Search results for: Technology Based Learning
13014 Participation in Co-Curricular Activities of Undergraduate Nursing Students Attending the Leadership Promoting Program Based on Self-Directed Learning Approach
Authors: Porntipa Taksin, Jutamas Wongchan, Amornrat Karamee
Abstract:
The researchers’ experience of student affairs in 2011-2013, we found that few undergraduate nursing students become student association members who participated in co-curricular activities, they have limited skill of self-directed-learning and leadership. We developed “A Leadership Promoting Program” using Self-Directed Learning concept. The program included six activities: 1) Breaking the ice, Decoding time, Creative SMO, Know me-Understand you, Positive thinking, and Creative dialogue, which include four aspects of these activities: decision-making, implementation, benefits, and evaluation. The one-group, pretest-posttest quasi-experimental research was designed to examine the effects of the program on participation in co-curricular activities. Thirty five students participated in the program. All were members of the board of undergraduate nursing student association of Boromarajonani College of Nursing, Chonburi. All subjects completed the questionnaire about participation in the activities at beginning and at the end of the program. Data were analyzed using descriptive statistics and dependent t-test. The results showed that the posttest scores of all four aspects mean were significantly higher than the pretest scores (t=3.30, p<.01). Three aspects had high mean scores, Benefits (Mean = 3.24, S.D. = 0.83), Decision-making (Mean = 3.21, S.D. = 0.59), and Implementation (Mean=3.06, S.D.=0.52). However, scores on evaluation falls in moderate scale (Mean = 2.68, S.D. = 1.13). Therefore, the Leadership Promoting Program based on Self-Directed Learning Approach could be a method to improve students’ participation in co-curricular activities and leadership.
Keywords: Participation in co-curricular activities, undergraduate nursing students, leadership promoting program, self-directed learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 148413013 Designing a Football Team of Robots from Beginning to End
Authors: Maziar A. Sharbafi, Caro Lucas, Aida Mohammadinejad, Mostafa Yaghobi
Abstract:
The Combination of path planning and path following is the main purpose of this paper. This paper describes the developed practical approach to motion control of the MRL small size robots. An intelligent controller is applied to control omni-directional robots motion in simulation and real environment respectively. The Brain Emotional Learning Based Intelligent Controller (BELBIC), based on LQR control is adopted for the omni-directional robots. The contribution of BELBIC in improving the control system performance is shown as application of the emotional learning in a real world problem. Optimizing of the control effort can be achieved in this method too. Next the implicit communication method is used to determine the high level strategies and coordination of the robots. Some simple rules besides using the environment as a memory to improve the coordination between agents make the robots' decision making system. With this simple algorithm our team manifests a desirable cooperation.
Keywords: multi-agent systems (MAS), Emotional learning, MIMO system, BELBIC, LQR, Communication via environment
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 185313012 Education Quality Development for Excellence Performance with Higher Education by Using COBIT 5
Authors: Kemkanit Sanyanunthana
Abstract:
The purpose of this research is to study the management system of information technology which supports the education of five private universities in Thailand, according to the case studies which have been developing their qualities and standards of management and education by service provision of information technology to support the excellence performance. The concept to connect information technology with a suitable system has been created by information technology administrators for development, as a system that can be used throughout the organizations to help reach the utmost benefits of using all resources. Hence, the researcher as a person who has been performing these duties within higher education is interested to do this research by selecting the Control Objective for Information and Related Technology 5 (COBIT 5) for the Malcolm Baldrige National Quality Award (MBNQA) of America, or the National Award which applies the concept of Total Quality Management (TQM) to the organization evaluation. Such evaluation is called the Education Criteria for Performance Excellence (EdPEx) focuses on studying and comparing education quality development for excellent performance using COBIT 5 in terms of information technology to study the problems and obstacles of the investigation process for an information technology system, which is considered as an instrument to drive all organizations to reach the excellence performance of the information technology, and to be the model of evaluation and analysis of the process to be in accordance with the strategic plans of the information technology in the universities. This research is conducted in the form of descriptive and survey research according to the case studies. The data collection were carried out by using questionnaires through the administrators working related to the information technology field, and the research documents related to the change management as the main study. The research can be concluded that the performance based on the APO domain process (ALIGN, PLAN AND ORGANISE) of the COBIT 5 standard frame, which emphasizes concordant governance and management of strategic plans for the organizations, could reach only 95%. This might be because of some restrictions such as organizational cultures; therefore, the researcher has studied and analyzed the management of information technology in universities as a whole, under the organizational structures, to reach the performance in accordance with the overall APO domain which would affect the determined strategic plans to be able to develop based on the excellence performance of information technology, and to apply the risk management system at the organizational level into every performance process which would develop the work effectiveness for the resources management of information technology to reach the utmost benefits.
Keywords: COBIT 5, APO, EdPEx Criteria, MBNQA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 148813011 Software Model for a Computer Based Training for an HVDC Control Desk Simulator
Authors: José R. G. Braga, Joice B. Mendes, Guilherme H. Caponetto, Alexandre C. B. Ramos
Abstract:
With major technological advances and to reduce the cost of training apprentices for real-time critical systems, it was necessary the development of Intelligent Tutoring Systems for training apprentices in these systems. These systems, in general, have interactive features so that the learning is actually more efficient, making the learner more familiar with the mechanism in question. In the home stage of learning, tests are performed to obtain the student's income, a measure on their use. The aim of this paper is to present a framework to model an Intelligent Tutoring Systems using the UML language. The various steps of the analysis are considered the diagrams required to build a general model, whose purpose is to present the different perspectives of its development.Keywords: Computer based training, Hypermedia, Software modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 160713010 eMedI: Web-Based E-Training for Multimodal Breast Imaging
Authors: Ioannis Pratikakis, Anna Karahaliou, Katerina Vassiou, Vassilis Virvilis, Dimitrios Kosmopoulos, Stavros Perantonis
Abstract:
In this paper, a Web-based e-Training platform that is dedicated to multimodal breast imaging is presented. The assets of this platform are summarised in (i) the efficient representation of the curriculum flow that will permit efficient training; (ii) efficient tagging of multimodal content appropriate for the completion of realistic cases and (iii) ubiquitous accessibility and platform independence via a web-based approach.
Keywords: Breast imaging, e-Training, web-based learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 168613009 Human Resources and Business Result: An Empirical Approach Based On RBV Theory
Authors: XhevrieMamaqi
Abstract:
Organization capacity learning is a process referring to the sum total of individual and collective learning through training programs, experience and experimentation, among others. Today, in-business ongoing training is one of the most important strategies for human capital development and it is crucial to sustain and improve workers’ knowledge and skills. Many organizations, firms and business are adopting a strategy of continuous learning, encouraging employees to learn new skills continually to be innovative and to try new processes and work in order to achieve a competitive advantage and superior business results. This paper uses the Resource Based View and Capacities (RBV) approach to construct a hypothetical relationships model between training and business results. The test of the model is applied on transversal data. A sample of 266 business of Spanish sector service has been selected. A Structural Equation Model (SEM) is used to estimate the relationship between ongoing training, represented by two latent dimension denominated Human and Social Capital resources and economic business results. The coefficients estimated have shown the efficient of some training aspectsexplaining the variation in business results.
Keywords: Business results, Human and Social Capital resources, training, RBV Theory, SEM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 186013008 Using a Semantic Self-Organising Web Page-Ranking Mechanism for Public Administration and Education
Authors: Marios Poulos, Sozon Papavlasopoulos, V. S. Belesiotis
Abstract:
In the proposed method for Web page-ranking, a novel theoretic model is introduced and tested by examples of order relationships among IP addresses. Ranking is induced using a convexity feature, which is learned according to these examples using a self-organizing procedure. We consider the problem of selforganizing learning from IP data to be represented by a semi-random convex polygon procedure, in which the vertices correspond to IP addresses. Based on recent developments in our regularization theory for convex polygons and corresponding Euclidean distance based methods for classification, we develop an algorithmic framework for learning ranking functions based on a Computational Geometric Theory. We show that our algorithm is generic, and present experimental results explaining the potential of our approach. In addition, we explain the generality of our approach by showing its possible use as a visualization tool for data obtained from diverse domains, such as Public Administration and Education.Keywords: Computational Geometry, Education, e-Governance, Semantic Web.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 175713007 Endogenous Fantasy – Based Serious Games: Intrinsic Motivation and Learning
Authors: Robert F. Kenny, Glenda A. Gunter
Abstract:
Current technological advances pale in comparison to the changes in social behaviors and 'sense of place' that is being empowered since the Internet made it on the scene. Today-s students view the Internet as both a source of entertainment and an educational tool. The development of virtual environments is a conceptual framework that needs to be addressed by educators and it is important that they become familiar with who these virtual learners are and how they are motivated to learn. Massively multiplayer online role playing games (MMORPGs), if well designed, could become the vehicle of choice to deliver learning content. We suggest that these games, in order to accomplish these goals, must begin with well-established instructional design principles that are co-aligned with established principles of video game design. And have the opportunity to provide an instructional model of significant prescriptive power. The authors believe that game designers need to take advantage of the natural motivation player-learners have for playing games by developing them in such a way so as to promote, intrinsic motivation, content learning, transfer of knowledge, and naturalization.
Keywords: serious games, endogenous fantasy, intrinsic motivation, online learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 223613006 Metabolic Predictive Model for PMV Control Based on Deep Learning
Authors: Eunji Choi, Borang Park, Youngjae Choi, Jinwoo Moon
Abstract:
In this study, a predictive model for estimating the metabolism (MET) of human body was developed for the optimal control of indoor thermal environment. Human body images for indoor activities and human body joint coordinated values were collected as data sets, which are used in predictive model. A deep learning algorithm was used in an initial model, and its number of hidden layers and hidden neurons were optimized. Lastly, the model prediction performance was analyzed after the model being trained through collected data. In conclusion, the possibility of MET prediction was confirmed, and the direction of the future study was proposed as developing various data and the predictive model.
Keywords: Deep learning, indoor quality, metabolism, predictive model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 119413005 Noise Reduction in Web Data: A Learning Approach Based on Dynamic User Interests
Authors: Julius Onyancha, Valentina Plekhanova
Abstract:
One of the significant issues facing web users is the amount of noise in web data which hinders the process of finding useful information in relation to their dynamic interests. Current research works consider noise as any data that does not form part of the main web page and propose noise web data reduction tools which mainly focus on eliminating noise in relation to the content and layout of web data. This paper argues that not all data that form part of the main web page is of a user interest and not all noise data is actually noise to a given user. Therefore, learning of noise web data allocated to the user requests ensures not only reduction of noisiness level in a web user profile, but also a decrease in the loss of useful information hence improves the quality of a web user profile. Noise Web Data Learning (NWDL) tool/algorithm capable of learning noise web data in web user profile is proposed. The proposed work considers elimination of noise data in relation to dynamic user interest. In order to validate the performance of the proposed work, an experimental design setup is presented. The results obtained are compared with the current algorithms applied in noise web data reduction process. The experimental results show that the proposed work considers the dynamic change of user interest prior to elimination of noise data. The proposed work contributes towards improving the quality of a web user profile by reducing the amount of useful information eliminated as noise.Keywords: Web log data, web user profile, user interest, noise web data learning, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 173413004 Movie Genre Preference Prediction Using Machine Learning for Customer-Based Information
Authors: Haifeng Wang, Haili Zhang
Abstract:
Most movie recommendation systems have been developed for customers to find items of interest. This work introduces a predictive model usable by small and medium-sized enterprises (SMEs) who are in need of a data-based and analytical approach to stock proper movies for local audiences and retain more customers. We used classification models to extract features from thousands of customers’ demographic, behavioral and social information to predict their movie genre preference. In the implementation, a Gaussian kernel support vector machine (SVM) classification model and a logistic regression model were established to extract features from sample data and their test error-in-sample were compared. Comparison of error-out-sample was also made under different Vapnik–Chervonenkis (VC) dimensions in the machine learning algorithm to find and prevent overfitting. Gaussian kernel SVM prediction model can correctly predict movie genre preferences in 85% of positive cases. The accuracy of the algorithm increased to 93% with a smaller VC dimension and less overfitting. These findings advance our understanding of how to use machine learning approach to predict customers’ preferences with a small data set and design prediction tools for these enterprises.Keywords: Computational social science, movie preference, machine learning, SVM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 165113003 Virtual Scene based on VRML and Java
Authors: Hui-jun Ren, Da-kun ZHang
Abstract:
VRML( The virtual reality modeling language) is a standard language used to build up 3D virtualized models. The quick development of internet technology and computer manipulation has promoted the commercialization of reality virtualization. VRML, thereof, is expected to be the most effective framework of building up virtual reality. This article has studied plans to build virtualized scenes based on the technology of virtual reality and Java programe, and introduced how to execute real-time data transactions of VRML file and Java programe by applying Script Node, in doing so we have the VRML interactivity being strengthened.
Keywords: VRML, Java, Virtual scene, Script.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 150713002 An Application for Risk of Crime Prediction Using Machine Learning
Authors: Luis Fonseca, Filipe Cabral Pinto, Susana Sargento
Abstract:
The increase of the world population, especially in large urban centers, has resulted in new challenges particularly with the control and optimization of public safety. Thus, in the present work, a solution is proposed for the prediction of criminal occurrences in a city based on historical data of incidents and demographic information. The entire research and implementation will be presented start with the data collection from its original source, the treatment and transformations applied to them, choice and the evaluation and implementation of the Machine Learning model up to the application layer. Classification models will be implemented to predict criminal risk for a given time interval and location. Machine Learning algorithms such as Random Forest, Neural Networks, K-Nearest Neighbors and Logistic Regression will be used to predict occurrences, and their performance will be compared according to the data processing and transformation used. The results show that the use of Machine Learning techniques helps to anticipate criminal occurrences, which contributed to the reinforcement of public security. Finally, the models were implemented on a platform that will provide an API to enable other entities to make requests for predictions in real-time. An application will also be presented where it is possible to show criminal predictions visually.Keywords: Crime prediction, machine learning, public safety, smart city.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 132613001 Achieving Business and IT Alignment from Organisational Learning Perspectives
Authors: Hamad Hussain Balhareth, Kecheng Liu, Sharm Manwani
Abstract:
Business and IT alignment has continued as a top concern for business and IT executives for almost three decades. Many researchers have conducted empirical studies on the relationship between business-IT alignment and performance. Yet, these approaches, lacking a social perspective, have had little impact on sustaining performance and competitive advantage. In addition to the limited alignment literature that explores organisational learning that is represented in shared understanding, communication, cognitive maps and experiences. Hence, this paper proposes an integrated process that enables social and intellectual dimensions through the concept of organisational learning. In particular, the feedback and feedforward process which provide a value creation across dynamic multilevel of learning. This mechanism enables on-going effectiveness through development of individuals, groups and organisations, which improves the quality of business and IT strategies and drives to performance.Keywords: business-IT alignment, social dimension, intellectual dimension, organisational learning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 174013000 Personal Information Classification Based on Deep Learning in Automatic Form Filling System
Authors: Shunzuo Wu, Xudong Luo, Yuanxiu Liao
Abstract:
Recently, the rapid development of deep learning makes artificial intelligence (AI) penetrate into many fields, replacing manual work there. In particular, AI systems also become a research focus in the field of automatic office. To meet real needs in automatic officiating, in this paper we develop an automatic form filling system. Specifically, it uses two classical neural network models and several word embedding models to classify various relevant information elicited from the Internet. When training the neural network models, we use less noisy and balanced data for training. We conduct a series of experiments to test my systems and the results show that our system can achieve better classification results.Keywords: Personal information, deep learning, auto fill, NLP, document analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 86112999 MLOps Scaling Machine Learning Lifecycle in an Industrial Setting
Authors: Yizhen Zhao, Adam S. Z. Belloum, Gonc¸alo Maia da Costa, Zhiming Zhao
Abstract:
Machine learning has evolved from an area of academic research to a real-world applied field. This change comes with challenges, gaps and differences exist between common practices in academic environments and the ones in production environments. Following continuous integration, development and delivery practices in software engineering, similar trends have happened in machine learning (ML) systems, called MLOps. In this paper we propose a framework that helps to streamline and introduce best practices that facilitate the ML lifecycle in an industrial setting. This framework can be used as a template that can be customized to implement various machine learning experiments. The proposed framework is modular and can be recomposed to be adapted to various use cases (e.g. data versioning, remote training on Cloud). The framework inherits practices from DevOps and introduces other practices that are unique to the machine learning system (e.g.data versioning). Our MLOps practices automate the entire machine learning lifecycle, bridge the gap between development and operation.
Keywords: Cloud computing, continuous development, data versioning, DevOps, industrial setting, MLOps, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 107412998 Student Satisfaction Data for Work Based Learners
Authors: Rosie Borup, Hanifa Shah
Abstract:
This paper aims to describe how student satisfaction is measured for work-based learners as these are non-traditional learners, conducting academic learning in the workplace, typically their curricula have a high degree of negotiation, and whose motivations are directly related to their employers- needs, as well as their own career ambitions. We argue that while increasing WBL participation, and use of SSD are both accepted as being of strategic importance to the HE agenda, the use of WBL SSD is rarely examined, and lessons can be learned from the comparison of SSD from a range of WBL programmes, and increased visibility of this type of data will provide insight into ways to improve and develop this type of delivery. The key themes that emerged from the analysis of the interview data were: learners profiles and needs, employers drivers, academic staff drivers, organizational approach, tools for collecting data and visibility of findings. The paper concludes with observations on best practice in the collection, analysis and use of WBL SSD, thus offering recommendations for both academic managers and practitioners.Keywords: Student satisfaction data, work based learning, employer engagement, NSS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 149312997 Reducing Cognitive Load in Learning Computer Programming
Authors: Muhammed Yousoof, Mohd Sapiyan, Khaja Kamaluddin
Abstract:
Many difficulties are faced in the process of learning computer programming. This paper will propose a system framework intended to reduce cognitive load in learning programming. In first section focus is given on the process of learning and the shortcomings of the current approaches to learning programming. Finally the proposed prototype is suggested along with the justification of the prototype. In the proposed prototype the concept map is used as visualization metaphor. Concept maps are similar to the mental schema in long term memory and hence it can reduce cognitive load well. In addition other method such as part code method is also proposed in this framework to can reduce cognitive load.Keywords: Cognitive load, concept maps, working memory, split attention effect, partial code programs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 259412996 Dual-Actuated Vibration Isolation Technology for a Rotary System’s Position Control on a Vibrating Frame: Disturbance Rejection and Active Damping
Authors: Kamand Bagherian, Nariman Niknejad
Abstract:
A vibration isolation technology for precise position control of a rotary system powered by two permanent magnet DC (PMDC) motors is proposed, where this system is mounted on an oscillatory frame. To achieve vibration isolation for this system, active damping and disturbance rejection (ADDR) technology is presented which introduces a cooperation of a main and an auxiliary PMDC, controlled by discrete-time sliding mode control (DTSMC) based schemes. The controller of the main actuator tracks a desired position and the auxiliary actuator simultaneously isolates the induced vibration, as its controller follows a torque trend. To determine this torque trend, a combination of two algorithms is introduced by the ADDR technology. The first torque-trend producing algorithm rejects the disturbance by counteracting the perturbation, estimated using a model-based observer. The second torque trend applies active variable damping to minimize the oscillation of the output shaft. In this practice, the presented technology is implemented on a rotary system with a pendulum attached, mounted on a linear actuator simulating an oscillation-transmitting structure. In addition, the obtained results illustrate the functionality of the proposed technology.Keywords: Vibration isolation, position control, discrete-time nonlinear controller, active damping, disturbance tracking algorithm, oscillation transmitting support, stability robustness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 61012995 Using A Hybrid Algorithm to Improve the Quality of Services in Multicast Routing Problem
Authors: Mohammad Reza Karami Nejad
Abstract:
A hybrid learning automata-genetic algorithm (HLGA) is proposed to solve QoS routing optimization problem of next generation networks. The algorithm complements the advantages of the learning Automato Algorithm(LA) and Genetic Algorithm(GA). It firstly uses the good global search capability of LA to generate initial population needed by GA, then it uses GA to improve the Quality of Service(QoS) and acquiring the optimization tree through new algorithms for crossover and mutation operators which are an NP-Complete problem. In the proposed algorithm, the connectivity matrix of edges is used for genotype representation. Some novel heuristics are also proposed for mutation, crossover, and creation of random individuals. We evaluate the performance and efficiency of the proposed HLGA-based algorithm in comparison with other existing heuristic and GA-based algorithms by the result of simulation. Simulation results demonstrate that this paper proposed algorithm not only has the fast calculating speed and high accuracy but also can improve the efficiency in Next Generation Networks QoS routing. The proposed algorithm has overcome all of the previous algorithms in the literature.
Keywords: Routing, Quality of Service, Multicaset, Learning Automata, Genetic, Next Generation Networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 173712994 Effective Online Staff Training: Is This Possible?
Authors: C. Rogerson, E. Scott
Abstract:
The purpose of this paper is to consider the introduction of online courses to replace the current classroom-based staff training. The current training is practical, and must be completed before access to the financial computer system is authorized. The long term objective is to measure the efficacy, effectiveness and efficiency of the training, and to establish whether a transfer of knowledge back to the workplace has occurred. This paper begins with an overview explaining the importance of staff training in an evolving, competitive business environment and defines the problem facing this particular organization. A summary of the literature review is followed by a brief discussion of the research methodology and objective. The implementation of the alpha version of the online course is then described. This paper may be of interest to those seeking insights into, or new theory regarding, practical interventions of online learning in the real world.
Keywords: Computer-based courses, e-learning, online training, workplace training.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 168012993 Design of a Statistics Lecture for Multidisciplinary Postgraduate Students Using a Range of Tools and Techniques
Abstract:
Teaching statistics is a critical and challenging issue especially to students from multidisciplinary and diverse postgraduate backgrounds. Postgraduate research students require statistics not only for the design of experiments; but also for data analysis. Students often perceive statistics as a complex and technical subject; thus, they leave data analysis to the last moment. The lecture needs to be simple and inclusive at the same time to make it comprehendible and address the learning needs of each student. Therefore, the aim of this work was to design a simple and comprehendible statistics lecture to postgraduate research students regarding ‘Research plan, design and data collection’. The lecture adopted the constructive alignment learning theory which facilitated the learning environments for the students. The learning environment utilized a student-centered approach and used interactive learning environment with in-class discussion, handouts and electronic voting system handsets. For evaluation of the lecture, formative assessment was made with in-class discussions and poll questions which were introduced during and after the lecture. The whole approach showed to be effective in creating a learning environment to the students who were able to apply the concepts addressed to their individual research projects.
Keywords: Teaching, statistics, lecture, multidisciplinary, postgraduate, learning theory, learning environment, student-centered approach, data analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 113512992 Using the Technology Acceptance Model to Examine Seniors’ Attitudes toward Facebook
Authors: Chien-Jen Liu, Shu Ching Yang
Abstract:
Using the technology acceptance model (TAM), this study examined the external variables of technological complexity (TC) to acquire a better understanding of the factors that influence the acceptance of computer application courses by learners at Active Aging Universities. After the learners in this study had completed a 27-hour Facebook course, 44 learners responded to a modified TAM survey. Data were collected to examine the path relationships among the variables that influence the acceptance of Facebook-mediated community learning. The partial least squares (PLS) method was used to test the measurement and the structural model. The study results demonstrated that attitudes toward Facebook use directly influence behavioral intentions (BI) with respect to Facebook use, evincing a high prediction rate of 58.3%. In addition to the perceived usefulness (PU) and perceived ease of use (PEOU) measures that are proposed in the TAM, other external variables, such as TC, also indirectly influence BI. These four variables can explain 88% of the variance in BI and demonstrate a high level of predictive ability. Finally, limitations of this investigation and implications for further research are discussed.
Keywords: Technology acceptance model (TAM), technological complexity, partial least squares (PLS), perceived usefulness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 319612991 Study on Evaluating the Utilization of Social Media Tools (SMT) in Collaborative Learning Case Study: Faculty of Medicine, King Khalid University
Authors: Vasanthi Muniasamy, Intisar Magboul Ejalani, M. Anandhavalli, K. Gauthaman
Abstract:
Social Media (SM) is websites increasingly popular and built to allow people to express themselves and to interact socially with others. Most SMT are dominated by youth particularly College students. The proliferation of popular social media tools, which can accessed from any communication devices has become pervasive in the lives of today’s student life. Connecting traditional education to social media tools are a relatively new era and any collaborative tool could be used for learning activities. This study focuses (i) how the social media tools are useful for the learning activities of the students of faculty of medicine in King Khalid University (ii) whether the social media affects the collaborative learning with interaction among students, among course instructor, their engagement, perceived ease of use and perceived ease of usefulness (TAM) (iii) overall, the students satisfy with this collaborative learning through Social media.
Keywords: Social Media, Web 2.0, Perceived ease of use, perceived usefulness, Collaborative Learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 231512990 Implementation of the Quality Management System and Development of Organizational Learning: Case of Three Small and Medium-Sized Enterprises in Morocco
Authors: Abdelghani Boudiaf
Abstract:
The profusion of studies relating to the concept of organizational learning shows the importance that has been given to this concept in the management sciences. A few years ago, companies leaned towards ISO 9001 certification; this requires the implementation of the quality management system (QMS). In order for this objective to be achieved, companies must have a set of skills, which pushes them to develop learning through continuous training. The results of empirical research have shown that implementation of the QMS in the company promotes the development of learning. It should also be noted that several types of learning are developed in this sense. Given the nature of skills development is normative in the context of the quality demarche, companies are obliged to qualify and improve the skills of their human resources. Continuous training is the keystone to develop the necessary learning. To carry out continuous training, companies need to be able to identify their real needs by developing training plans based on well-defined engineering. The training process goes obviously through several stages. Initially, training has a general aspect, that is to say, it focuses on topics and actions of a general nature. Subsequently, this is done in a more targeted and more precise way to accompany the evolution of the QMS and also to make the changes decided each time (change of working method, change of practices, change of objectives, change of mentality, etc.). To answer our problematic we opted for the method of qualitative research. It should be noted that the case study method crosses several data collection techniques to explain and understand a phenomenon. Three cases of companies were studied as part of this research work using different data collection techniques related to this method.
Keywords: Changing mentalities, continuous training, organizational learning, quality management system, skills development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 72712989 Designing for Inclusion within the Learning Management System: Social Justice, Identities, and Online Design for Digital Spaces in Higher Education
Authors: Christina Van Wingerden
Abstract:
The aim of this paper is to propose pedagogical design for learning management systems (LMS) that offers greater inclusion for students based on a number of theoretical perspectives and delineated through an example. Considering the impact of COVID-19, including on student mental health, the research suggesting the importance of student sense of belonging on retention, success, and student well-being, the author describes intentional LMS design incorporating theoretically based practices informed by critical theory, feminist theory, indigenous theory and practices, and new materiality. This article considers important aspects of these theories and practices which attend to inclusion, identities, and socially just learning environments. Additionally, increasing student sense of belonging and mental health through LMS design influenced by adult learning theory and the community of inquiry model are described. The process of thinking through LMS pedagogical design with inclusion intentionally in mind affords the opportunity to allow LMS to go beyond course use as a repository of documents, to an intentional community of practice that facilitates belonging and connection, something much needed in our times. In virtual learning environments it has been harder to discern how students are doing, especially in feeling connected to their courses, their faculty, and their student peers. Increasingly at the forefront of public universities is addressing the needs of students with multiple and intersecting identities and the multiplicity of needs and accommodations. Education in 2020, and moving forward, calls for embedding critical theories and inclusive ideals and pedagogies to the ways instructors design and teach in online platforms. Through utilization of critical theoretical frameworks and instructional practices, students may experience the LMS as a welcoming place with intentional plans for welcoming diversity in identities.
Keywords: Belonging, critical pedagogy, instructional design, Learning Management System, LMS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 83512988 Toward a Model for Knowledge Development in Virtual Environments: Strategies for Student Ownership
Authors: N.B. Adams
Abstract:
This article discusses the concept of student ownership of knowledge and seeks to determine how to move students from knowledge acquisition to knowledge application and ultimately to knowledge generation in a virtual setting. Instructional strategies for fostering student engagement in a virtual environment are critical to the learner-s strategic ownership of the knowledge. A number of relevant theories that focus on learning, affect, needs and adult concerns are presented to provide a basis for exploring the transfer of knowledge from teacher to learner. A model under development is presented that combines the dimensions of knowledge approach, the teacher-student relationship with regards to knowledge authority and teaching approach to demonstrate the recursive and scaffolded design for creation of virtual learning environments.
Keywords: Virtual learning environments, learning theory, teaching model, online learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 186812987 A Survey in Techniques for Imbalanced Intrusion Detection System Datasets
Authors: Najmeh Abedzadeh, Matthew Jacobs
Abstract:
An intrusion detection system (IDS) is a software application that monitors malicious activities and generates alerts if any are detected. However, most network activities in IDS datasets are normal, and the relatively few numbers of attacks make the available data imbalanced. Consequently, cyber-attacks can hide inside a large number of normal activities, and machine learning algorithms have difficulty learning and classifying the data correctly. In this paper, a comprehensive literature review is conducted on different types of algorithms for both implementing the IDS and methods in correcting the imbalanced IDS dataset. The most famous algorithms are machine learning (ML), deep learning (DL), synthetic minority over-sampling technique (SMOTE), and reinforcement learning (RL). Most of the research use the CSE-CIC-IDS2017, CSE-CIC-IDS2018, and NSL-KDD datasets for evaluating their algorithms.
Keywords: IDS, intrusion detection system, imbalanced datasets, sampling algorithms, big data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 112512986 Deep Learning Based Fall Detection Using Simplified Human Posture
Authors: Kripesh Adhikari, Hamid Bouchachia, Hammadi Nait-Charif
Abstract:
Falls are one of the major causes of injury and death among elderly people aged 65 and above. A support system to identify such kind of abnormal activities have become extremely important with the increase in ageing population. Pose estimation is a challenging task and to add more to this, it is even more challenging when pose estimations are performed on challenging poses that may occur during fall. Location of the body provides a clue where the person is at the time of fall. This paper presents a vision-based tracking strategy where available joints are grouped into three different feature points depending upon the section they are located in the body. The three feature points derived from different joints combinations represents the upper region or head region, mid-region or torso and lower region or leg region. Tracking is always challenging when a motion is involved. Hence the idea is to locate the regions in the body in every frame and consider it as the tracking strategy. Grouping these joints can be beneficial to achieve a stable region for tracking. The location of the body parts provides a crucial information to distinguish normal activities from falls.Keywords: Fall detection, machine learning, deep learning, pose estimation, tracking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 212912985 Multi-Level Air Quality Classification in China Using Information Gain and Support Vector Machine
Authors: Bingchun Liu, Pei-Chann Chang, Natasha Huang, Dun Li
Abstract:
Machine Learning and Data Mining are the two important tools for extracting useful information and knowledge from large datasets. In machine learning, classification is a wildly used technique to predict qualitative variables and is generally preferred over regression from an operational point of view. Due to the enormous increase in air pollution in various countries especially China, Air Quality Classification has become one of the most important topics in air quality research and modelling. This study aims at introducing a hybrid classification model based on information theory and Support Vector Machine (SVM) using the air quality data of four cities in China namely Beijing, Guangzhou, Shanghai and Tianjin from Jan 1, 2014 to April 30, 2016. China's Ministry of Environmental Protection has classified the daily air quality into 6 levels namely Serious Pollution, Severe Pollution, Moderate Pollution, Light Pollution, Good and Excellent based on their respective Air Quality Index (AQI) values. Using the information theory, information gain (IG) is calculated and feature selection is done for both categorical features and continuous numeric features. Then SVM Machine Learning algorithm is implemented on the selected features with cross-validation. The final evaluation reveals that the IG and SVM hybrid model performs better than SVM (alone), Artificial Neural Network (ANN) and K-Nearest Neighbours (KNN) models in terms of accuracy as well as complexity.
Keywords: Machine learning, air quality classification, air quality index, information gain, support vector machine, cross-validation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 948