

Abstract—This article gives a short preview of the new software

created especially for palletizing process in automated production
systems. Each chapter of this article is about problem solving in
development of modules in Java programming language. First part
describes structure of the software, its modules and data flow
between them. Second part describes all deployment methods, which
are implemented in the software. Next chapter is about two-
dimensional editor created for manipulation with objects in each
layer of the load and gives calculations for collision control. Module
of virtual reality used for three-dimensional preview and creation of
the load is described in the fifth chapter. The last part of this article
describes communication and data flow between control system of
the robot, vision system and software.

Keywords—Palletizing, deployment methods, palletizing
software, virtual reality in palletizing.

I. INTRODUCTION

ALLETIZATION process has been largely affected by
automation. Robotic workstations can deploy objects of

different sizes and shapes in high-speed level.

Progressive solutions for palletizing systems are closely
linked to development of the vision system used for
components identification. Workplace, which is used
especially for research of the palletizing process, was
established at the Faculty of Mechanical Engineering of
Slovak University of Technology in Bratislava. This
workplace consists of the robot – YAMAHA YK400X
(SCARA construction), belt conveyor, pallets, swap space,
control unit RCX 142, computer and vision system [7]. It is
used for vision system research, testing different deployment
methods of palletizing, measurement of accuracy of robot
positioning and mostly for new software development used for
palletizing process – Pallet SjF STU. The software
development started in 2009. We decided to use Java
programming language because Java applications are
executable on every machine without special hardware
requirements.

The only requirement is to install Java JRE (Java Runtime
Environment), which contains Java virtual machine and basic
Java libraries (Java SE). Java JRE can be downloaded for free
from Sun Microsystems, Inc. website (www.sun.com).
Basically, the first purpose of the software was robot control.

D. Kravec is with the Institute of Production Systems, Environmental

Technology and Quality Management, Slovak University of Technology,
Bratislava, Slovak republic (e-mail: dusan.kravec@stuba.sk).

O. Staš is with the Institute of Production Systems, Environmental
Technology and Quality Management, Slovak University of Technology,
Bratislava, Slovak republic (e-mail: ondrej.stas@stuba.sk).

M. Tolnay is with the Institute of Production Systems, Environmental
Technology and Quality Management, Slovak University of Technology,
Bratislava, Slovak republic (e-mail: marian.tolnay@stuba.sk).

M. Bachratý is with the Institute of Production Systems, Environmental
Technology and Quality Management, Slovak University of Technology,
Bratislava, Slovak republic (e-mail: michal.bachraty@stuba.sk).

The next aims were to create flexible two-dimensional

editor used for creating layout of objects in each layer and to
allow three-dimensional preview of the load.

II. SOFTWARE STRUCTURE

Software structure deals with a data flowing and a parent –
child class scheme. The pallet (project) is the main element
here. It is divided into sub-tasks: planning each layout of the
pallet layers, three-dimensional preview, program generator,
data – transmission module (communication with control unit
of SCARA robot) and vision system module.

Fig. 1 Software structure

In each layer another deployment method can be used. The

automatic layout designer was build for this purpose. It can
analyze chosen object in terms of shape and its dimensions.
This analysis is able to choose the optimal deployment method
according to the given dimensions of the pallet. Several
deployment methods for the selected shape of the object are
available in manual mode of the layout designer. Two –
dimensional editor was compiled for manual moving of the
objects. After layout editing, there is three – dimensional
preview of the layer available. Program generator is used to
create commands for the control unit. Finally, the robot
control module sends the generated commands to the
robot and belt conveyor.

There is a three-dimensional preview of the whole load
available with complete program for control unit after
finishing the layout. This information is sent forward to the
control module.

Dušan Kravec, Ondrej Staš, Marián Tolnay, Michal Bachratý

Creation of a New Software used for Palletizing
Process

P

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:6, No:5, 2012

948International Scholarly and Scientific Research & Innovation 6(5) 2012 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:6

, N
o:

5,
 2

01
2

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

31
18

.p
df

This module is in direct connection with control unit of the
robot, belt conveyor and vision system that sends data about
identifying objects and theirs positions on belt conveyor.

Pallet SjF STU uses .ppf (pallet positions file) files for
storing and loading data. Robot options are available in the
software settings. The connection can be setup and also
calibrating of help points is available here for accurate
positioning of the robots and effector. Pallet SjF STU is
created in two language versions – Slovak and English.

III. AUTOMATIC LAYOUT DESIGNER

Several deployment methods for cylindrical and prism
shaped objects are implemented in this module. Each
deployment method contains algorithms and equations for
calculation of object coordinates. Those calculations provide
class named “Object Calculations”. Input data to this class are
the shape of the object, the dimensions of the object and the
dimensions of the pallet. Output data from the class are
coordinates and orientation of each object on pallet and
number of objects.

Only two deployment methods are well known for
cylindrical objects [7]:

1) Raster method
2) Cross method

Deployment methods for prism shaped objects are divided
according to number of blocks. Each block contains prisms of
equal dimensions and orientation (e.g. first block contains
prisms with 90° orientation and second block contains prisms
with 0° orientation). Deployment methods for prism shaped
objects are [6]:

1) Single block method
2) Two block method
3) Three block method
4) Four block methods

a. Steudls algorithm
b. Smiths and Decanis algorithm

5) Five block method
Next part of the article contains a short preview of each

deployment method with calculations and equations of object
coordinates.

A. Single block, 2 block and 3 block method

A method using a single block is the simplest method for
resolving the pattern of prisms on the palette. There are only
two possible options to place the prisms: vertical or horizontal.
Block dimensions are identical to the dimensions of pallets
[3].

Calculation of coordinates for horizontally oriented prisms
is (1):

 −+−+= Hjw
w

il
l

P ji);1(
2

);1(
2, (1)

With condition: l(i-1) + l < L and w(j-1) + w < W

Calculation of coordinates for horizontally oriented prisms

is (2):

 −+−+= Vjl
l

iw
w

P ji);1(
2

);1(
2, (2)

With condition: w(i-1)+ w<L and l(j-1) + 1 < W
Where:

L – the length of the pallet l – the length of the prism

W – the width of the pallet w – the width of the prism

With this conditions: L ≥ W and l ≥ w

Method for using 2 or 3 blocks is basically an extension of
single block method. In the method of 2 blocks we want to
find the best combination of vertically and horizontally
oriented prisms along the length of the pallet. Optimum
combination contains smallest unused space between prisms.
We can also use the third block to fill the empty area above
the second columns (columns of vertically oriented prisms) by
using inverted prisms [3].

Fig. 2 a) Two-block b) Three-block deployment method [3]

Analogically we can use this method for the width of the

pallet and find the best solution for placing the prisms. The
advantages of these methods are the simplicity and the clarity.
The disadvantage is that it does not provide an optimal
solution for every problem [3].

B. Steudls 4 block method

This method divides storage area into four blocks located in
the corners of the pallet. These blocks are rotated depending
on the direction of stored objects (horizontal or vertical). This
method was described by Harold J. Steudl in 1979 therefore it
is also known as Steudl algorithm. It is a recursive method and
uses dynamic programming. Dynamic programming is used to
optimize process. It divides a big problem into a little sub
problems. These sub problems are solved and the results for
future potential use are stored [7].

Fig. 3 Steudls algorithm [7]

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:6, No:5, 2012

949International Scholarly and Scientific Research & Innovation 6(5) 2012 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:6

, N
o:

5,
 2

01
2

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

31
18

.p
df

The first step of this method is finding an efficient
combination of horizontally and vertically oriented prisms on
a circuit of the pallet. In other words, we are trying to find the
smallest gap between combination of horizontal and vertical
oriented prisms stored in length (width) of the pallet. We can
do this by using this objective function (3):

[]

nnn

nnnnnn

DwYlX

SFwYlXMaxSF

≤+
++= −−

**

)(**)(11 (3)

n = 1, 2, 3, 4
Where:

Fn (Sn) – max sum of horizontally and vertically oriented
prisms on the n side with state variable Sn at the
beginning of the side.

Xn – number of objects of length L placed along the side
n

Yn – number of objects of width W placed along the side
n

Dn – length of the pallet
Sn – is a state variable that defines the initial conditions

for the side n.

This state variable can take these three values [7]:

• Prisms are only horizontally oriented along the side n
of the pallet

• Prisms are only vertically oriented along the side n of
the pallet

• Prisms are vertically and horizontally oriented along
the side n of the pallet

Objective function calculates each combination of three
values from Sn. We can use this calculation for the three
possible values of Sn and four blocks of prisms: 34 = 81. We
have to choose the best result from 81 results. Objective
function Fn (Sn) can be described as the function that
maximizes the utilized length of each side. However, we have
to include the pattern of prisms on the previous side. It can be
also defined as minimizing the unused circuit of the pallet [7].

In the second step we have to fill the unused area. This step
is linked by 2 problems. The first one is filling of empty area,
which can hold one or more prisms. The second problem is
overlap of individual blocks, which can be identified for
example in this case (4):

lXlXDandlXlXD 244311 <−<− (4)

Steudls method is very good for creating efficient pattern of

prisms on pallet but we have to be careful not to create an
overlapped area.

C. Smith and Decanis 4 block method

Fig. 4 shows the layout of prisms on a pallet according to
Smith and Decanis. It compares all possible combinations of
the shown layout.

Fig. 4 Smiths and DeCanis deployment method [3]

This method is similar to Steudl method but the number of

objects in the blocks 1-3 and 2-4 is not equal. The principle of
determining the number of objects across the width and length
of each block is different. The first step is to define the first
block. The second block needs to be higher than the first
block. The third block needs to be wider than the second block
and the fourth block is created in the remaining empty space.
All possible dimensions of the first block and also dimensions
of the other blocks are calculated. Then we can choose the
best solution for our dimensions of prisms and pallet. This
solution contains the highest number of prisms, which we can
store on one pallet [7].

Objective function for this method is (5):

hgfedcbaMaxZ **** +++= (5)

Optimization is finished after generating all possible

combinations. This method does not allow overlapping of
blocks as it can occur in Steudl method but we can find more
unused space between blocks. This problem can be solved
either by adding another block or several blocks into this
empty space [7].

D. Cylinders

In terms of methodology, the deployment cylinders are the
easiest shape for planning the layout on the pallet. In Fig. 5 we
can see two simple layouts of cylinders, which are not so
difficult. In the first case, there are loses among cylinders. In
the next case, we are trying to eliminate these losses but not
always successfully. This case is effective only if the number
of cylinders in the first row equals to the number of cylinders
in the second row. We cannot say which of these layouts is
more efficient because sometimes there is the same number of
cylinders in the both cases. More advanced software can
evaluate both layouts and give the best solution to the user [7].

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:6, No:5, 2012

950International Scholarly and Scientific Research & Innovation 6(5) 2012 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:6

, N
o:

5,
 2

01
2

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

31
18

.p
df

Fig. 5 a) Raster deployment method b) cross deployment method

[7]

Calculation of coordinates for „raster” alignment of cylinders
(6):

 −+−+=)1(
2

);1(
2, jd

d
id

d
P ji (6)

Calculation of coordinates for „cross” alignment of

cylinders (7):

−+

−+

−

−
=

)1(
2

3
*

2

);1(
2

*2
2

,

jd
d

idj
jd

d

P ji
 (7)

After resolving the question of layout, it is necessary

to answer the question of stability. The pads are inserted
between the layers of cylinders that enhance the stability of
the whole system. It is inappropriate to combine both types of
layout between layers. We are using different accessories to
ensure stability such as walls, fences, packing washers, belts,
etc. [7].

IV. TWO-DIMENSIONAL LAYOUT MANAGER

Creating object layout by implemented algorithms from
software is very limiting. Users mostly want to manually
change generated positions of the objects. Two–dimensional
editor gives the opportunity to do those changes. It is a
separate window with workplace, table and control buttons.
Generated coordinates of objects are the input data to this
window. New coordinates and orientation are generated for
each object after editing and this information is the output
from window. Coordinates for each object are written in the
table. So number of rows in this table equals to number of
objects. Columns are coordinates (x, y and z), orientation (0°,
90°) and index of the object. Index is very important because
it identifies each object. New coordinates and orientations are
generated after editing positions. Table is updated after
clicking on GENERATE POSITIONS button. We have to
solve problem with ordering the objects. In Java library there
is very good method called compareTo(). This method can
order objects according to theirs coordinates x and y. Firstly
objects are ordered by x coordinate and secondly by y

coordinate. The workplace is important part of this window.
There is two-dimensional preview of objects stored in layer
and outline of pallet dimensions. We can manipulate with
objects by using the mouse “drag & drop” method and control
keys of keyboard. Objects which require change of orientation
(e.g. prism-shaped objects) are rotated after clicking on them
by mouse. Each object has its own JPanel. All JPanels are
managed by JLayeredPane() – it is a good control system that
allows easy manipulation with objects. Controlling objects by
keyboard has more accuracy. SPACE button is used for
changing the object selection therefore index of object is very
important here. ARROWS are used for manipulation with
objects. In some cases it is necessary to input the new object
of another shape (in mixed loads) to a workspace. That’s
possible by clicking on ADD OBJECT button and selecting
from menu wanted shape.

After editing the objects positions it is very important to
generate new coordinates. There was a small problem because
they are read from the screens pixels. Pixel coordination is an
integer number. According to accuracy we need decimal
numbers of coordinates. Great solution of this problem is to
use Affine Transform class with setScaleTo() method. It
transforms scaling of x and y coordinates. We have to set it on
a half (0.5) so it looks like this: setScaleTo(0.5, 0.5).

Very important function of the editor is collision control. It
can detect collision with another object in a workplace.
Second part of the control is searching for objects, which
protrude from pallet. Whole control consists of two ways:
continuous and final.

The control fiber starts automatically after the manipulation
with object in the continuous way. If the object is overlapping
another object (or is out of pallet) then its color changes from
green to red. After changing the selection to another object all
objects are painted back to green and the control fiber is
calculating collisions according to a new object.

Final collision control starts with clicking on the
POSITION CONTROL button. This control calculates
positions between all objects on the workplace and checks
layout according to stability. Bad situated objects are repainted
from green to red. It is necessary to provide new positions for
red painted objects. Algorithm for how collision control works
for cylindrical-shaped objects, prism-shaped objects and
collision control at mixed load on pallet is described in the
next part of this article. Fig. 6 shows variables from objects
dimensions used later in the equations and conditions.

Fig. 6 a) Prism dimensions b) Cylinders dimensions

A. Collision control of cylindrical – shaped objects

Cylinder-shaped objects are usually stored on the pallet
only on the flat side of the shape because of the stability. Our
SCARA robot has vacuum end-effector so it is very difficult

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:6, No:5, 2012

951International Scholarly and Scientific Research & Innovation 6(5) 2012 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:6

, N
o:

5,
 2

01
2

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

31
18

.p
df

to catch object at the rotary side. This is why we are planning
loads only with possibility of storing cylinders on their flat
side. It means that it doesn´t matter what orientation cylinder
has. Cylinders are shown as circles with the equal diameter in
two-dimensional top-view (Fig. 7) so we can use analytical
geometry for calculating distances between them.

Fig. 7 Collision control of two cylinders

This is an equation for distance calculation between

midpoints of two cylinders:

22)()(ByAyBxAxdistance −+−= (8)

Ax – coordination x of the middle of cylinder A
Ay – coordination y of the middle of cylinder A
Bx – coordination x of the middle of cylinder B
By – coordination y of the middle of cylinder B

Variable distance is very important in collision control
between cylinders. If distance is lower than diameter of
cylinders then collision occurs. So the condition for safe
storage without collision with another cylinder is:

diameterdistance≥ (9)

This algorithm was implemented to the class named

“Cylinder”, which takes attributes from JPanel class.
Constructor of “Cylinder” class (object) consists of another
attributes – diameter, height, index, color and coordinates(x, y,
z). Each object of “Cylinder” class has these attributes. If the
collision occurs, all collided objects are red painted.

B. Collision control of prism – shaped objects

Class named “Prism” was created especially for prism-
shaped objects and it takes attributes from JPanel class from
Java JRE library. Constructor of this class includes length,
width, height, index, color, coordinates (x, y and z) and
orientation attributes. It is possible to rotate objects only
around one axis (generally it is z axis) because of SCARA
construction of the robot.

Collision control algorithms are complicated because of
added orientation attribute. All possible cases of prism-shaped
objects orientations are shown in the next figures.

Fig. 8 Collision control between: a) 90° and 0°orientation of the

prisms b) 0° and 0° orientation of the prisms c) 90° and 90°
orientation of the prisms

Variables DimensionX and DimensionY are calculated in the

first step of the control. DimensionX is absolute value of
difference between x coordinate of prism A midpoint and x
coordinate of prism B midpoint. DimensionY is absolute value
of difference between y coordinate of prism A midpoint and y
coordinate of prism B midpoint.

ByAyDimensionY

BxAxDimensionX

−=

−= (10)

 According to these conditions of not being in collision are

those two variables evaluated.
In case a)

2/2/ baDimensionX

 and b/2a/2DimensionY If

+≥
+≤ (11)

In case b)

aDimensionX and bDimensionY If ≥≤ (12)

In case c)

bDimensionX and aDimensionY If ≥≤ (13)

If those conditions are satisfied, then collision doesn´t exist.

In the other case, there is a collision with two prism-shaped
objects and they are repainted to red.

A. Collision control in mixed load

Mixed loads consist of prism-shaped and cylinder-shaped
objects. All objects are created from “Cylinder” or “Prism”
class and obtain required attributes.

Collision algorithms and possible cases of prism-shaped
and cylindrical-shaped objects orientations are shown in the
Fig. 9.

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:6, No:5, 2012

952International Scholarly and Scientific Research & Innovation 6(5) 2012 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:6

, N
o:

5,
 2

01
2

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

31
18

.p
df

Fig. 9 Collision control between: a) 90° orientation of the prism

and cylinder b) 0° orientation of the prism and cylinder

In the case of prisms and also in mixed load, variables
DimensionX and DimensionY are calculated in the first step of
the control. DimensionX is absolute value of difference
between x coordinate of prism midpoint and x coordinate of
cylinder midpoint. DimensionY is absolute value of difference
between y coordinate of prism midpoint and y coordinate of
cylinder midpoint.

CYLINDERyBOXyDimensionY

CYLINDERxBOXxDimensionX

−=

−=
 (14)

Conditions of not being in collision for those two variables

are:
In case a)

2/2/ diameterbDimensionX

and diameter/2a/2DimensionY If

+≥
+≤ (15)

In case b)

2/2/ diameteraDimensionX

and diameter/2b/2DimensionY If

+≥
+≤ (16)

If those conditions are satisfied, then collision doesn´t exist.

In the other case, there is a collision with two objects and
those objects are repainted to red.

V. VIRTUAL REALITY MODULE

Coordinates of the end effector position do not provide
excellent idea of the chosen solutions. Therefore, it was
necessary to incorporate the graphic element to the program,
which would indicate a solution in three – dimensional (3D)
preview. Two – dimensional (2D) rendering would be
sufficient only if we are analyzing one layer of the load. 3D
models are better for multilayer solutions so it is necessary to
use virtual reality interface. There are many interfaces that can
provide rendering of the objects in space. We chose Java3D
graphic interface, which includes well known OpenGL GLUT
library. Libraries of Java3D interface were created in Java
programming language. It is used mainly for modeling
components, technical applications and technical product
development.

It can provide rendering the object in space and allows the
manipulation with it. It is also used in computer games and
simulations. Before starting the program we have to install
Java3D library. This library contains forms, shapes, functions,
materials, scenes, movements, calculations, etc. The biggest
advantage of Java3D interface is that we can have 3D model
in the same window with GUI (Graphical User Interface)
components like buttons, text boxes, labels, etc. We have used
two JPanel components. The first contains command buttons
with labels and the second is used as canvas for 3D preview.

Fig. 10 Three dimensional preview of the load with the same

objects in each layer

Dimensions of the object, dimensions of the pallet and
coordinates with the rotations of objects are used as input data
to the model. After drawing the solution into a virtual reality
model, user can rotate and control the load by mouse and
keyboard. This module can draw static or dynamic model of
the load. Static model has no movements but we can control it
with the mouse. Dynamic model is still turning around z axis.

VI. USING THE VIRTUAL REALITY IN PROCESS OF MIXED LOAD

PLANNING

Virtual reality models are often used only for 3D preview of
the real situation. But we have decided to use this strong tool
also in the process of planning deployments. Mixed load
consist of objects with different shapes and dimensions in the
same layer of the pallet. It is very difficult to find the optimal
deployment for it. So we had to divide storage area of the
pallet (or layer area) on smaller areas. Those smaller areas are
like small pallets so we can use deployment methods
described in part 3 of this article for planning of new
deployment there.

Fig. 11 Using the three dimensional preview for finding positions

and dimensions for small areas on the pallet (layer)

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:6, No:5, 2012

953International Scholarly and Scientific Research & Innovation 6(5) 2012 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:6

, N
o:

5,
 2

01
2

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

31
18

.p
df

Another problem is to find positions and dimensions for
those small areas. For this purpose 3D editor was created that
contains model of pallet and blue plane (it represents a new
small area). We can manipulate with it and change its
dimensions using the keys on the keyboard. So the output data
of this module are coordinates of this small storage area and
its dimensions (width and length). There is also a control
system for finding collisions. There are only two types of
collisions: small area with another object on pallet and
“ flying” position of a small area (if it is in the air).

VII. ROBOT CONTROL MODULE

Inevitable function of this software is his communication
with the SCARA robot. The control system knows several
commands for controlling the movements of the robot. For
example: MOVE 100, 100, 90, 50 (go to coordinates 100, 100,
90, 50). Serial link is used for sending the individual
commands and also for receiving the answers from the control
system. This connection is made by the USB port. We created
a simple window to control the robot from our computer. It
contains a text line to send a simple commands and a text box
to write the entire program for the robot. Another text box is
used for writing the answers from the robot control system. If
we send the entire program from the first text box to the
control system, the error will occur because a buffer is full.
The buffer of control system can handle only 50 lines of the
program at once. So it is necessary to send the entire program
line after line. To solve this problem we created two
synchronized threads. The first thread sends individual
commands to the control system of the robot (output) and the
second thread reads replies from it (input). Thread output is
inactive until the thread input does not catch the answer from
control system of the robot. After catching the answer the next
line of the program is sent by thread output and again waits for
the response. The whole process will repeat until the entire
program will be send line by line.

The second problem was the automatic generation of the
commands for robot. So we created a template of commands
to store only the one basic object. Variables are placed on
places of coordinates to this template. These variables are
automatically changed after each cycle of storage. Values of
variables for catching the object from belt conveyor are from
vision system module. Values of variables used for object
positioning on the pallet are from deployment managing
module. Each coordinate has a characteristic variable. If an
error occurs in the control program of the robot, we can start it
again from the last performed command. The last part of the
window is a line that informs the connection status to robot
control system via USB. If connection is ok, then the green
sign CONNECTED is shown. If an error occurs, then the red
sign DISCONNECTED is shown. Refreshing the connection
can be done through the CONNECT button. All errors are
shown in the INPUT text field with closer description of them.
Additional function of this module is HISTORY of sent
commands.

VIII. OBTAINING POSITION AND CLASS INFORMATION FROM

VISUAL SIGNAL

The vision system is developed under three signals from
industrial cameras. The choice of three cameras was decided
because of the complex possibility to analyze three
dimensional constitution of the subject, even if for the product
localization there is a need of at least one camera signal. For
this solution was used the Basler camera with 33fps capture
speed, SVGA resolution, 1394b firewire interface. They are
connected to Pc via NI measurement card with PCI-e
interface. The captured signal is preprocessed as we can see it
in Fig. 12.

Fig. 12 Preprocessed camera signal

 Here we can see the main view. From this preprocessed

signal we extract the region of interest (ROI) as we can see in
the Fig. 13.

Fig. 13 The region of interest

Our definition of ROI is based on the needs of the solution.

By shortening the dimensions of this region we gain the
shorter time of the processing but we can lose some important
data. It is important to remember that any change of the ROI
after the solution is made will cause the solution’s
malfunction.

The process of image preprocessing is demonstrated in Fig.
14, where the schema of preprocessing step is visualized.
Camera signal is correctly fragmented into frames, every
frame subjects to color adjusting resp. color conversion
algorithm, where the best fitness of picture is obtained.

The color and grayscale picture is then removed to memory
for next steps of vision analysis.

Fig. 14 Image preprocessing scheme

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:6, No:5, 2012

954International Scholarly and Scientific Research & Innovation 6(5) 2012 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:6

, N
o:

5,
 2

01
2

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

31
18

.p
df

The processing of camera signal is executed by software,
resp. software module, which creates the image preprocessing
and vision analysis. Software implements Java jar library,
where all of the steps are programmed, this was created
because of easier way of developing the system. This principle
is demonstrated in Fig. 15.

Fig. 15 Vision module scheme

The overall vision algorithm is demonstrated in Fig. 16.

This algorithm classifies objects inputting into area of interest
to several classes depending on the object geometry and of the
color surface. Geometrical analysis is made using statistical
methods created over closed regions of image after biasing
and closing structures from grayscale image. After getting
geometrical properties we obtain color information from color
image and object coordinates. Obtained data are then stored to
database or used by other software modules, such as robot
program generation.

Fig. 16 Vision algorithm

IX. CONCLUSION

Knowledge of methods used for two-dimensional layout
development is essential for creating three-dimensional and
mixed loads. Many software products have implemented these
methods in their algorithms. They use them for evaluation,
calculation and creating optimal layout of objects on the
pallet. If three – dimensional distribution is used then it is
necessary to create a virtual reality model of pallet load.
Thanks to this model we can analyze whole load and fill the
empty spaces. In some cases it is necessary to divide pallets
loading area into smaller areas. In each area we can use
specific deployment method for identical objects. This
solution is preferred for creation of mixed loads. This problem
is solved in VEGA MŠ SR 1/0274/11 project.

REFERENCES
[1] T. CORMEN, Introduction to algorithms. Massachusetts Institute of

technology, 2009.
[2] M. HAJDUK, Robotické bunky. SjF Košice, 2008.
[3] A. HEINZE, Optimisation of BMW Group Standardised Load Units via

the Pallet Loading Problem. Linkoping, 2006.
[4] T. KUHN, Automatisierte Palettierung mit Mehrfachgreifern.

Universitat Hannover, Berlin, 1999.
[5] J. NELISSEN, New Approaches to the Pallet Loading Problem. Aachen,

1993.
[6] M. YANG, Multi-layer palletization of multi-size prismes for 2D and 3D

problems. Montreal, 1993.
[7] D. KRAVEC, J. BAĎO, O. STAŠ, and M. TOLNAY, Implementácia

metód rozmiestňovania objektov na palete do nového softvérového
produktu. ROBTEP, Košice, 2011.

[8] P. Kovac, I. Mankova, M. Gostimirovic, M. Sekulic, B. Savkovic,
A review of machining monitoring systems. Journal of Production
Engineering, Vol. 14, No 1, pp 1-6, 2011.

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:6, No:5, 2012

955International Scholarly and Scientific Research & Innovation 6(5) 2012 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:6

, N
o:

5,
 2

01
2

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

31
18

.p
df

