is done according to the parameters that are extracted from the perceptual content of the audio to optimize the robustness and transparency of the watermark. On the other hand the watermark security is increased due to the random nature of the genetic selection. The information of the selected MDCT coefficients that carry the watermark bits, are saves in a database for future extraction of the watermark. The proposed method is suitable for online MP3 stores to pursue illegal copies of musical artworks. Experimental results show that the detection ratio of the watermarks at the bitrate of 128kbps remains above 90% while the inaudibility of the watermark is preserved.Keywords: Content-Based Audio Watermarking, Genetic AudioWatermarking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15242019 Blind Low Frequency Watermarking Method
Authors: Dimitar Taskovski, Sofija Bogdanova, Momcilo Bogdanov
Abstract:
We present a low frequency watermarking method adaptive to image content. The image content is analyzed and properties of HVS are exploited to generate a visual mask of the same size as the approximation image. Using this mask we embed the watermark in the approximation image without degrading the image quality. Watermark detection is performed without using the original image. Experimental results show that the proposed watermarking method is robust against most common image processing operations, which can be easily implemented and usually do not degrade the image quality.Keywords: Blind, digital watermarking, low frequency, visualmask.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15492018 Motor Imaginary Signal Classification Using Adaptive Recursive Bandpass Filter and Adaptive Autoregressive Models for Brain Machine Interface Designs
Authors: Vickneswaran Jeyabalan, Andrews Samraj, Loo Chu Kiong
Abstract:
The noteworthy point in the advancement of Brain Machine Interface (BMI) research is the ability to accurately extract features of the brain signals and to classify them into targeted control action with the easiest procedures since the expected beneficiaries are of disabled. In this paper, a new feature extraction method using the combination of adaptive band pass filters and adaptive autoregressive (AAR) modelling is proposed and applied to the classification of right and left motor imagery signals extracted from the brain. The introduction of the adaptive bandpass filter improves the characterization process of the autocorrelation functions of the AAR models, as it enhances and strengthens the EEG signal, which is noisy and stochastic in nature. The experimental results on the Graz BCI data set have shown that by implementing the proposed feature extraction method, a LDA and SVM classifier outperforms other AAR approaches of the BCI 2003 competition in terms of the mutual information, the competition criterion, or misclassification rate.
Keywords: Adaptive autoregressive, adaptive bandpass filter, brain machine Interface, EEG, motor imaginary.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29152017 Site Selection of Traffic Camera based on Dempster-Shafer and Bagging Theory
Authors: S. Rokhsari, M. Delavar, A. Sadeghi-Niaraki, A. Abed-Elmdoust, B. Moshiri
Abstract:
Traffic incident has bad effect on all parts of society so controlling road networks with enough traffic devices could help to decrease number of accidents, so using the best method for optimum site selection of these devices could help to implement good monitoring system. This paper has considered here important criteria for optimum site selection of traffic camera based on aggregation methods such as Bagging and Dempster-Shafer concepts. In the first step, important criteria such as annual traffic flow, distance from critical places such as parks that need more traffic controlling were identified for selection of important road links for traffic camera installation, Then classification methods such as Artificial neural network and Decision tree algorithms were employed for classification of road links based on their importance for camera installation. Then for improving the result of classifiers aggregation methods such as Bagging and Dempster-Shafer theories were used.Keywords: Aggregation, Bagging theory, Dempster-Shafer theory, Site selection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17092016 Co-composting Cow Manure with Food Waste: The Influence of Lipids Content
Authors: Neves, L., Ferreira, V., Oliveira, R.
Abstract:
Addition of an oily waste to a co-composting process of dairy cow manure with food waste, and the influence in the final product was evaluated. Three static composting piles with different substrates concentrations were assessed. Sawdust was also added to all composting piles to attain 60%, humidity at the beginning of the process. In pile 1, the co-substrates were the solid-phase of dairy cow manure, food waste and sawdust as bulking agent. In piles 2 and 3 there was an extra input of oily waste of 7 and 11% of the total volume, respectively, corresponding to 18 and 28% in dry weight. The results showed that the co-composting process was feasible even at the highest fat content. Another positive effect due to the oily waste addition was the requirement of extra humidity, due to the hydrophobic properties of this specific waste, which may imply reduced need of a bulking agent. Moreover, this study shows that composting can be a feasible way of adding value to fatty wastes. The three final composts presented very similar and suitable properties for land application.
Keywords: Cow manure, composting, food waste, lipids content.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17452015 Numerical Modeling of Benzene Transport in Andosol and Sand: Adequacy of Diffusion and Equilibrium Adsorption Equations
Authors: Ping Du, Masaki Sagehashi, Akihiko Terada, Masaaki Hosomi
Abstract:
Prediction of benzene transport in soil and volatilization from soil to the atmosphere is important for the preservation of human health and management of contaminated soils. The adequacy of a simple numerical model, assuming two-phase diffusion and equilibrium of liquid/solid adsorption, was investigated by experimental data of benzene concentration in a flux chamber (with headspace) where Andosol and sand were filled. Adsorption experiment for liquid phase was performed to determine an adsorption coefficient. Furthermore, adequacy of vapor phase adsorption was also studied through two runs of experiment using sand with different water content. The results show that the model adequately predicted benzene transport and volatilization from Andosol and sand with water content of 14.0%. In addition, the experiment additionally revealed that vapor phase adsorption should be considered in diffusion model for sand with very low water content.
Keywords: Benzene; Transport Model, Adsorption, Soil Contaminant.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19942014 Physicochemical Characterization of Waste from Vegetal Extracts Industry for Use as Briquettes
Authors: Maíra O. Palm, Cintia Marangoni, Ozair Souza, Noeli Sellin
Abstract:
Wastes from a vegetal extracts industry (cocoa, oak, Guarana and mate) were characterized by particle size, proximate and ultimate analysis, lignocellulosic fractions, high heating value, thermal analysis (Thermogravimetric analysis – TGA, and Differential thermal analysis - DTA) and energy density to evaluate their potential as biomass in the form of briquettes for power generation. All wastes presented adequate particle sizes to briquettes production. The wastes showed high moisture content, requiring previous drying for use as briquettes. Cocoa and oak wastes had the highest volatile matter contents with maximum mass loss at 310 ºC and 450 ºC, respectively. The solvents used in the aroma extraction process influenced in the moisture content of the wastes, which was higher for mate due to water has been used as solvent. All wastes showed an insignificant loss mass after 565 °C, hence resulting in low ash content. High carbon and hydrogen contents and low sulfur and nitrogen contents were observed ensuring a low generation of sulfur and nitrous oxides. Mate and cocoa exhibited the highest carbon and lignin content, and high heating value. The dried wastes had high heating value, from 17.1 MJ/kg to 20.8 MJ/kg. The results indicate the energy potential of wastes for use as fuel in power generation.
Keywords: Agro-industrial waste, biomass, briquettes, combustion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10452013 Characterization of Candlenut Shells and Its Application to Remove Oil and Fine Solids of Produced Water in Nutshell Filters of Water Cleaning Plant
Authors: Annur Suhadi, Haris B. Harahap, Zaim Arrosyidi, Epan, Darmapala
Abstract:
Oilfields under waterflood often face the problem of plugging injectors either by internal filtration or external filter cake built up inside pore throats. The content of suspended solids shall be reduced to required level of filtration since corrective action of plugging is costly expensive. The performance of nutshell filters, where filtration takes place, is good using pecan and walnut shells. Candlenut shells were used instead of pecan and walnut shells since they were abundant in Indonesia, Malaysia, and East Africa. Physical and chemical properties of walnut, pecan, and candlenut shells were tested and the results were compared. Testing, using full-scale nutshell filters, was conducted to determine the oil content, turbidity, and suspended solid removal, which was based on designed flux rate. The performance of candlenut shells, which were deeply bedded in nutshell filters for filtration process, was monitored. Cleaned water outgoing nutshell filters had total suspended solids of 17 ppm, while oil content could be reduced to 15.1 ppm. Turbidity, using candlenut shells, was below the specification for injection water, which was less than 10 Nephelometric Turbidity Unit (NTU). Turbidity of water, outgoing nutshell filter, was ranged from 1.7-5.0 NTU at various dates of operation. Walnut, pecan, and candlenut shells had moisture content of 8.98 wt%, 10.95 wt%, and 9.95 wt%, respectively. The porosity of walnut, pecan, and candlenut shells was significantly affected by moisture content. Candlenut shells had property of toluene solubility of 7.68 wt%, which was much higher than walnut shells, reflecting more crude oil adsorption. The hardness of candlenut shells was 2.5-3 Mohs, which was close to walnut shells’ hardness. It was advantage to guarantee the cleaning filter cake by fluidization process during backwashing.
Keywords: Candlenut shells, walnut shells, pecan shells, nutshell filter, filtration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4642012 Property of Polyurethane: from Soy-derived Phosphate Ester
Authors: Flora Elvistia Firdaus
Abstract:
Polyurethane foams (PUF) were formed by a chemical reaction of polyol and isocyanate. The polyol was manufactured by ring-opening hydrolysis of epoxidized soybean oil in the presence of phosphoric acid under varying experimental conditions. Other factors in the foam formulation such as water content and surfactant were kept constant. The effect of the amount of solvents, phosphoric acid, and their derivates in the foam formulation on the properties of polyurethane foams were studied. The properties of the material were measured via a number of parameters, which are water content of prepared polyol, polymer density and cellular structures.Keywords: soy, polyurethane, phosporic acid
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18022011 Alternative Approach toward Waste Treatment: Biodrying for Solid Waste in Malaysia
Authors: Nurul' Ain Ab Jalil, Hassan Basri
Abstract:
This paper reviews the objectives, methods and results of previous studies on biodrying of solid waste in several countries. Biodrying of solid waste is a novel technology in developing countries such as in Malaysia where high moisture content in organic waste makes the segregation process for recycling purposes complicated and diminishes the calorific value for the use of fuel source. In addition, the high moisture content also encourages the breeding of vectors and disease-bearing animals. From the laboratory results, the average moisture content of organic waste, paper, plastics and metals are 58.17%, 37.93%, 29.79% and 1.03% respectively for UKM campus. Biodrying of solid waste is a simple method of waste treatment as well as a cost-efficient technology to dry the solid waste. The process depends on temperature monitoring and air flow control along with the natural biodegradable process of organic waste. This review shows that the biodrying of solid waste method has high potential in treatment and recycling of solid waste, be useful for biodrying study and implementation in Malaysia.
Keywords: Biodrying of solid waste, Organic waste, Fuel source.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19892010 A Comparison of SVM-based Criteria in Evolutionary Method for Gene Selection and Classification of Microarray Data
Authors: Rameswar Debnath, Haruhisa Takahashi
Abstract:
An evolutionary method whose selection and recombination operations are based on generalization error-bounds of support vector machine (SVM) can select a subset of potentially informative genes for SVM classifier very efficiently [7]. In this paper, we will use the derivative of error-bound (first-order criteria) to select and recombine gene features in the evolutionary process, and compare the performance of the derivative of error-bound with the error-bound itself (zero-order) in the evolutionary process. We also investigate several error-bounds and their derivatives to compare the performance, and find the best criteria for gene selection and classification. We use 7 cancer-related human gene expression datasets to evaluate the performance of the zero-order and first-order criteria of error-bounds. Though both criteria have the same strategy in theoretically, experimental results demonstrate the best criterion for microarray gene expression data.Keywords: support vector machine, generalization error-bound, feature selection, evolutionary algorithm, microarray data
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15432009 Multivariate High Order Fuzzy Time Series Forecasting for Car Road Accidents
Authors: Tahseen A. Jilani, S. M. Aqil Burney, C. Ardil
Abstract:
In this paper, we have presented a new multivariate fuzzy time series forecasting method. This method assumes mfactors with one main factor of interest. History of past three years is used for making new forecasts. This new method is applied in forecasting total number of car accidents in Belgium using four secondary factors. We also make comparison of our proposed method with existing methods of fuzzy time series forecasting. Experimentally, it is shown that our proposed method perform better than existing fuzzy time series forecasting methods. Practically, actuaries are interested in analysis of the patterns of causalities in road accidents. Thus using fuzzy time series, actuaries can define fuzzy premium and fuzzy underwriting of car insurance and life insurance for car insurance. National Institute of Statistics, Belgium provides region of risk classification for each road. Thus using this risk classification, we can predict premium rate and underwriting of insurance policy holders.Keywords: Average forecasting error rate (AFER), Fuzziness offuzzy sets Fuzzy, If-Then rules, Multivariate fuzzy time series.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2501