Search results for: Ensemble methods
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4051

Search results for: Ensemble methods

3361 The Best Methods of Motivating and Encouraging the Students to Study: A Case Study

Authors: Mahmoud I. Syam, Osama K. El-Hafy

Abstract:

With lack of student motivation, there will be a little or no real learning in the class and this directly effects student achievement and test scores. Some students are naturally motivated to learn, but many students are not motivated, they do care little about learning and need their instructors to motivate them. Thus, motivating students is part of the instructor’s job. It’s a tough task to motivate students and make them have more attention and enthusiasm. As a part of this research, a questionnaire has been distributed among a sample of 155 students out of 1502 students from Foundation Program at Qatar University. The questionnaire helped us to determine some methods to motivate the students and encourage them to study such as variety of teaching activities, encouraging students to participate during the lectures, creating intense competition between the students, using instructional technology, not using grades as a threat and respecting the students and treating them in a good manner. Accordingly, some hypotheses are tested and some recommendations are presented.

Keywords: Learning, motivating, student, teacher, testing hypotheses.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1143
3360 The Importance of Psychological Contracts through Leadership: The Relationship between Human Resource Strategy and Performance

Authors: Bella Llego

Abstract:

The purpose of this research is: a) to investigate how the HR practices influence psychological contracts, b) to examine the influence of psychological contracts to individual behavior and to contribute individually, c) to study the psychological contact through leadership. This research using mixed methods, qualitative and quantitative research methods were utilized to gather the data collected using a qualitative method by the HR Manager who is in charge of the trainings from the staffs and quantitative method (survey) by using questionnaire was utilized to draw upon and to elaborate on the recurring themes present during the interviews. The survey was done to 400 staffs of the company. The study found that leadership styles supporting the firm’s HR strategy is the key in making psychological contracts that benefit both the firm and its members.

Keywords: Human Resource Performance Practice, and Leadership, Psychological Contacts, Relationship of Managers and staffs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4008
3359 CAD Tools Broadband Amplifier Design

Authors: Salwa M. Salah Eldeen, Fathi A. Farag, Abd Allah M. Moselhy

Abstract:

This paper proposed a new CAD tools for microwave amplifier design. The proposed tool is based on survey about the broadband amplifier design methods, such as the Feedback amplifiers, balanced amplifiers and Compensated Matching Network The proposed tool is developed for broadband amplifier using a compensated matching network "unconditional stability amplifier". The developed program is based on analytical procedures with ability of smith chart explanation. The C# software is used for the proposed tools implementation. The program is applied on broadband amplifier as an example for testing. The designed amplifier is considered as a broadband amplifier at the range 300-700 MHz. The results are highly agreement with the expected results. Finally, these methods can be extended for wide band amplifier design.

Keywords: Broadband amplifier (BBA), Compensated Matching Network, Microwave Amplifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1368
3358 Comparative study of the Genetic Algorithms and Hessians Method for Minimization of the Electric Power Production Cost

Authors: L. Abdelmalek, M. Zerikat, M. Rahli

Abstract:

In this paper, we present a comparative study of the genetic algorithms and Hessian-s methods for optimal research of the active powers in an electric network of power. The objective function which is the performance index of production of electrical energy is minimized by satisfying the constraints of the equality type and inequality type initially by the Hessian-s methods and in the second time by the genetic Algorithms. The results found by the application of AG for the minimization of the electric production costs of power are very encouraging. The algorithms seem to be an effective technique to solve a great number of problems and which are in constant evolution. Nevertheless it should be specified that the traditional binary representation used for the genetic algorithms creates problems of optimization of management of the large-sized networks with high numerical precision.

Keywords: Genetic algorithm, Flow of optimum loadimpedances, Hessians method, Optimal distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1290
3357 An Adaptive Mammographic Image Enhancement in Orthogonal Polynomials Domain

Authors: R. Krishnamoorthy, N. Amudhavalli, M.K. Sivakkolunthu

Abstract:

X-ray mammography is the most effective method for the early detection of breast diseases. However, the typical diagnostic signs such as microcalcifications and masses are difficult to detect because mammograms are of low-contrast and noisy. In this paper, a new algorithm for image denoising and enhancement in Orthogonal Polynomials Transformation (OPT) is proposed for radiologists to screen mammograms. In this method, a set of OPT edge coefficients are scaled to a new set by a scale factor called OPT scale factor. The new set of coefficients is then inverse transformed resulting in contrast improved image. Applications of the proposed method to mammograms with subtle lesions are shown. To validate the effectiveness of the proposed method, we compare the results to those obtained by the Histogram Equalization (HE) and the Unsharp Masking (UM) methods. Our preliminary results strongly suggest that the proposed method offers considerably improved enhancement capability over the HE and UM methods.

Keywords: mammograms, image enhancement, orthogonalpolynomials, contrast improvement

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2011
3356 Systematic Examination of Methods Supporting the Social Innovation Process

Authors: Mariann Veresne Somosi, Zoltan Nagy, Krisztina Varga

Abstract:

Innovation is the key element of economic development and a key factor in social processes. Technical innovations can be identified as prerequisites and causes of social change and cannot be created without the renewal of society. The study of social innovation can be characterised as one of the significant research areas of our day. The study’s aim is to identify the process of social innovation, which can be defined by input, transformation, and output factors. This approach divides the social innovation process into three parts: situation analysis, implementation, follow-up. The methods associated with each stage of the process are illustrated by the chronological line of social innovation. In this study, we have sought to present methodologies that support long- and short-term decision-making that is easy to apply, have different complementary content, and are well visualised for different user groups. When applying the methods, the reference objects are different: county, district, settlement, specific organisation. The solution proposed by the study supports the development of a methodological combination adapted to different situations. Having reviewed metric and conceptualisation issues, we wanted to develop a methodological combination along with a change management logic suitable for structured support to the generation of social innovation in the case of a locality or a specific organisation. In addition to a theoretical summary, in the second part of the study, we want to give a non-exhaustive picture of the two counties located in the north-eastern part of Hungary through specific analyses and case descriptions.

Keywords: Factors of social innovation, methodological combination, social innovation process, supporting decision-making.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 658
3355 Municipal Solid Waste Management in KhoramAbad City and Experiences

Authors: Ali Jafari, Hatam Godini, Saed Hamed Mirhousaini

Abstract:

This paper presents an overview of current municipal solid waste management in Khoram Abad city. According to data collected by the local authorities, the waste generation rate is estimated to be 800 g/cap.d with density of 243 kg/m3. Solid waste is stored in different types of containers at the source of generation in different areas of the city. Local Authority is responsible for waste collection, transportation. Municipality is responsible for waste collection, using private sector contracts. At present, both mechanical and manual methods are used to collect residential waste. Manual methods of collection are the most commonly used for waste collection in most parts of the city. Land filling is the main disposal method in this city. But it has some obvious problem and deficiencies The current state of solid waste management has been improved slightly in the last decade. By more actions can reduce the human and environmental risks.

Keywords: Disposal, Landfill, management, solid waste.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2022
3354 A Review on Application of Phase Change Materials in Textiles Finishing

Authors: Mazyar Ahrari, Ramin Khajavi, Mehdi Kamali Dolatabadi, Tayebeh Toliyat, Abosaeed Rashidi

Abstract:

Fabric as the first and most common layer that is in permanent contact with human skin is a very good interface to provide coverage, as well as heat and cold insulation. Phase change materials (PCMs) are organic and inorganic compounds which have the capability of absorbing and releasing noticeable amounts of latent heat during phase transitions between solid and liquid phases at a low temperature range. PCMs come across phase changes (liquid-solid and solid-liquid transitions) during absorbing and releasing thermal heat; so, in order to use them for a long time, they should have been encapsulated in polymeric shells, so-called microcapsules. Microencapsulation and nanoencapsulation methods have been developed in order to reduce the reactivity of a PCM with outside environment, promoting the ease of handling, decreasing the diffusion and evaporation rates. Methods of incorporation of PCMs in textiles such as electrospinning and determining thermal properties had been summarized. Paraffin waxes catch a lot of attention due to their high thermal storage density, repeatability of phase change, thermal stability, small volume change during phase transition, chemical stability, non-toxicity, non-flammability, non-corrosive and low cost and they seem to play a key role in confronting with climate change and global warming. In this article, we aimed to review the researches concentrating on the characteristics of PCMs and new materials and methods of microencapsulation.

Keywords: Thermoregulation, phase change materials, microencapsulation, thermal energy storage, nanoencapsulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1947
3353 Consumer Product Demand Forecasting based on Artificial Neural Network and Support Vector Machine

Authors: Karin Kandananond

Abstract:

The nature of consumer products causes the difficulty in forecasting the future demands and the accuracy of the forecasts significantly affects the overall performance of the supply chain system. In this study, two data mining methods, artificial neural network (ANN) and support vector machine (SVM), were utilized to predict the demand of consumer products. The training data used was the actual demand of six different products from a consumer product company in Thailand. The results indicated that SVM had a better forecast quality (in term of MAPE) than ANN in every category of products. Moreover, another important finding was the margin difference of MAPE from these two methods was significantly high when the data was highly correlated.

Keywords: Artificial neural network (ANN), Bullwhip effect, Consumer products, Demand forecasting, Supply chain, Support vector machine (SVM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3009
3352 A New Method for Contour Approximation Using Basic Ramer Idea

Authors: Ali Abdrhman Ukasha

Abstract:

This paper presented two new efficient algorithms for contour approximation. The proposed algorithm is compared with Ramer (good quality), Triangle (faster) and Trapezoid (fastest) in this work; which are briefly described. Cartesian co-ordinates of an input contour are processed in such a manner that finally contours is presented by a set of selected vertices of the edge of the contour. In the paper the main idea of the analyzed procedures for contour compression is performed. For comparison, the mean square error and signal-to-noise ratio criterions are used. Computational time of analyzed methods is estimated depending on a number of numerical operations. Experimental results are obtained both in terms of image quality, compression ratios, and speed. The main advantages of the analyzed algorithm is small numbers of the arithmetic operations compared to the existing algorithms.

Keywords: Polygonal approximation, Ramer, Triangle and Trapezoid methods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1807
3351 Evolutionary Program Based Approach for Manipulator Grasping Color Objects

Authors: Y. Harold Robinson, M. Rajaram, Honey Raju

Abstract:

Image segmentation and color identification is an important process used in various emerging fields like intelligent robotics. A method is proposed for the manipulator to grasp and place the color object into correct location. The existing methods such as PSO, has problems like accelerating the convergence speed and converging to a local minimum leading to sub optimal performance. To improve the performance, we are using watershed algorithm and for color identification, we are using EPSO. EPSO method is used to reduce the probability of being stuck in the local minimum. The proposed method offers the particles a more powerful global exploration capability. EPSO methods can determine the particles stuck in the local minimum and can also enhance learning speed as the particle movement will be faster.

Keywords: Color information, EPSO, hue, saturation, value (HSV), image segmentation, particle swarm optimization (PSO). Active Contour, GMM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1581
3350 Advanced Numerical and Analytical Methods for Assessing Concrete Sewers and Their Remaining Service Life

Authors: Amir Alani, Mojtaba Mahmoodian, Anna Romanova, Asaad Faramarzi

Abstract:

Pipelines are extensively used engineering structures which convey fluid from one place to another. Most of the time, pipelines are placed underground and are encumbered by soil weight and traffic loads. Corrosion of pipe material is the most common form of pipeline deterioration and should be considered in both the strength and serviceability analysis of pipes. The study in this research focuses on concrete pipes in sewage systems (concrete sewers). This research firstly investigates how to involve the effect of corrosion as a time dependent process of deterioration in the structural and failure analysis of this type of pipe. Then three probabilistic time dependent reliability analysis methods including the first passage probability theory, the gamma distributed degradation model and the Monte Carlo simulation technique are discussed and developed. Sensitivity analysis indexes which can be used to identify the most important parameters that affect pipe failure are also discussed. The reliability analysis methods developed in this paper contribute as rational tools for decision makers with regard to the strengthening and rehabilitation of existing pipelines. The results can be used to obtain a cost-effective strategy for the management of the sewer system.

Keywords: Reliability analysis, service life prediction, Monte Carlo simulation method, first passage probability theory, gamma distributed degradation model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1266
3349 Creation of a New Software used for Palletizing Process

Authors: Dušan Kravec, Ondrej Staš, Marián Tolnay, Michal Bachratý

Abstract:

This article gives a short preview of the new software created especially for palletizing process in automated production systems. Each chapter of this article is about problem solving in development of modules in Java programming language. First part describes structure of the software, its modules and data flow between them. Second part describes all deployment methods, which are implemented in the software. Next chapter is about twodimensional editor created for manipulation with objects in each layer of the load and gives calculations for collision control. Module of virtual reality used for three-dimensional preview and creation of the load is described in the fifth chapter. The last part of this article describes communication and data flow between control system of the robot, vision system and software.

Keywords: Palletizing, deployment methods, palletizing software, virtual reality in palletizing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1835
3348 On Formalizing Predefined OCL Properties

Authors: Meryem Lamrani, Younès El Amrani, Aziz Ettouhami

Abstract:

The ability of UML to handle the modeling process of complex industrial software applications has increased its popularity to the extent of becoming the de-facto language in serving the design purpose. Although, its rich graphical notation naturally oriented towards the object-oriented concept, facilitates the understandability, it hardly successes to report all domainspecific aspects in a satisfactory way. OCL, as the standard language for expressing additional constraints on UML models, has great potential to help improve expressiveness. Unfortunately, it suffers from a weak formalism due to its poor semantic resulting in many obstacles towards the build of tools support and thus its application in the industry field. For this reason, many researches were established to formalize OCL expressions using a more rigorous approach. Our contribution join this work in a complementary way since it focuses specifically on OCL predefined properties which constitute an important part in the construction of OCL expressions. Using formal methods, we mainly succeed in expressing rigorously OCL predefined functions.

Keywords: Formal methods, Z, OCL, predefined properties, metamodel types.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 772
3347 Database Development and Discrimination Algorithms for Membrane Protein Functions

Authors: M. Michael Gromiha, Y. Yabuki, K. Imai, P. Horton, K. Fukui

Abstract:

We have developed a database for membrane protein functions, which has more than 3000 experimental data on functionally important amino acid residues in membrane proteins along with sequence, structure and literature information. Further, we have proposed different methods for identifying membrane proteins based on their functions: (i) discrimination of membrane transport proteins from other globular and membrane proteins and classifying them into channels/pores, electrochemical and active transporters, and (ii) β-signal for the insertion of mitochondrial β-barrel outer membrane proteins and potential targets. Our method showed an accuracy of 82% in discriminating transport proteins and 68% to classify them into three different transporters. In addition, we have identified a motif for targeting β-signal and potential candidates for mitochondrial β-barrel membrane proteins. Our methods can be used as effective tools for genome-wide annotations.

Keywords: Membrane proteins, database, transporters, discrimination, β-signal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1568
3346 Low-Complexity Channel Estimation Algorithm for MIMO-OFDM Systems

Authors: Ali Beydoun, Hamzé H. Alaeddine

Abstract:

One of the main challenges in MIMO-OFDM system to achieve the expected performances in terms of data rate and robustness against multi-path fading channels is the channel estimation. Several methods were proposed in the literature based on either least square (LS) or minimum mean squared error (MMSE) estimators. These methods present high implementation complexity as they require the inversion of large matrices. In order to overcome this problem and to reduce the complexity, this paper presents a solution that benefits from the use of the STBC encoder and transforms the channel estimation process into a set of simple linear operations. The proposed method is evaluated via simulation in AWGN-Rayleigh fading channel. Simulation results show a maximum reduction of 6.85% of the bit error rate (BER) compared to the one obtained with the ideal case where the receiver has a perfect knowledge of the channel.

Keywords: Channel estimation, MIMO, OFDM, STBC, CAZAC sequence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 881
3345 A Comparative Study of Rigid and Modified Simplex Methods for Optimal Parameter Settings of ACO for Noisy Non-Linear Surfaces

Authors: Seksan Chunothaisawat, Pongchanun Luangpaiboon

Abstract:

There are two common types of operational research techniques, optimisation and metaheuristic methods. The latter may be defined as a sequential process that intelligently performs the exploration and exploitation adopted by natural intelligence and strong inspiration to form several iterative searches. An aim is to effectively determine near optimal solutions in a solution space. In this work, a type of metaheuristics called Ant Colonies Optimisation, ACO, inspired by a foraging behaviour of ants was adapted to find optimal solutions of eight non-linear continuous mathematical models. Under a consideration of a solution space in a specified region on each model, sub-solutions may contain global or multiple local optimum. Moreover, the algorithm has several common parameters; number of ants, moves, and iterations, which act as the algorithm-s driver. A series of computational experiments for initialising parameters were conducted through methods of Rigid Simplex, RS, and Modified Simplex, MSM. Experimental results were analysed in terms of the best so far solutions, mean and standard deviation. Finally, they stated a recommendation of proper level settings of ACO parameters for all eight functions. These parameter settings can be applied as a guideline for future uses of ACO. This is to promote an ease of use of ACO in real industrial processes. It was found that the results obtained from MSM were pretty similar to those gained from RS. However, if these results with noise standard deviations of 1 and 3 are compared, MSM will reach optimal solutions more efficiently than RS, in terms of speed of convergence.

Keywords: Ant colony optimisation, metaheuristics, modified simplex, non-linear, rigid simplex.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1624
3344 Performance Comparison of Different Regression Methods for a Polymerization Process with Adaptive Sampling

Authors: Florin Leon, Silvia Curteanu

Abstract:

Developing complete mechanistic models for polymerization reactors is not easy, because complex reactions occur simultaneously; there is a large number of kinetic parameters involved and sometimes the chemical and physical phenomena for mixtures involving polymers are poorly understood. To overcome these difficulties, empirical models based on sampled data can be used instead, namely regression methods typical of machine learning field. They have the ability to learn the trends of a process without any knowledge about its particular physical and chemical laws. Therefore, they are useful for modeling complex processes, such as the free radical polymerization of methyl methacrylate achieved in a batch bulk process. The goal is to generate accurate predictions of monomer conversion, numerical average molecular weight and gravimetrical average molecular weight. This process is associated with non-linear gel and glass effects. For this purpose, an adaptive sampling technique is presented, which can select more samples around the regions where the values have a higher variation. Several machine learning methods are used for the modeling and their performance is compared: support vector machines, k-nearest neighbor, k-nearest neighbor and random forest, as well as an original algorithm, large margin nearest neighbor regression. The suggested method provides very good results compared to the other well-known regression algorithms.

Keywords: Adaptive sampling, batch bulk methyl methacrylate polymerization, large margin nearest neighbor regression, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1401
3343 Scrum as the Method Supporting the Implementation of Knowledge Management in an Organization

Authors: Andrej Miklošík, Eva Hvizdová, Štefan Žák

Abstract:

Many companies have switched their processes to project-oriented in the last years. This brings new possibilities and effectiveness not only in the field of external processes connected with the product delivery but also the internal processes as well. However centralized project organization which is based on the role of project manager in the team has proved insufficient in some cases. Agile methods of project organization are trying to solve this problem by bringing new view on the project organization, roles, processes and competences. Scrum is one of these methods which builds on the principles of knowledge management to drive the project to effectiveness from all view angles. Using this method to organize internal and delivery projects helps the organization to create and share knowledge throughout the company. It also supports forming unique competences of individuals and project teams and drives innovations in the company.

Keywords: agile software development, knowledge management, knowledge dissemination, project management, SCRUM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2615
3342 Heuristic Set-Covering-Based Postprocessing for Improving the Quine-McCluskey Method

Authors: Miloš Šeda

Abstract:

Finding the minimal logical functions has important applications in the design of logical circuits. This task is solved by many different methods but, frequently, they are not suitable for a computer implementation. We briefly summarise the well-known Quine-McCluskey method, which gives a unique procedure of computing and thus can be simply implemented, but, even for simple examples, does not guarantee an optimal solution. Since the Petrick extension of the Quine-McCluskey method does not give a generally usable method for finding an optimum for logical functions with a high number of values, we focus on interpretation of the result of the Quine-McCluskey method and show that it represents a set covering problem that, unfortunately, is an NP-hard combinatorial problem. Therefore it must be solved by heuristic or approximation methods. We propose an approach based on genetic algorithms and show suitable parameter settings.

Keywords: Boolean algebra, Karnaugh map, Quine-McCluskey method, set covering problem, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2793
3341 Topographical Image Transference Compatibility Generated Through Moiré Technique Applying Parametrical Softwares of Computer Assisted Design

Authors: M. V. G. Silva, J. Gazzola, I. M. Dal Fabbro, A. C. L. Lino

Abstract:

Computer aided design accounts with the support of parametric software in the design of machine components as well as of any other pieces of interest. The complexities of the element under study sometimes offer certain difficulties to computer design, or ever might generate mistakes in the final body conception. Reverse engineering techniques are based on the transformation of already conceived body images into a matrix of points which can be visualized by the design software. The literature exhibits several techniques to obtain machine components dimensional fields, as contact instrument (MMC), calipers and optical methods as laser scanner, holograms as well as moiré methods. The objective of this research work was to analyze the moiré technique as instrument of reverse engineering, applied to bodies of nom complex geometry as simple solid figures, creating matrices of points. These matrices were forwarded to a parametric software named SolidWorks to generate the virtual object. Volume data obtained by mechanical means, i.e., by caliper, the volume obtained through the moiré method and the volume generated by the SolidWorks software were compared and found to be in close agreement. This research work suggests the application of phase shifting moiré methods as instrument of reverse engineering, serving also to support farm machinery element designs.

Keywords: Reverse engineering, Moiré technique, three dimensional image generation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3458
3340 Applying Fuzzy FP-Growth to Mine Fuzzy Association Rules

Authors: Chien-Hua Wang, Wei-Hsuan Lee, Chin-Tzong Pang

Abstract:

In data mining, the association rules are used to find for the associations between the different items of the transactions database. As the data collected and stored, rules of value can be found through association rules, which can be applied to help managers execute marketing strategies and establish sound market frameworks. This paper aims to use Fuzzy Frequent Pattern growth (FFP-growth) to derive from fuzzy association rules. At first, we apply fuzzy partition methods and decide a membership function of quantitative value for each transaction item. Next, we implement FFP-growth to deal with the process of data mining. In addition, in order to understand the impact of Apriori algorithm and FFP-growth algorithm on the execution time and the number of generated association rules, the experiment will be performed by using different sizes of databases and thresholds. Lastly, the experiment results show FFPgrowth algorithm is more efficient than other existing methods.

Keywords: Data mining, association rule, fuzzy frequent patterngrowth.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1800
3339 Attention-Based Spatio-Temporal Approach for Fire and Smoke Detection

Authors: A. Mirrashid, M. Khoshbin, A. Atghaei, H. Shahbazi

Abstract:

In various industries, smoke and fire are two of the most important threats in the workplace. One of the common methods for detecting smoke and fire is the use of infrared thermal and smoke sensors, which cannot be used in outdoor applications. Therefore, the use of vision-based methods seems necessary. The problem of smoke and fire detection is spatiotemporal and requires spatiotemporal solutions. This paper presents a method that uses spatial features along with temporal-based features to detect smoke and fire in the scene. It consists of three main parts; the task of each part is to reduce the error of the previous part so that the final model has a robust performance. This method also uses transformer modules to increase the accuracy of the model. The results of our model show the proper performance of the proposed approach in solving the problem of smoke and fire detection and can be used to increase workplace safety.

Keywords: Attention, fire detection, smoke detection, spatiotemporal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 358
3338 Quantifying the Sustainable Building Criteria Based on Case Studies from Malaysia

Authors: Fahanim Abdul Rashid, Muhammad Azzam Ismail, Deo Prasad

Abstract:

In order to encourage the construction of green homes (GH) in Malaysia, a simple and attainable framework for designing and building GHs is needed. This can be achieved by aligning GH principles against Cole-s 'Sustainable Building Criteria' (SBC). This set of considerations was used to categorize the GH features of three case studies from Malaysia. Although the categorization of building features is useful at exploring the presence of sustainability inclinations of each house, the overall impact of building features in each of the five SBCs are unknown. Therefore, this paper explored the possibility of quantifying the impact of building features categorized in SBC1 – “Buildings will have to adapt to the new environment and restore damaged ecology while mitigating resource use" based on existing GH assessment tools and methods and other literature. This process as reported in this paper could lead to a new dimension in green home rating and assessment methods.

Keywords: Green homes, Malaysia, Sustainable BuildingCriteria, Sustainable homes

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2138
3337 Machine Learning Methods for Environmental Monitoring and Flood Protection

Authors: Alexander L. Pyayt, Ilya I. Mokhov, Bernhard Lang, Valeria V. Krzhizhanovskaya, Robert J. Meijer

Abstract:

More and more natural disasters are happening every year: floods, earthquakes, volcanic eruptions, etc. In order to reduce the risk of possible damages, governments all around the world are investing into development of Early Warning Systems (EWS) for environmental applications. The most important task of the EWS is identification of the onset of critical situations affecting environment and population, early enough to inform the authorities and general public. This paper describes an approach for monitoring of flood protections systems based on machine learning methods. An Artificial Intelligence (AI) component has been developed for detection of abnormal dike behaviour. The AI module has been integrated into an EWS platform of the UrbanFlood project (EU Seventh Framework Programme) and validated on real-time measurements from the sensors installed in a dike.

Keywords: Early Warning System, intelligent environmentalmonitoring, machine learning, flood protection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4084
3336 Contact Stress on the Surface of Gear Teeth with Different Profile

Authors: K. Farhangdoost, H. Heirani

Abstract:

Contact stress is an important problem in industry. This is a problem that in the first attention may be don-t appears, but disregard of these stresses cause a lot of damages in machines. These stresses occur at locations such as gear teeth, bearings, cams and between a locomotive wheel and the railroad rail. These stresses cause failure by excessive elastic deformation, yielding and fracture. In this paper we intend show the effective parameters in contact stress and ponder effect of curvature. In this paper we study contact stresses on the surface of gear teeth and compare these stresses for four popular profiles of gear teeth (involute, cycloid, epicycloids, and hypocycloid). We study this problem with mathematical and finite element methods and compare these two methods on different profile surfaces.

Keywords: Contact stress, Cycloid, Epicycloids, Finite element, Gear, Hypocycloid, Involute, Radius of curvature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1672
3335 Enhancing the Performance of a Photovoltaic Module Using Different Cooling Methods

Authors: Ahmed Amine Hachicha, Chaouki Ghenai, Abdul Kadir Hamid

Abstract:

Temperature effect on the performance of a photovoltaic module is one of the main concerns that face this renewable energy, especially in hot arid region, e.g. United Arab Emirates. Overheating of the PV modules reduces the open circuit voltage and the efficiency of the modules dramatically. In this work, water-cooling is developed to enhance the performance of PV modules. Different scenarios are tested under UAE weather conditions: front, back and double cooling. A spraying system is used for the front cooling whether a direct contact water system is used for the back cooling. The experimental results are compared to non-cooling module and the performance of the PV module is determined for different situations. The experimental results show that the front cooling is more effective than the back cooling and may decrease the temperature of the PV module significantly. 

Keywords: PV cooling, solar energy, cooling methods, electrical efficiency, temperature effect.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3554
3334 Forecasting Issues in Energy Markets within a Reg-ARIMA Framework

Authors: Ilaria Lucrezia Amerise

Abstract:

Electricity markets throughout the world have undergone substantial changes. Accurate, reliable, clear and comprehensible modeling and forecasting of different variables (loads and prices in the first instance) have achieved increasing importance. In this paper, we describe the actual state of the art focusing on reg-SARMA methods, which have proven to be flexible enough to accommodate the electricity price/load behavior satisfactory. More specifically, we will discuss: 1) The dichotomy between point and interval forecasts; 2) The difficult choice between stochastic (e.g. climatic variation) and non-deterministic predictors (e.g. calendar variables); 3) The confrontation between modelling a single aggregate time series or creating separated and potentially different models of sub-series. The noteworthy point that we would like to make it emerge is that prices and loads require different approaches that appear irreconcilable even though must be made reconcilable for the interests and activities of energy companies.

Keywords: Forecasting problem, interval forecasts, time series, electricity prices, reg-plus-SARMA methods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 814
3333 Time Delay Estimation Using Signal Envelopes for Synchronisation of Recordings

Authors: Sergei Aleinik, Mikhail Stolbov

Abstract:

In this work, a method of time delay estimation for  dual-channel acoustic signals (speech, music, etc.) recorded under  reverberant conditions is investigated. Standard methods based on  cross-correlation of the signals show poor results in cases involving  strong reverberation, large distances between microphones and  asynchronous recordings. Under similar conditions, a method based  on cross-correlation of temporal envelopes of the signals delivers a  delay estimation of acceptable quality. This method and its properties  are described and investigated in detail, including its limits of  applicability. The method’s optimal parameter estimation and a  comparison with other known methods of time delay estimation are  also provided.

 

Keywords: Cross-correlation, delay estimation, signal envelope, signal processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3064
3332 A Rough Sets Approach for Relevant Internet/Web Online Searching

Authors: Erika Martinez Ramirez, Rene V. Mayorga

Abstract:

The internet is constantly expanding. Identifying web links of interest from web browsers requires users to visit each of the links listed, individually until a satisfactory link is found, therefore those users need to evaluate a considerable amount of links before finding their link of interest; this can be tedious and even unproductive. By incorporating web assistance, web users could be benefited from reduced time searching on relevant websites. In this paper, a rough set approach is presented, which facilitates classification of unlimited available e-vocabulary, to assist web users in reducing search times looking for relevant web sites. This approach includes two methods for identifying relevance data on web links based on the priority and percentage of relevance. As a result of these methods, a list of web sites is generated in priority sequence with an emphasis of the search criteria.

Keywords: Web search, Web Mining, Rough Sets, Web Intelligence, Intelligent Portals, Relevance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1550