Search results for: Optimization problems
3295 Capacity Optimization in Cooperative Cognitive Radio Networks
Authors: Mahdi Pirmoradian, Olayinka Adigun, Christos Politis
Abstract:
Cooperative spectrum sensing is a crucial challenge in cognitive radio networks. Cooperative sensing can increase the reliability of spectrum hole detection, optimize sensing time and reduce delay in cooperative networks. In this paper, an efficient central capacity optimization algorithm is proposed to minimize cooperative sensing time in a homogenous sensor network using OR decision rule subject to the detection and false alarm probabilities constraints. The evaluation results reveal significant improvement in the sensing time and normalized capacity of the cognitive sensors.Keywords: Cooperative networks, normalized capacity, sensing time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18793294 Fixture Layout Optimization Using Element Strain Energy and Genetic Algorithm
Authors: Zeshan Ahmad, Matteo Zoppi, Rezia Molfino
Abstract:
The stiffness of the workpiece is very important to reduce the errors in manufacturing process. The high stiffness of the workpiece can be achieved by optimal positioning of fixture elements in the fixture. The minimization of the sum of the nodal deflection normal to the surface is used as objective function in previous research. The deflection in other direction has been neglected. The 3-2-1 fixturing principle is not valid for metal sheets due to its flexible nature. We propose a new fixture layout optimization method N-3-2-1 for metal sheets that uses the strain energy of the finite elements. This method combines the genetic algorithm and finite element analysis. The objective function in this method is to minimize the sum of all the element strain energy. By using the concept of element strain energy, the deformations in all the directions have been considered. Strain energy and stiffness are inversely proportional to each other. So, lower the value of strain energy, higher will be the stiffness. Two different kinds of case studies are presented. The case studies are solved for both objective functions; element strain energy and nodal deflection. The result are compared to verify the propose method.
Keywords: Fixture layout, optimization, fixturing element, genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25643293 Data Mining Using Learning Automata
Authors: M. R. Aghaebrahimi, S. H. Zahiri, M. Amiri
Abstract:
In this paper a data miner based on the learning automata is proposed and is called LA-miner. The LA-miner extracts classification rules from data sets automatically. The proposed algorithm is established based on the function optimization using learning automata. The experimental results on three benchmarks indicate that the performance of the proposed LA-miner is comparable with (sometimes better than) the Ant-miner (a data miner algorithm based on the Ant Colony optimization algorithm) and CNZ (a well-known data mining algorithm for classification).Keywords: Data mining, Learning automata, Classification rules, Knowledge discovery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19353292 Generalized Stokes’ Problems for an Incompressible Couple Stress Fluid
Authors: M.Devakar, T.K.V.Iyengar
Abstract:
In this paper, we investigate the generalized Stokes’ problems for an incompressible couple stress fluid. Analytical solution of the governing equations is obtained in Laplace transform domain for each problem. A standard numerical inversion technique is used to invert the Laplace transform of the velocity in each case. The effect of various material parameters on velocity is discussed and the results are presented through graphs. It is observed that, the results are in tune with the observation of V.K.Stokes in connection with the variation of velocity in the flow between two parallel plates when the top one is moving with constant velocity and the bottom one is at rest.
Keywords: Couple stress fluid, Generalized Stokes’ problems, Laplace transform, Numerical inversion
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32383291 Optimization of Deglet-Nour Date (Phoenix dactylifera L.) Phenol Extraction Conditions
Authors: Lekbir Adel, Alloui-Lombarkia Ourida, Mekentichi Sihem, Noui Yassine, Baississe Salima
Abstract:
The objective of this study was to optimize the extraction conditions for phenolic compounds, total flavonoids, and antioxidant activity from Deglet-Nour variety. The extraction of active components from natural sources depends on different factors. The knowledge of the effects of different extraction parameters is useful for the optimization of the process, as well for the ability to predict the extraction yield. The effects of extraction variables, namely types of solvent (methanol, ethanol and acetone) and extraction time (1h, 6h, 12h and 24h) on phenolics extraction yield were evaluated. It has been shown that the time of extraction and types of solvent have a statistically significant influence on the extraction of phenolic compounds from Deglet-Nour variety. The optimised conditions yielded values of 80.19 ± 6.37 mg GAE/100 g FW for TPC, 2.34 ± 0.27 mg QE/100 g FW for TFC and 90.20 ± 1.29% for antioxidant activity were methanol solvent and 6 hours of time. According to the results obtained in this study, Deglet-Nour variety can be considered as a natural source of phenolic compounds with good antioxidant capacity.
Keywords: Deglet-Nour variety, Date palm Fruit, Phenolic compounds, Total flavonoids, Antioxidant activity, Extraction, Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26773290 Application of “Multiple Risk Communicator“ to the Personal Information Leakage Problem
Authors: Mitsuhiro Taniyama, Yuu Hidaka, Masato Arai, Satoshi Kai, Hiromi Igawa, Hiroshi Yajima, Ryoichi Sasaki
Abstract:
Along with the progress of our information society, various risks are becoming increasingly common, causing multiple social problems. For this reason, risk communications for establishing consensus among stakeholders who have different priorities have become important. However, it is not always easy for the decision makers to agree on measures to reduce risks based on opposing concepts, such as security, privacy and cost. Therefore, we previously developed and proposed the “Multiple Risk Communicator" (MRC) with the following functions: (1) modeling the support role of the risk specialist, (2) an optimization engine, and (3) displaying the computed results. In this paper, MRC program version 1.0 is applied to the personal information leakage problem. The application process and validation of the results are discussed.Keywords: Decision Making, Personal Information Leakage Problem, Risk Communication, Risk Management
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16083289 A New Approach for Predicting and Optimizing Weld Bead Geometry in GMAW
Authors: Farhad Kolahan, Mehdi Heidari
Abstract:
Gas Metal Arc Welding (GMAW) processes is an important joining process widely used in metal fabrication industries. This paper addresses modeling and optimization of this technique using a set of experimental data and regression analysis. The set of experimental data has been used to assess the influence of GMAW process parameters in weld bead geometry. The process variables considered here include voltage (V); wire feed rate (F); torch Angle (A); welding speed (S) and nozzle-to-plate distance (D). The process output characteristics include weld bead height, width and penetration. The Taguchi method and regression modeling are used in order to establish the relationships between input and output parameters. The adequacy of the model is evaluated using analysis of variance (ANOVA) technique. In the next stage, the proposed model is embedded into a Simulated Annealing (SA) algorithm to optimize the GMAW process parameters. The objective is to determine a suitable set of process parameters that can produce desired bead geometry, considering the ranges of the process parameters. Computational results prove the effectiveness of the proposed model and optimization procedure.Keywords: Weld Bead Geometry, GMAW welding, Processparameters Optimization, Modeling, SA algorithm
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21873288 Mechanical Modeling Issues in Optimization of Dynamic Behavior of RF MEMS Switches
Authors: Suhas K, Sripadaraja K
Abstract:
This paper details few mechanical modeling and design issues of RF MEMS switches. We concentrate on an electrostatically actuated broad side series switch; surface micromachined with a crab leg membrane. The same results are extended to any complex structure. With available experimental data and fabrication results, we present the variation in dynamic performance and compliance of the switch with reference to few design issues, which we find are critical in deciding the dynamic behavior of the switch, without compromise on the RF characteristics. The optimization of pull in voltage, transient time and resonant frequency with regard to these critical design parameters are also presented.Keywords: Microelectromechanical Systems (MEMS), RadioFrequency MEMS, Modeling, Actuators
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17603287 Parameter Optimization and Thermal Simulation in Laser Joining of Coach Peel Panels of Dissimilar Materials
Authors: Masoud Mohammadpour, Blair Carlson, Radovan Kovacevic
Abstract:
The quality of laser welded-brazed (LWB) joints were strongly dependent on the main process parameters, therefore the effect of laser power (3.2–4 kW), welding speed (60–80 mm/s) and wire feed rate (70–90 mm/s) on mechanical strength and surface roughness were investigated in this study. The comprehensive optimization process by means of response surface methodology (RSM) and desirability function was used for multi-criteria optimization. The experiments were planned based on Box– Behnken design implementing linear and quadratic polynomial equations for predicting the desired output properties. Finally, validation experiments were conducted on an optimized process condition which exhibited good agreement between the predicted and experimental results. AlSi3Mn1 was selected as the filler material for joining aluminum alloy 6022 and hot-dip galvanized steel in coach peel configuration. The high scanning speed could control the thickness of IMC as thin as 5 µm. The thermal simulations of joining process were conducted by the Finite Element Method (FEM), and results were validated through experimental data. The Fe/Al interfacial thermal history evidenced that the duration of critical temperature range (700–900 °C) in this high scanning speed process was less than 1 s. This short interaction time leads to the formation of reaction-control IMC layer instead of diffusion-control mechanisms.
Keywords: Laser welding-brazing, finite element, response surface methodology, multi-response optimization, cross-beam laser.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9613286 Problems and Possible Solutions with the Development of a Computer Model of Quantum Theory
Authors: Hans H. Diel
Abstract:
A computer model of Quantum Theory (QT) has been developed by the author. Major goal of the computer model was support and demonstration of an as large as possible scope of QT. This includes simulations for the major QT (Gedanken-) experiments such as, for example, the famous double-slit experiment. Besides the anticipated difficulties with (1) transforming exacting mathematics into a computer program, two further types of problems showed up, namely (2) areas where QT provides a complete mathematical formalism, but when it comes to concrete applications the equations are not solvable at all, or only with extremely high effort; (3) QT rules which are formulated in natural language and which do not seem to be translatable to precise mathematical expressions, nor to a computer program. The paper lists problems in all three categories and describes also the possible solutions or circumventions developed for the computer model.Keywords: Computability, Foundation of Quantum Mechanics, Measurement Process, Modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17023285 Optimization Model for Identification of Assembly Alternatives of Large-Scale, Make-to-Order Products
Authors: Henrik Prinzhorn, Peter Nyhuis, Johannes Wagner, Peter Burggräf, Torben Schmitz, Christina Reuter
Abstract:
Assembling large-scale products, such as airplanes, locomotives, or wind turbines, involves frequent process interruptions induced by e.g. delayed material deliveries or missing availability of resources. This leads to a negative impact on the logistical performance of a producer of xxl-products. In industrial practice, in case of interruptions, the identification, evaluation and eventually the selection of an alternative order of assembly activities (‘assembly alternative’) leads to an enormous challenge, especially if an optimized logistical decision should be reached. Therefore, in this paper, an innovative, optimization model for the identification of assembly alternatives that addresses the given problem is presented. It describes make-to-order, large-scale product assembly processes as a resource constrained project scheduling (RCPS) problem which follows given restrictions in practice. For the evaluation of the assembly alternative, a cost-based definition of the logistical objectives (delivery reliability, inventory, make-span and workload) is presented.Keywords: Assembly scheduling, large-scale products, make-to-order, rescheduling, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14373284 Research on Maintenance Design Method based Virtual Maintenance
Authors: Yunbin Yang, Liangli He, Fengjun Wang
Abstract:
The essentiality of maintenance assessment and maintenance optimization in design stage is analyzed, and the existent problems of conventional maintenance design method are illuminated. MDMVM (Maintenance Design Method based Virtual Maintenance) is illuminated, and the process of MDMVM established, and the MDMVM architecture is given out. The key techniques of MDMVM are analyzed, and include maintenance design based KBE (Knowledge Based Engineering) and virtual maintenance based physically attribute. According to physical property, physically based modeling, visual object movement control, the simulation of operation force and maintenance sequence planning method are emphatically illuminated. Maintenance design system based virtual maintenance is established in foundation of maintenance design method.Keywords: Digital mock-up, virtual maintenance, knowledge engineering, maintenance sequence planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13653283 Embedded Singly Diagonally Implicit Runge-Kutta –Nystrom Method Order 5(4) for the Integration of Special Second Order ODEs
Authors: Fudziah Ismail
Abstract:
In this paper a new embedded Singly Diagonally Implicit Runge-Kutta Nystrom fourth order in fifth order method for solving special second order initial value problems is derived. A standard set of test problems are tested upon and comparisons on the numerical results are made when the same set of test problems are reduced to first order systems and solved using the existing embedded diagonally implicit Runge-Kutta method. The results suggests the superiority of the new method.Keywords: Runge-Kutta Nystrom, Special second orderproblems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16653282 Optimizing PID Parameters Using Harmony Search
Authors: N. Arulanand, P. Dhara
Abstract:
Optimizing the parameters in the controller plays a vital role in the control theory and its applications. Optimizing the PID parameters is finding out the best value from the feasible solutions. Finding the optimal value is an optimization problem. Inverted Pendulum is a very good platform for control engineers to verify and apply different logics in the field of control theory. It is necessary to find an optimization technique for the controller to tune the values automatically in order to minimize the error within the given bounds. In this paper, the algorithmic concepts of Harmony search (HS) and Genetic Algorithm (GA) have been analyzed for the given range of values. The experimental results show that HS performs well than GA.Keywords: Genetic Algorithm, Harmony Search Algorithm, Inverted Pendulum, PID Controller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18083281 Simulated Annealing and Genetic Algorithm in Telecommunications Network Planning
Authors: Aleksandar Tsenov
Abstract:
The main goal of this work is to propose a way for combined use of two nontraditional algorithms by solving topological problems on telecommunications concentrator networks. The algorithms suggested are the Simulated Annealing algorithm and the Genetic Algorithm. The Algorithm of Simulated Annealing unifies the well known local search algorithms. In addition - Simulated Annealing allows acceptation of moves in the search space witch lead to decisions with higher cost in order to attempt to overcome any local minima obtained. The Genetic Algorithm is a heuristic approach witch is being used in wide areas of optimization works. In the last years this approach is also widely implemented in Telecommunications Networks Planning. In order to solve less or more complex planning problem it is important to find the most appropriate parameters for initializing the function of the algorithm.Keywords: Concentrator network, genetic algorithm, simulated annealing, UCPL.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17243280 Conventional and Hybrid Network Energy Systems Optimization for Canadian Community
Authors: Mohamed Ghorab
Abstract:
Local generated and distributed system for thermal and electrical energy is sighted in the near future to reduce transmission losses instead of the centralized system. Distributed Energy Resources (DER) is designed at different sizes (small and medium) and it is incorporated in energy distribution between the hubs. The energy generated from each technology at each hub should meet the local energy demands. Economic and environmental enhancement can be achieved when there are interaction and energy exchange between the hubs. Network energy system and CO2 optimization between different six hubs presented Canadian community level are investigated in this study. Three different scenarios of technology systems are studied to meet both thermal and electrical demand loads for the six hubs. The conventional system is used as the first technology system and a reference case study. The conventional system includes boiler to provide the thermal energy, but the electrical energy is imported from the utility grid. The second technology system includes combined heat and power (CHP) system to meet the thermal demand loads and part of the electrical demand load. The third scenario has integration systems of CHP and Organic Rankine Cycle (ORC) where the thermal waste energy from the CHP system is used by ORC to generate electricity. General Algebraic Modeling System (GAMS) is used to model DER system optimization based on energy economics and CO2 emission analyses. The results are compared with the conventional energy system. The results show that scenarios 2 and 3 provide an annual total cost saving of 21.3% and 32.3 %, respectively compared to the conventional system (scenario 1). Additionally, Scenario 3 (CHP & ORC systems) provides 32.5% saving in CO2 emission compared to conventional system subsequent case 2 (CHP system) with a value of 9.3%.
Keywords: Distributed energy resources, network energy system, optimization, microgeneration system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9403279 Optimization Approach to Estimate Hammerstein–Wiener Nonlinear Blocks in Presence of Noise and Disturbance
Authors: Leili Esmaeilani, Jafar Ghaisari, Mohsen Ahmadian
Abstract:
Hammerstein–Wiener model is a block-oriented model where a linear dynamic system is surrounded by two static nonlinearities at its input and output and could be used to model various processes. This paper contains an optimization approach method for analysing the problem of Hammerstein–Wiener systems identification. The method relies on reformulate the identification problem; solve it as constraint quadratic problem and analysing its solutions. During the formulation of the problem, effects of adding noise to both input and output signals of nonlinear blocks and disturbance to linear block, in the emerged equations are discussed. Additionally, the possible parametric form of matrix operations to reduce the equation size is presented. To analyse the possible solutions to the mentioned system of equations, a method to reduce the difference between the number of equations and number of unknown variables by formulate and importing existing knowledge about nonlinear functions is presented. Obtained equations are applied to an instance H–W system to validate the results and illustrate the proposed method.Keywords: Identification, Hammerstein-Wiener, optimization, quantization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7993278 The Possibility of Solving a 3x3 Rubik’s Cube under 3 Seconds
Authors: Chung To Kong, Siu Ming Yiu
Abstract:
Rubik's cube was invented in 1974. Since then, speedcubers all over the world try their best to break the world record again and again. The newest record is 3.47 seconds. There are many factors that affect the timing including turns per second (tps), algorithm, finger trick, and hardware of the cube. In this paper, the lower bound of the cube solving time will be discussed using convex optimization. Extended analysis of the world records will be used to understand how to improve the timing. With the understanding of each part of the solving step, the paper suggests a list of speed improvement technique. Based on the analysis of the world record, there is a high possibility that the 3 seconds mark will be broken soon.
Keywords: Rubik’s cube, convex optimization, speed cubing, CFOP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8453277 Impulsive Noise-Resilient Subband Adaptive Filter
Authors: Young-Seok Choi
Abstract:
We present a new subband adaptive filter (R-SAF) which is robust against impulsive noise in system identification. To address the vulnerability of adaptive filters based on the L2-norm optimization criterion against impulsive noise, the R-SAF comes from the L1-norm optimization criterion with a constraint on the energy of the weight update. Minimizing L1-norm of the a posteriori error in each subband with a constraint on minimum disturbance gives rise to the robustness against the impulsive noise and the capable convergence performance. Experimental results clearly demonstrate that the proposed R-SAF outperforms the classical adaptive filtering algorithms when impulsive noise as well as background noise exist.Keywords: Subband adaptive filter, L1-norm, system identification, robustness, impulsive interference.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14703276 Sensorless Speed Based on MRAS with Tuning of IP Speed Controller in FOC of Induction Motor Drive Using PSO
Authors: Youcef Bekakra, Djilani Ben attous
Abstract:
In this paper, a field oriented control (FOC) induction motor drive is presented. In order to eliminate the speed sensor, an adaptation algorithm for tuning the rotor speed is proposed. Based on the Model Reference Adaptive System (MRAS) scheme, the rotor speed is tuned to obtain an exact FOC induction motor drive. The reference and adjustable models, developed in stationary stator reference frame, are used in the MRAS scheme to estimate induction rotor speed from measured terminal voltages and currents. The Integral Proportional (IP) gains speed controller are tuned by a modern approach that is the Particle Swarm Optimization (PSO) algorithm in order to optimize the parameters of the IP controller. The use of PSO as an optimization algorithm makes the drive robust, with faster dynamic response, higher accuracy and insensitive to load variation. The proposed algorithm has been tested by numerical simulation, showing the capability of driving load.
Keywords: Induction motor drive, field oriented control, model reference adaptive system (MRAS), particle swarm optimization (PSO).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20113275 Impulse Response Shortening for Discrete Multitone Transceivers using Convex Optimization Approach
Authors: Ejaz Khan, Conor Heneghan
Abstract:
In this paper we propose a new criterion for solving the problem of channel shortening in multi-carrier systems. In a discrete multitone receiver, a time-domain equalizer (TEQ) reduces intersymbol interference (ISI) by shortening the effective duration of the channel impulse response. Minimum mean square error (MMSE) method for TEQ does not give satisfactory results. In [1] a new criterion for partially equalizing severe ISI channels to reduce the cyclic prefix overhead of the discrete multitone transceiver (DMT), assuming a fixed transmission bandwidth, is introduced. Due to specific constrained (unit morm constraint on the target impulse response (TIR)) in their method, the freedom to choose optimum vector (TIR) is reduced. Better results can be obtained by avoiding the unit norm constraint on the target impulse response (TIR). In this paper we change the cost function proposed in [1] to the cost function of determining the maximum of a determinant subject to linear matrix inequality (LMI) and quadratic constraint and solve the resulting optimization problem. Usefulness of the proposed method is shown with the help of simulations.Keywords: Equalizer, target impulse response, convex optimization, matrix inequality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17123274 Process Parameter Optimization in Resistance Spot Welding of Dissimilar Thickness Materials
Authors: Pradeep M., N. S. Mahesh, Raja Hussain
Abstract:
Resistance spot welding (RSW) has been used widely to join sheet metals. It has been a challenge to get required weld quality in spot welding of dissimilar thickness materials. Weld parameters are not generally available in standards for thickness beyond 4mm. This paper presents the welding process design and parameter optimization of RSW used in joining of low carbon steel sheet of thickness 0.8 mm and metal strips of cross section 10 x 5mm for electrical motor applications. Taguchi quality design was adopted for weld current and time optimization using L9 orthogonal array. Optimum process parameters (current- 3.5kA and time- 10 cycles) were obtained from the Taguchi analysis and shear test results. Confirmation experiment result revealed that the weld quality was within acceptable interval. Further, numerical simulation of RSW process was carried out with selected weld parameters to quantify the temperature at faying surface and check for formation of appropriate nugget. The nugget geometry measured after peel test and predicted from numerical validation method were similar and in accordance with the standards.
Keywords: Resistance spot welding, dissimilar thickness, weld parameters, Taguchi method, numerical modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 51893273 Challenges in Video Based Object Detection in Maritime Scenario Using Computer Vision
Authors: Dilip K. Prasad, C. Krishna Prasath, Deepu Rajan, Lily Rachmawati, Eshan Rajabally, Chai Quek
Abstract:
This paper discusses the technical challenges in maritime image processing and machine vision problems for video streams generated by cameras. Even well documented problems of horizon detection and registration of frames in a video are very challenging in maritime scenarios. More advanced problems of background subtraction and object detection in video streams are very challenging. Challenges arising from the dynamic nature of the background, unavailability of static cues, presence of small objects at distant backgrounds, illumination effects, all contribute to the challenges as discussed here.Keywords: Autonomous maritime vehicle, object detection, situation awareness, tracking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13293272 Minimum-Fuel Optimal Trajectory for Reusable First-Stage Rocket Landing Using Particle Swarm Optimization
Authors: Kevin Spencer G. Anglim, Zhenyu Zhang, Qingbin Gao
Abstract:
Reusable launch vehicles (RLVs) present a more environmentally-friendly approach to accessing space when compared to traditional launch vehicles that are discarded after each flight. This paper studies the recyclable nature of RLVs by presenting a solution method for determining minimum-fuel optimal trajectories using principles from optimal control theory and particle swarm optimization (PSO). This problem is formulated as a minimum-landing error powered descent problem where it is desired to move the RLV from a fixed set of initial conditions to three different sets of terminal conditions. However, unlike other powered descent studies, this paper considers the highly nonlinear effects caused by atmospheric drag, which are often ignored for studies on the Moon or on Mars. Rather than optimizing the controls directly, the throttle control is assumed to be bang-off-bang with a predetermined thrust direction for each phase of flight. The PSO method is verified in a one-dimensional comparison study, and it is then applied to the two-dimensional cases, the results of which are illustrated.Keywords: Minimum-fuel optimal trajectory, particle swarm optimization, reusable rocket, SpaceX.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20133271 Social Network Based Decision Support System for Smart U-Parking Planning
Authors: Jun-Ho Park, Kwang-Woo Nam, Seung-Mo Hong, Tae-Heon Moon, Sang-Ho Lee, Youn-Taik Leem
Abstract:
The aim of this study was to build ‘Ubi-Net’, a decision-making support system for systematic establishment in U-City planning. We have experienced various urban problems caused by high-density development and population concentrations in established urban areas. To address these problems, a U-Service contributes to the alleviation of urban problems by providing real-time information to citizens through network connections and related information. However, technology, devices, and information for consumers are required for systematic U-Service planning in towns and cities where there are many difficulties in this regard, and a lack of reference systems. Thus, this study suggests methods to support the establishment of sustainable planning by providing comprehensive information including IT technology, devices, news, and social networking services (SNS) to U-City planners through intelligent searches. In this study, we targeted Smart U-Parking Planning to solve parking problems in an ‘old’ city. Through this study, we sought to contribute to supporting advances in U-Space and the alleviation of urban problems.
Keywords: Design and decision support system, smart U-parking planning, social network analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22763270 Hybridizing Genetic Algorithm with Biased Chance Local Search
Authors: Mehdi Basikhasteh, Mohamad A. Movafaghpour
Abstract:
This paper explores university course timetabling problem. There are several characteristics that make scheduling and timetabling problems particularly difficult to solve: they have huge search spaces, they are often highly constrained, they require sophisticated solution representation schemes, and they usually require very time-consuming fitness evaluation routines. Thus standard evolutionary algorithms lack of efficiency to deal with them. In this paper we have proposed a memetic algorithm that incorporates the problem specific knowledge such that most of chromosomes generated are decoded into feasible solutions. Generating vast amount of feasible chromosomes makes the progress of search process possible in a time efficient manner. Experimental results exhibit the advantages of the developed Hybrid Genetic Algorithm than the standard Genetic Algorithm.Keywords: University Course Timetabling, Memetic Algorithm, Biased Chance Assignment, Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16993269 Optimizing Turning Parameters for Cylindrical Parts Using Simulated Annealing Method
Authors: Farhad Kolahan, Mahdi Abachizadeh
Abstract:
In this paper, a simulated annealing algorithm has been developed to optimize machining parameters in turning operation on cylindrical workpieces. The turning operation usually includes several passes of rough machining and a final pass of finishing. Seven different constraints are considered in a non-linear model where the goal is to achieve minimum total cost. The weighted total cost consists of machining cost, tool cost and tool replacement cost. The computational results clearly show that the proposed optimization procedure has considerably improved total operation cost by optimally determining machining parameters.
Keywords: Optimization, Simulated Annealing, Machining Parameters, Turning Operation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18223268 Is Management Science doing Enough to Improve Healthcare?
Authors: Lalit Garg, Sally McClean, Maria Barton
Abstract:
Healthcare issues continue to pose huge problems and incur massive costs. As a result there are many challenging problems still unresolved. In this paper, we will carry out an extensive scientific survey of different areas of management and planning in an attempt to identify where there has already been a substantial contribution from management science methods to healthcare problems and where there is a clear potential for more work to be done. The focus will be on the read-across to the healthcare domain from such approaches applied generally to management and planning and how the methods can be used to improvement patient care. We conclude that, since the healthcare domain significantly differs from traditional areas of management and planning, in some cases there is a need to modify the approaches so as to incorporate the complexities of healthcare, and fully exploit the potential for improvement.
Keywords: Management science, management and planning, transforming services, healthcare.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14753267 Proxisch: An Optimization Approach of Large-Scale Unstable Proxy Servers Scheduling
Authors: Xiaoming Jiang, Jinqiao Shi, Qingfeng Tan, Wentao Zhang, Xuebin Wang, Muqian Chen
Abstract:
Nowadays, big companies such as Google, Microsoft, which have adequate proxy servers, have perfectly implemented their web crawlers for a certain website in parallel. But due to lack of expensive proxy servers, it is still a puzzle for researchers to crawl large amounts of information from a single website in parallel. In this case, it is a good choice for researchers to use free public proxy servers which are crawled from the Internet. In order to improve efficiency of web crawler, the following two issues should be considered primarily: (1) Tasks may fail owing to the instability of free proxy servers; (2) A proxy server will be blocked if it visits a single website frequently. In this paper, we propose Proxisch, an optimization approach of large-scale unstable proxy servers scheduling, which allow anyone with extremely low cost to run a web crawler efficiently. Proxisch is designed to work efficiently by making maximum use of reliable proxy servers. To solve second problem, it establishes a frequency control mechanism which can ensure the visiting frequency of any chosen proxy server below the website’s limit. The results show that our approach performs better than the other scheduling algorithms.Keywords: Proxy server, priority queue, optimization approach, distributed web crawling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28923266 Applying Lagrangian Relaxation-Based Algorithm for the Airline Coordinated Flight Scheduling Problems
Authors: Chia-Hung Chen, Shangyao Yan
Abstract:
The solution algorithm, based on Lagrangian relaxation, a sub-gradient method and a heuristic to find the upper bound of the solution, is proposed to solve the coordinated fleet routing and flight scheduling problems. Numerical tests are performed to evaluate the proposed algorithm using real operating data from two Taiwan airlines. The test results indicate that the solution algorithm is a significant improvement over those obtained with CPLEX, consequently they could be useful for allied airlines to solve coordinated fleet routing and flight scheduling problems.
Keywords: Coordinated flight scheduling, multiple commodity network flow problem, Lagrangian relaxation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1814