Search results for: Corporate Training
529 Six Sigma Process and its Impact on the Organizational Productivity
Authors: Masoud Hekmatpanah, Mohammad Sadroddin, Saeid Shahbaz, Farhad Mokhtari, Farahnaz Fadavinia
Abstract:
The six sigma method is a project-driven management approach to improve the organization-s products, services, and processes by continually reducing defects in the organization. Understanding the key features, obstacles, and shortcomings of the six sigma method allows organizations to better support their strategic directions, and increasing needs for coaching, mentoring, and training. It also provides opportunities to better implement six sigma projects. The purpose of this paper is the survey of six sigma process and its impact on the organizational productivity. So I have studied key concepts , problem solving process of six sigmaas well as the survey of important fields such as: DMAIC, six sigma and productivity applied programme, and other advantages of six sigma. In the end of this paper, present research conclusions. (direct and positive relation between six sigma and productivity)
Keywords: Six sigma, project management, quality, theory, productivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6978528 Qualitative Modelling for Ferromagnetic Hysteresis Cycle
Authors: M. Mordjaoui, B. Boudjema, M. Chabane, R. Daira
Abstract:
In determining the electromagnetic properties of magnetic materials, hysteresis modeling is of high importance. Many models are available to investigate those characteristics but they tend to be complex and difficult to implement. In this paper a new qualitative hysteresis model for ferromagnetic core is presented, based on the function approximation capabilities of adaptive neuro fuzzy inference system (ANFIS). The proposed ANFIS model combined the neural network adaptive capabilities and the fuzzy logic qualitative approach can restored the hysteresis curve with a little RMS error. The model accuracy is good and can be easily adapted to the requirements of the application by extending or reducing the network training set and thus the required amount of measurement data.Keywords: ANFIS modeling technique, magnetic hysteresis, Jiles-Atherton model, ferromagnetic core.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1589527 An Enhanced Artificial Neural Network for Air Temperature Prediction
Authors: Brian A. Smith, Ronald W. McClendon, Gerrit Hoogenboom
Abstract:
The mitigation of crop loss due to damaging freezes requires accurate air temperature prediction models. An improved model for temperature prediction in Georgia was developed by including information on seasonality and modifying parameters of an existing artificial neural network model. Alternative models were compared by instantiating and training multiple networks for each model. The inclusion of up to 24 hours of prior weather information and inputs reflecting the day of year were among improvements that reduced average four-hour prediction error by 0.18°C compared to the prior model. Results strongly suggest model developers should instantiate and train multiple networks with different initial weights to establish appropriate model parameters.
Keywords: Time-series forecasting, weather modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1870526 Evolutionary Feature Selection for Text Documents using the SVM
Authors: Daniel I. Morariu, Lucian N. Vintan, Volker Tresp
Abstract:
Text categorization is the problem of classifying text documents into a set of predefined classes. After a preprocessing step, the documents are typically represented as large sparse vectors. When training classifiers on large collections of documents, both the time and memory restrictions can be quite prohibitive. This justifies the application of feature selection methods to reduce the dimensionality of the document-representation vector. In this paper, we present three feature selection methods: Information Gain, Support Vector Machine feature selection called (SVM_FS) and Genetic Algorithm with SVM (called GA_SVM). We show that the best results were obtained with GA_SVM method for a relatively small dimension of the feature vector.Keywords: Feature Selection, Learning with Kernels, Support Vector Machine, Genetic Algorithm, and Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1706525 Feature Selection Methods for an Improved SVM Classifier
Authors: Daniel Morariu, Lucian N. Vintan, Volker Tresp
Abstract:
Text categorization is the problem of classifying text documents into a set of predefined classes. After a preprocessing step, the documents are typically represented as large sparse vectors. When training classifiers on large collections of documents, both the time and memory restrictions can be quite prohibitive. This justifies the application of feature selection methods to reduce the dimensionality of the document-representation vector. In this paper, three feature selection methods are evaluated: Random Selection, Information Gain (IG) and Support Vector Machine feature selection (called SVM_FS). We show that the best results were obtained with SVM_FS method for a relatively small dimension of the feature vector. Also we present a novel method to better correlate SVM kernel-s parameters (Polynomial or Gaussian kernel).Keywords: Feature Selection, Learning with Kernels, SupportVector Machine, and Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1830524 A Survey of IMRT and VMAT in UK
Authors: A. Taqaddas
Abstract:
Purpose: This E-survey was carried out to facilitate the implementation and Education of VMAT (Volumetric Modulated Arc Therapy) in Radiotherapy-RT departments and reasons for not using IMRT (Intensity Modulated Radiotherapy). VMAT Skills in demand were also identified. Method: E-Survey was distributed to NHS hospitals across UK by email. Thirty NHS and related centres in England, 21 in Scotland, 3 in Ireland and 1 in Wales were contacted. This Survey was intended for those working in RT and Medical Physics and who were responsible for Treatment Planning and training. Results: This E-survey have indicated pathways adopted by staff to acquire VMAT skills, strategies to efficiently implement VMAT in RT departments and for obtaining VMAT Education. Conclusion: Despite poor survey response this survey has managed to highlight requirements for education and implementation of VMAT that are also applicable to IMRT. Other RT centres in world can also find these results useful.
Keywords: IMRT, Radiotherapy, Treatment Planning, VMAT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2478523 Evolving Neural Networks using Moment Method for Handwritten Digit Recognition
Authors: H. El Fadili, K. Zenkouar, H. Qjidaa
Abstract:
This paper proposes a neural network weights and topology optimization using genetic evolution and the backpropagation training algorithm. The proposed crossover and mutation operators aims to adapt the networks architectures and weights during the evolution process. Through a specific inheritance procedure, the weights are transmitted from the parents to their offsprings, which allows re-exploitation of the already trained networks and hence the acceleration of the global convergence of the algorithm. In the preprocessing phase, a new feature extraction method is proposed based on Legendre moments with the Maximum entropy principle MEP as a selection criterion. This allows a global search space reduction in the design of the networks. The proposed method has been applied and tested on the well known MNIST database of handwritten digits.Keywords: Genetic algorithm, Legendre Moments, MEP, Neural Network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1665522 Bayesian Deep Learning Algorithms for Classifying COVID-19 Images
Authors: I. Oloyede
Abstract:
The study investigates the accuracy and loss of deep learning algorithms with the set of coronavirus (COVID-19) images dataset by comparing Bayesian convolutional neural network and traditional convolutional neural network in low dimensional dataset. 50 sets of X-ray images out of which 25 were COVID-19 and the remaining 20 were normal, twenty images were set as training while five were set as validation that were used to ascertained the accuracy of the model. The study found out that Bayesian convolution neural network outperformed conventional neural network at low dimensional dataset that could have exhibited under fitting. The study therefore recommended Bayesian Convolutional neural network (BCNN) for android apps in computer vision for image detection.Keywords: BCNN, CNN, Images, COVID-19, Deep Learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 873521 Health Assessment of Electronic Products using Mahalanobis Distance and Projection Pursuit Analysis
Authors: Sachin Kumar, Vasilis Sotiris, Michael Pecht
Abstract:
With increasing complexity in electronic systems there is a need for system level anomaly detection and fault isolation. Anomaly detection based on vector similarity to a training set is used in this paper through two approaches, one the preserves the original information, Mahalanobis Distance (MD), and the other that compresses the data into its principal components, Projection Pursuit Analysis. These methods have been used to detect deviations in system performance from normal operation and for critical parameter isolation in multivariate environments. The study evaluates the detection capability of each approach on a set of test data with known faults against a baseline set of data representative of such “healthy" systems.Keywords: Mahalanobis distance, Principle components, Projection pursuit, Health assessment, Anomaly.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1682520 Spline Basis Neural Network Algorithm for Numerical Integration
Authors: Lina Yan, Jingjing Di, Ke Wang
Abstract:
A new basis function neural network algorithm is proposed for numerical integration. The main idea is to construct neural network model based on spline basis functions, which is used to approximate the integrand by training neural network weights. The convergence theorem of the neural network algorithm, the theorem for numerical integration and one corollary are presented and proved. The numerical examples, compared with other methods, show that the algorithm is effective and has the characteristics such as high precision and the integrand not required known. Thus, the algorithm presented in this paper can be widely applied in many engineering fields.
Keywords: Numerical integration, Spline basis function, Neural network algorithm
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2931519 Comparison of Two Interval Models for Interval-Valued Differential Evolution
Authors: Hidehiko Okada
Abstract:
The author previously proposed an extension of differential evolution. The proposed method extends the processes of DE to handle interval numbers as genotype values so that DE can be applied to interval-valued optimization problems. The interval DE can employ either of two interval models, the lower and upper model or the center and width model, for specifying genotype values. Ability of the interval DE in searching for solutions may depend on the model. In this paper, the author compares the two models to investigate which model contributes better for the interval DE to find better solutions. Application of the interval DE is evolutionary training of interval-valued neural networks. A result of preliminary study indicates that the CW model is better than the LU model: the interval DE with the CW model could evolve better neural networks.
Keywords: Evolutionary algorithms, differential evolution, neural network, neuroevolution, interval arithmetic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1667518 Self-Reliant and Auto-Directed Learning: Modes, Elements, Fields and Scopes
Authors: H. Mashhady, B. Lotfi, M. Doosti, M. Fatollahi
Abstract:
An exploration of the related literature reveals that all instruction methods aim at training autonomous learners. After the turn of second language pedagogy toward learner-oriented strategies, learners’ needs were more focused. Yet; the historical, social and political aspects of learning were still neglected. The present study investigates the notion of autonomous learning and explains its various facets from a pedagogical point of view. Furthermore; different elements, fields and scopes of autonomous learning will be explored. After exploring different aspects of autonomy, it is postulated that liberatory autonomy is highlighted since it not only covers social autonomy but also reveals learners’ capabilities and human potentials. It is also recommended that learners consider different elements of autonomy such as motivation, knowledge, confidence, and skills.
Keywords: Critical pedagogy, social autonomy, academic learning, cultural notions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2045517 An Interactive e-Learning Management System (e-LMS): A Solution to Tanzanian Secondary Schools' Education
Authors: A. Ellen Kalinga, R. B. Burchard Bagile, Lena Trojer
Abstract:
Information and Communications Technologies (ICT) has been integrated in education in many developing and developed countries alike, but the use of ICT in Tanzanian schools is dismal. Many Tanzanian secondary schools have no computers. The few schools with computers use them primarily for secretarial services and computer literacy training. The Tanzanian education system at other levels like secondary school level has to undergo substantial transformation, underscored by the growing application of new information and communication technology. This paper presents the e-readiness survey result from secondary schools in Tanzania. The paper also suggests how Tanzania can make use of the few present ICT resources to support and improve teaching and learning functions to improve performance and acquisition of knowledge by using e-Learning Management System (e-LMS).Keywords: e-Learning, ICT, Object-Oriented, Participatorydesign.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2773516 Factors Affecting General Practitioners’ Transfer of Specialized Self-Care Knowledge to Patients
Authors: Weidong Xia, Malgorzata Kolotylo, Xuan Tan
Abstract:
This study examines the key factors that influence general practitioners’ learning and transfer of specialized arthritis knowledge and self-care techniques to patients during normal patient visits. Drawing on the theory of planed behavior and using matched survey data collected from general practitioners before and after training sessions provided by specialized orthopedic physicians, the study suggests that the general practitioner’s intention to use and transfer learned knowledge was influenced mainly by intrinsic motivation, organizational learning culture and absorptive capacity, but was not influenced by extrinsic motivation. The results provide both theoretical and practical implications.
Keywords: Empirical study, healthcare knowledge management, patient self-care, physician knowledge transfer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1239515 On the Continuous Service of Distributed e-Learning System
Authors: Kazunari Meguro, Shinichi Motomura, Takao Kawamura, Kazunori Sugahara
Abstract:
In this paper, backup and recovery technique for Peer to Peer applications, such as a distributed asynchronous Web-Based Training system that we have previously proposed. In order to improve the scalability and robustness of this system, all contents and function are realized on mobile agents. These agents are distributed to computers, and they can obtain using a Peer to Peer network that modified Content-Addressable Network. In the proposed system, although entire services do not become impossible even if some computers break down, the problem that contents disappear occurs with an agent-s disappearance. As a solution for this issue, backups of agents are distributed to computers. If a failure of a computer is detected, other computers will continue service using backups of the agents belonged to the computer.Keywords: Distributed Multimedia Systems, e-Learning, P2P, Mobile Agent
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1560514 Human Capital and the Innovation System – Case Study of the Mpumalanga Province, South Africa
Authors: Maria E. Eggink
Abstract:
Innovation plays an important role in economic growth and development. Evolutionary economics has entrepreneurs at the centre of the innovation system, but includes all other participants as contributors to the performance of the innovation system. Education and training institutions, one of the participants in the innovation system, contributes in different ways to human capital. The gap in literature on the competence building as part of human capital in the analysis of innovation systems is addressed in this paper. The Mpumalanga Province of South Africa is used as a case study. It was found that the absence of a university, the level of education, the quality and performance in the education sector and the condition of the education infrastructure have not been conducive to learning.
Keywords: Education institutions, human capital, innovation systems, Mpumalanga Province.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2034513 Improving the Convergence of the Backpropagation Algorithm Using Local Adaptive Techniques
Authors: Z. Zainuddin, N. Mahat, Y. Abu Hassan
Abstract:
Since the presentation of the backpropagation algorithm, a vast variety of improvements of the technique for training a feed forward neural networks have been proposed. This article focuses on two classes of acceleration techniques, one is known as Local Adaptive Techniques that are based on weightspecific only, such as the temporal behavior of the partial derivative of the current weight. The other, known as Dynamic Adaptation Methods, which dynamically adapts the momentum factors, α, and learning rate, η, with respect to the iteration number or gradient. Some of most popular learning algorithms are described. These techniques have been implemented and tested on several problems and measured in terms of gradient and error function evaluation, and percentage of success. Numerical evidence shows that these techniques improve the convergence of the Backpropagation algorithm.
Keywords: Backpropagation, Dynamic Adaptation Methods, Local Adaptive Techniques, Neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2173512 A Content Vector Model for Text Classification
Authors: Eric Jiang
Abstract:
As a popular rank-reduced vector space approach, Latent Semantic Indexing (LSI) has been used in information retrieval and other applications. In this paper, an LSI-based content vector model for text classification is presented, which constructs multiple augmented category LSI spaces and classifies text by their content. The model integrates the class discriminative information from the training data and is equipped with several pertinent feature selection and text classification algorithms. The proposed classifier has been applied to email classification and its experiments on a benchmark spam testing corpus (PU1) have shown that the approach represents a competitive alternative to other email classifiers based on the well-known SVM and naïve Bayes algorithms.Keywords: Feature Selection, Latent Semantic Indexing, Text Classification, Vector Space Model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1885511 Analysis of Take-off Phase of Somersaults with Twisting along the Longitudinal Body Axis
Authors: P. Hedbávný, M. Kalichová
Abstract:
The contribution deals with problem of take-off phase of back somersault with twisting with various numbers of twists along longitudinal body axis. The aim was to evaluate the changes in angles during transition phase from back handspring to back somersault using 3D kinematic analysis of the somersaults. We used Simi Motion System for the 3D kinematic analysis of the observed gymnastic element performed by Czech Republic female representative and 2008 Summer Olympic Games participant. The results showed that the higher the number of twists, the smaller the touchdown angle in which the gymnasts lands on the pad in the beginning of take-off phase. In back somersault with one twist (180°) the average angle is 54°, in 1080° back somersault the average angle is 45.9°. These results may help to improve technical training of sports gymnasts.
Keywords: back somersault with twisting, biomechanicalanalysis, take-off
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2520510 3D Face Recognition Using Modified PCA Methods
Authors: Omid Gervei, Ahmad Ayatollahi, Navid Gervei
Abstract:
In this paper we present an approach for 3D face recognition based on extracting principal components of range images by utilizing modified PCA methods namely 2DPCA and bidirectional 2DPCA also known as (2D) 2 PCA.A preprocessing stage was implemented on the images to smooth them using median and Gaussian filtering. In the normalization stage we locate the nose tip to lay it at the center of images then crop each image to a standard size of 100*100. In the face recognition stage we extract the principal component of each image using both 2DPCA and (2D) 2 PCA. Finally, we use Euclidean distance to measure the minimum distance between a given test image to the training images in the database. We also compare the result of using both methods. The best result achieved by experiments on a public face database shows that 83.3 percent is the rate of face recognition for a random facial expression.Keywords: 3D face recognition, 2DPCA, (2D) 2 PCA, Rangeimage
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3068509 On Dialogue Systems Based on Deep Learning
Authors: Yifan Fan, Xudong Luo, Pingping Lin
Abstract:
Nowadays, dialogue systems increasingly become the way for humans to access many computer systems. So, humans can interact with computers in natural language. A dialogue system consists of three parts: understanding what humans say in natural language, managing dialogue, and generating responses in natural language. In this paper, we survey deep learning based methods for dialogue management, response generation and dialogue evaluation. Specifically, these methods are based on neural network, long short-term memory network, deep reinforcement learning, pre-training and generative adversarial network. We compare these methods and point out the further research directions.Keywords: Dialogue management, response generation, reinforcement learning, deep learning, evaluation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 787508 Diagnosis of Inter Turn Fault in the Stator of Synchronous Generator Using Wavelet Based ANFIS
Authors: R. Rajeswari, N. Kamaraj
Abstract:
In this paper, Wavelet based ANFIS for finding inter turn fault of generator is proposed. The detector uniquely responds to the winding inter turn fault with remarkably high sensitivity. Discrimination of different percentage of winding affected by inter turn fault is provided via ANFIS having an Eight dimensional input vector. This input vector is obtained from features extracted from DWT of inter turn faulty current leaving the generator phase winding. Training data for ANFIS are generated via a simulation of generator with inter turn fault using MATLAB. The proposed algorithm using ANFIS is giving satisfied performance than ANN with selected statistical data of decomposed levels of faulty current.Keywords: Winding InterTurn fault, ANN, ANFIS, and DWT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2945507 Cognition of Driving Context for Driving Assistance
Authors: Manolo Dulva Hina, Clement Thierry, Assia Soukane, Amar Ramdane-Cherif
Abstract:
In this paper, we presented our innovative way of determining the driving context for a driving assistance system. We invoke the fusion of all parameters that describe the context of the environment, the vehicle and the driver to obtain the driving context. We created a training set that stores driving situation patterns and from which the system consults to determine the driving situation. A machine-learning algorithm predicts the driving situation. The driving situation is an input to the fission process that yields the action that must be implemented when the driver needs to be informed or assisted from the given the driving situation. The action may be directed towards the driver, the vehicle or both. This is an ongoing work whose goal is to offer an alternative driving assistance system for safe driving, green driving and comfortable driving. Here, ontologies are used for knowledge representation.Keywords: Cognitive driving, intelligent transportation system, multimodal system, ontology, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1459506 A Comparative Study of Cardio Respiratory Efficiency between Aquatic and Track and Field Performers
Authors: Sumanta Daw, Gopal Chandra Saha
Abstract:
The present study was conducted to explore the basic pulmonary functions which may generally vary according to the bio-physical characteristics including age, height, body weight, and environment etc. of the sports performers. Regular and specific training exercises also change the characteristics of an athlete’s prowess and produce a positive effect on the physiological functioning, mostly upon cardio-pulmonary efficiency and thereby improving the body mechanism. The objective of the present study was to compare the differences in cardio-respiratory functions between aquatics and track and field performers. As cardio-respiratory functions are influenced by pulse rate and blood pressure (systolic and diastolic), so both of the factors were also taken into consideration. The component selected under cardio-respiratory functions for the present study were i) FEVI/FVC ratio (forced expiratory volume divided by forced vital capacity ratio, i.e. the number represents the percentage of lung capacity to exhale in one second) ii) FVC1 (this is the amount of air which can force out of lungs in one second) and iii) FVC (forced vital capacity is the greatest total amount of air forcefully breathe out after breathing in as deeply as possible). All the three selected components of the cardio-respiratory efficiency were measured by spirometry method. Pulse rate was determined manually. The radial artery which is located on the thumb side of our wrist was used to assess the pulse rate. Blood pressure was assessed by sphygmomanometer. All the data were taken in the resting condition. 36subjects were selected for the present study out of which 18were water polo players and rest were sprinters. The age group of the subjects was considered between 18 to 23 years. In this study the obtained data inform of digital score were treated statistically to get result and draw conclusions. The Mean and Standard Deviation (SD) were used as descriptive statistics and the significant difference between the two subject groups was assessed with the help of statistical ‘t’-test. It was found from the study that all the three components i.e. FEVI/FVC ratio (p-value 0.0148 < 0.01), FVC1 (p-value 0.0010 < 0.01) and FVC (p-value 0.0067 < 0.01) differ significantly as water polo players proved to be better in terms of cardio-respiratory functions than sprinters. Thus study clearly suggests that the exercise training as well as the medium of practice arena associated with water polo players has played an important role to determine better cardio respiratory efficiency than track and field athletes. The outcome of the present study revealed that the lung function in land-based activities may not provide much impact than that of in water activities.
Keywords: Cardio-respiratory efficiency, spirometry, water polo players, sprinters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 613505 Auto Classification for Search Intelligence
Authors: Lilac A. E. Al-Safadi
Abstract:
This paper proposes an auto-classification algorithm of Web pages using Data mining techniques. We consider the problem of discovering association rules between terms in a set of Web pages belonging to a category in a search engine database, and present an auto-classification algorithm for solving this problem that are fundamentally based on Apriori algorithm. The proposed technique has two phases. The first phase is a training phase where human experts determines the categories of different Web pages, and the supervised Data mining algorithm will combine these categories with appropriate weighted index terms according to the highest supported rules among the most frequent words. The second phase is the categorization phase where a web crawler will crawl through the World Wide Web to build a database categorized according to the result of the data mining approach. This database contains URLs and their categories.Keywords: Information Processing on the Web, Data Mining, Document Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1619504 State of Human Factors in Small Manufacturing Sectors of India
Authors: B. Singh, A. Singh, R. C. Yadav
Abstract:
Utmost care of human related issues are essentially required for sustainable growth of micro, small and medium enterprises (MSMEs) of India, as these MSMEs are contributing enormously to socio-economic development of country. In this research, aspects related to human factors and functioning of MSMEs of India were studied. The investigation, based on a survey of 84 MSMEs of India cited that the enterprises are mostly employing unskilled labor whose wages are less with poor training. In spite of reported minor accidents, attention towards safety is poorly paid. To meet-out the production target, MSMEs generally employ over-time and payment towards this overtime is sometimes missing. Hence, honest and humanitarian attention for better human resources is needed to improve the performance and competitiveness of MSMEs of India.
Keywords: Human factors, Small and medium enterprises, Working culture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2322503 The Use of Simulation Programs of Leakage of Harmful Substances for Crisis Management
Authors: Jiří Barta
Abstract:
The paper deals with simulation programs of spread of harmful substances. Air pollution has a direct impact on the quality of human life and environmental protection is currently a very hot topic. Therefore, the paper focuses on the simulation of release of harmful substances. The first part of article deals with perspectives and possibilities of implementation outputs of simulations programs into the system which is education and of practical training of the management staff during emergency events in the frame of critical infrastructure. The last part shows the practical testing and evaluation of simulation programs. Of the tested simulations software been selected Symos97. The tool offers advanced features for setting leakage. Gradually allows the user to model the terrain, location, and method of escape of harmful substances.
Keywords: Computer Simulation, Symos97, spread, simulation software, harmful substances.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 951502 Nurturing National Progress: The Crucial Role of Philosophy and Education in the Post-Pandemic Era
Authors: Aldrin R. Logdat
Abstract:
Philosophy offers a systematic approach to reflective, logical, and innovative thinking, which involves a thorough investigation of various concepts. On the other hand, national development encompasses a country’s ability to embrace its unique identity and take charge of its future. Education, meanwhile, provides individuals with enlightening experiences and specialized training in different fields. The aim of this paper is to demonstrate how philosophy and education can serve as catalysts for national progress. Given the Philippines' diverse socio-cultural, religious, ethnic, and political backgrounds, this study seeks to answer two crucial questions: Can the country achieve development despite its differences? If that is the case, what are the critical elements propelling this advancement? By means of historical interpretation and philosophical analysis, this article posits that philosophy and education are essential components in driving the country's progress in the era following the pandemic.
Keywords: Philosophy, national progress, educational discourse, pandemic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 260501 Topology-Based Character Recognition Method for Coin Date Detection
Authors: Xingyu Pan, Laure Tougne
Abstract:
For recognizing coins, the graved release date is important information to identify precisely its monetary type. However, reading characters in coins meets much more obstacles than traditional character recognition tasks in the other fields, such as reading scanned documents or license plates. To address this challenging issue in a numismatic context, we propose a training-free approach dedicated to detection and recognition of the release date of the coin. In the first step, the date zone is detected by comparing histogram features; in the second step, a topology-based algorithm is introduced to recognize coin numbers with various font types represented by binary gradient map. Our method obtained a recognition rate of 92% on synthetic data and of 44% on real noised data.
Keywords: Coin, detection, character recognition, topology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1477500 Comparison between Beta Wavelets Neural Networks, RBF Neural Networks and Polynomial Approximation for 1D, 2DFunctions Approximation
Authors: Wajdi Bellil, Chokri Ben Amar, Adel M. Alimi
Abstract:
This paper proposes a comparison between wavelet neural networks (WNN), RBF neural network and polynomial approximation in term of 1-D and 2-D functions approximation. We present a novel wavelet neural network, based on Beta wavelets, for 1-D and 2-D functions approximation. Our purpose is to approximate an unknown function f: Rn - R from scattered samples (xi; y = f(xi)) i=1....n, where first, we have little a priori knowledge on the unknown function f: it lives in some infinite dimensional smooth function space and second the function approximation process is performed iteratively: each new measure on the function (xi; f(xi)) is used to compute a new estimate f as an approximation of the function f. Simulation results are demonstrated to validate the generalization ability and efficiency of the proposed Beta wavelet network.
Keywords: Beta wavelets networks, RBF neural network, training algorithms, MSE, 1-D, 2D function approximation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1922