Search results for: liquid crystal
82 Analysing Environmental Risks and Perceptions of Risks to Assess Health and Well-being in Poor Areas of Abidjan
Authors: Kouassi Dongo, Christian Zurbrügg, Gueladio Cissé1, Brigit Obrist, Marcel Tanner, Jean Biémi
Abstract:
This study analyzed environmental health risks and people-s perceptions of risks related to waste management in poor settlements of Abidjan, to develop integrated solutions for health and well-being improvement. The trans-disciplinary approach used relied on remote sensing, a geographic information system (GIS), qualitative and quantitative methods such as interviews and a household survey (n=1800). Mitigating strategies were then developed using an integrated participatory stakeholder workshop. Waste management deficiencies resulting in lack of drainage and uncontrolled solid and liquid waste disposal in the poor settlements lead to severe environmental health risks. Health problems were caused by direct handling of waste, as well as through broader exposure of the population. People in poor settlements had little awareness of health risks related to waste management in their community and a general lack of knowledge pertaining to sanitation systems. This unfortunate combination was the key determinant affecting the health and vulnerability. For example, an increased prevalence of malaria (47.1%) and diarrhoea (19.2%) was observed in the rainy season when compared to the dry season (32.3% and 14.3%). Concerted and adapted solutions that suited all the stakeholders concerned were developed in a participatory workshop to allow for improvement of health and well-being.Keywords: Abidjan, environmental health risks, informalsettlements, vulnerability, waste management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 177081 Three Dimensional Modeling of Mixture Formation and Combustion in a Direct Injection Heavy-Duty Diesel Engine
Authors: A. R. Binesh, S. Hossainpour
Abstract:
Due to the stringent legislation for emission of diesel engines and also increasing demand on fuel consumption, the importance of detailed 3D simulation of fuel injection, mixing and combustion have been increased in the recent years. In the present work, FIRE code has been used to study the detailed modeling of spray and mixture formation in a Caterpillar heavy-duty diesel engine. The paper provides an overview of the submodels implemented, which account for liquid spray atomization, droplet secondary break-up, droplet collision, impingement, turbulent dispersion and evaporation. The simulation was performed from intake valve closing (IVC) to exhaust valve opening (EVO). The predicted in-cylinder pressure is validated by comparing with existing experimental data. A good agreement between the predicted and experimental values ensures the accuracy of the numerical predictions collected with the present work. Predictions of engine emissions were also performed and a good quantitative agreement between measured and predicted NOx and soot emission data were obtained with the use of the present Zeldowich mechanism and Hiroyasu model. In addition, the results reported in this paper illustrate that the numerical simulation can be one of the most powerful and beneficial tools for the internal combustion engine design, optimization and performance analysis.Keywords: Diesel engine, Combustion, Pollution, CFD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 195480 Wine Grape Residues Gasification in Supercritical Water
Authors: D. Selvi Gökkaya, M. Yüksel, M. Sağlam, T. Güngören Madenoğlu, N. Cengiz, T. Çokkuvvetli, L. Ballice
Abstract:
In this study, production possibilities of hydrogen and/or methane via SCWG from black grape residues have been investigated. For this aim, grape residues which remain as a byproduct of the wine making process have been used. Since utilization from grape residues is limited due to the high moisture content, supercritical water gasification is the most convenient method. The effect of the gasification temperature and type of catalyst on supercritical water gasification have been investigated. Gasification experiments were performed in a batch autoclave at four different temperatures 300, 400, 500 and 600°C. K2CO3 and Trona (NaHCO3.Na2CO3·2H2O) were used as catalyst. Real biomass types of black grape residues have been successfully gasified and the product gas (hydrogen, methane, carbon dioxide, carbon monoxide and a small amount of ethane and ethylene) were identified by using gas chromatography. A TOC analyzer was used to determine total organic carbon (TOC) content of aqueous phase. The amounts of carboxylic acids, aldehydes, ketones, furfurals and phenols present in the aqueous solutions were analyzed by high performance liquid chromatography. When the temperature increased from 300°C to 600°C, mol% of H2 in gas products increased. The presence of catalysts improves the hydrogen yield. Trona showed gasification activity to be similar to that of K2CO3. It may be concluded that the use of Trona instead of commercially produced catalysts, can be preferably used in the gasification of biomass in supercritical water.
Keywords: Biomass, hydrogen, grape residues.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 247279 Some Mechanical Properties of Cement Stabilized Malaysian Soft Clay
Authors: Meei-Hoan Ho, Chee-Ming Chan
Abstract:
Soft clays are defined as cohesive soil whose water content is higher than its liquid limits. Thus, soil-cement mixing is adopted to improve the ground conditions by enhancing the strength and deformation characteristics of the soft clays. For the above mentioned reasons, a series of laboratory tests were carried out to study some fundamental mechanical properties of cement stabilized soft clay. The test specimens were prepared by varying the portion of ordinary Portland cement to the soft clay sample retrieved from the test site of RECESS (Research Centre for Soft Soil). Comparisons were made for both homogeneous and columnar system specimens by relating the effects of cement stabilized clay of for 0, 5 and 10 % cement and curing for 3, 28 and 56 days. The mechanical properties examined included one-dimensional compressibility and undrained shear strength. For the mechanical properties, both homogeneous and columnar system specimens were prepared to examine the effect of different cement contents and curing periods on the stabilized soil. The one-dimensional compressibility test was conducted using an oedometer, while a direct shear box was used for measuring the undrained shear strength. The higher the value of cement content, the greater is the enhancement of the yield stress and the decrease of compression index. The value of cement content in a specimen is a more active parameter than the curing period.Keywords: Soft soil, Oedometer, Direct shear box, Cementstabilisedcolumn.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 326178 Removal of Volatile Organic Compounds from Contaminated Surfactant Solution using Co-Curren Vacuum Stripping
Authors: Pornchai Suriya-Amrit, Suratsawadee Kungsanant, Boonyarach Kitiyanan
Abstract:
There has been a growing interest in utilizing surfactants in remediation processes to separate the hydrophobic volatile organic compounds (HVOCs) from aqueous solution. One attractive process is cloud point extraction (CPE), which utilizes nonionic surfactants as a separating agent. Since the surfactant cost is a key determination of the economic viability of the process, it is important that the surfactants are recycled and reused. This work aims to study the performance of the co-current vacuum stripping using a packed column for HVOCs removal from contaminated surfactant solution. Six types HVOCs are selected as contaminants. The studied surfactant is the branched secondary alcohol ethoxylates (AEs), Tergitol TMN-6 (C14H30O2). The volatility and the solubility of HVOCs in surfactant system are determined in terms of an apparent Henry’s law constant and a solubilization constant, respectively. Moreover, the HVOCs removal efficiency of vacuum stripping column is assessed in terms of percentage of HVOCs removal and the overall liquid phase volumetric mass transfer coefficient. The apparent Henry’s law constant of benzenz , toluene, and ethyl benzene were 7.00×10-5, 5.38×10-5, 3.35× 10-5 respectively. The solubilization constant of benzene, toluene, and ethyl benzene were 1.71, 2.68, 7.54 respectively. The HVOCs removal for all solute were around 90 percent.
Keywords: Apparent Henry’s law constant, Branched secondary alcohol ethoxylates, Vacuum Stripping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 169777 Evaluation of the Microscopic-Observation Drug-Susceptibility Assay Drugs Concentration for Detection of Multidrug-Resistant Tuberculosis
Authors: Anita, Sari Septiani Tangke, Rusdina Bte Ladju, Nasrum Massi
Abstract:
New diagnostic tools are urgently needed to interrupt the transmission of tuberculosis and multidrug-resistant tuberculosis. The microscopic-observation drug-susceptibility (MODS) assay is a rapid, accurate and simple liquid culture method to detect multidrug-resistant tuberculosis (MDR-TB). MODS were evaluated to determine a lower and same concentration of isoniazid and rifampin for detection of MDR-TB. Direct drug-susceptibility testing was performed with the use of the MODS assay. Drug-sensitive control strains were tested daily. The drug concentrations that used for both isoniazid and rifampin were at the same concentration: 0.16, 0.08 and 0.04μg per milliliter. We tested 56 M. tuberculosis clinical isolates and the control strains M. tuberculosis H37RV. All concentration showed same result. Of 53 M. tuberculosis clinical isolates, 14 were MDR-TB, 38 were susceptible with isoniazid and rifampin, 1 was resistant with isoniazid only. Drug-susceptibility testing was performed with the use of the proportion method using Mycobacteria Growth Indicator Tube (MGIT) system as reference. The result of MODS assay using lower concentration was significance (P<0.001) compare with the reference methods.
A lower and same concentration of isoniazid and rifampin can be used to detect MDR-TB. Operational cost and application can be more efficient and easier in resource-limited environments. However, additional studies evaluating the MODS using lower and same concentration of isoniazid and rifampin must be conducted with a larger number of clinical isolates.
Keywords: Isoniazid, MODS assay, MDR-TB, Rifampin.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 159876 Thiosulfate Leaching of the Auriferous Ore from Castromil Deposit: A Case Study
Authors: Rui Sousa, Aurora Futuro, António Fiúza
Abstract:
The exploitation of gold ore deposits is highly dependent on efficient mineral processing methods, although actual perspectives based on life-cycle assessment introduce difficulties that were unforeseen in a very recent past. Cyanidation is the most applied gold processing method, but the potential environmental problems derived from the usage of cyanide as leaching reagent led to a demand for alternative methods. Ammoniacal thiosulfate leaching is one of the most important alternatives to cyanidation. In this article, some experimental studies carried out in order to assess the feasibility of thiosulfate as a leaching agent for the ore from the unexploited Portuguese gold mine of Castromil. It became clear that the process depends on the concentrations of ammonia, thiosulfate and copper. Based on this fact, a few leaching tests were performed in order to assess the best reagent prescription, and also the effects of different combination of these concentrations. Higher thiosulfate concentrations cause the decrease of gold dissolution. Lower concentrations of ammonia require higher thiosulfate concentrations, and higher ammonia concentrations require lower thiosulfate concentrations. The addition of copper increases the gold dissolution ratio. Subsequently, some alternative operatory conditions were tested such as variations in temperature and in the solid/liquid ratio as well as the application of a pre-treatment before the leaching stage. Finally, thiosulfate leaching was compared to cyanidation. Thiosulfate leaching showed to be an important alternative, although a pre-treatment is required to increase the yield of the gold dissolution.
Keywords: Gold, leaching, pre-treatment, thiosulfate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 166475 Numerical Investigation of the Performance of a Vorsyl Separator Using a Euler-Lagrange Approach
Authors: Guozhen Li, Philip Hall, Nick Miles, Tao Wu, Jie Dong
Abstract:
This paper presents a Euler-Lagrange model of the water-particles multiphase flows in a Vorsyl separator where particles with different densities are separated. A series of particles with their densities ranging from 760 kg/m3 to 1380 kg/m3 were fed into the Vorsyl separator with water by means of tangential inlet. The simulation showed that the feed materials acquired centrifugal force which allows most portion of the particles with a density less than water to move to the center of the separator, enter the vortex finder and leave the separator through the bottom outlet. While the particles heavier than water move to the wall, reach the throat area and leave the separator through the side outlet. The particles were thus separated and particles collected at the bottom outlet are pure and clean. The influence of particle density on separation efficiency was investigated which demonstrated a positive correlation of the separation efficiency with increasing density difference between medium liquid and the particle. In addition, the influence of the split ratio on the performance was studied which showed that the separation efficiency of the Vorsyl separator can be improved by the increase of split ratio. The simulation also suggested that the Vorsyl separator may not function when the feeding velocity is smaller than a certain critical feeding in velocity. In addition, an increasing feeding velocity gives rise to increased pressure drop, however does not necessarily increase the separation efficiency.Keywords: Vorsyl separator, separation efficiency, CFD, split ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 120974 Integrated Wastewater Reuse Project of the Faculty of Sciences Ain Chock, Morocco
Authors: Nihad Chakri, Btissam El Amrani, Faouzi Berrada, Fouad Amraoui
Abstract:
In Morocco, water scarcity requires the exploitation of non-conventional resources. Rural areas are under-equipped with sanitation infrastructure, unlike urban areas. Decentralized and low-cost solutions could improve the quality of life of the population and the environment. In this context, the Faculty of Sciences Ain Chock (FSAC) has undertaken an integrated project to treat part of its wastewater using a decentralized compact system. The project will propose alternative solutions that are inexpensive and adapted to the context of peri-urban and rural areas in order to treat the wastewater generated and to use it for irrigation, watering and cleaning. For this purpose, several tests were carried out in the laboratory in order to develop a liquid waste treatment system optimized for local conditions. Based on the results obtained at laboratory scale of the different proposed scenarios, we designed and implemented a prototype of a mini wastewater treatment plant for the faculty. In this article, we will outline the steps of dimensioning, construction and monitoring of the mini-station in our faculty.
Keywords: Wastewater, purification, response methodology surfaces optimization, vertical filter, Moving Bed Biofilm Reactors, MBBR process, sizing, prototype, Faculty of Sciences Ain Chock, decentralized approach, mini wastewater treatment plant, reuse of treated wastewater reuse, irrigation, sustainable development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28873 Thermal Insulating Silicate Materials Suitable for Thermal Insulation and Rehabilitation Structures
Authors: J. Hroudova, M. Sedlmajer, J. Zach
Abstract:
Problems insulation of building structures is often closely connected with the problem of moisture remediation. In the case of historic buildings or if only part of the redevelopment of envelope of structures, it is not possible to apply the classical external thermal insulation composite systems. This application is mostly effective thermal insulation plasters with high porosity and controlled capillary properties which assures improvement of thermal properties construction, its diffusion openness towards the external environment and suitable treatment capillary properties of preventing the penetration of liquid moisture and salts thereof toward the outer surface of the structure. With respect to the current trend of reducing the energy consumption of building structures and reduce the production of CO2 is necessary to develop capillary-active materials characterized by their low density, low thermal conductivity while maintaining good mechanical properties. The aim of researchers at the Faculty of Civil Engineering, Brno University of Technology is the development and study of hygrothermal behaviour of optimal materials for thermal insulation and rehabilitation of building structures with the possible use of alternative, less energy demanding binders in comparison with conventional, frequently used binder, which represents cement. The paper describes the evaluation of research activities aimed at the development of thermal insulation and repair materials using lightweight aggregate and alternative binders such as metakaolin and finely ground fly ash.
Keywords: Thermal insulating plasters, rehabilitation materials, thermal conductivity, lightweight aggregate, alternative binders.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 218672 Calculation of Density for Refrigerant Mixtures in Sub Critical Regions for Use in the Buildings
Authors: Mohammad Reza Mobinipouya, Zahra Barzegar
Abstract:
Accurate and comprehensive thermodynamic properties of pure and mixture of refrigerants are in demand by both producers and users of these materials. Information about thermodynamic properties is important initially to qualify potential candidates for working fluids in refrigeration machinery. From practical point of view, Refrigerants and refrigerant mixtures are widely used as working fluids in many industrial applications, such as refrigerators, heat pumps, and power plants The present work is devoted to evaluating seven cubic equations of state (EOS) in predicting gas and liquid phase volumetric properties of nine ozone-safe refrigerants both in super and sub-critical regions. The evaluations, in sub-critical region, show that TWU and PR EOS are capable of predicting PVT properties of refrigerants R32 within 2%, R22, R134a, R152a and R143a within 1% and R123, R124, R125, TWU and PR EOS's, from literature data are 0.5% for R22, R32, R152a, R143a, and R125, 1% for R123, R134a, and R141b, and 2% for R124. Moreover, SRK EOS predicts PVT properties of R22, R125, and R123 to within aforementioned errors. The remaining EOS's predicts volumetric properties of this class of fluids with higher errors than those above mentioned which are at most 8%.In general, the results are in favor of the preference of TWU and PR EOS over other remaining EOS's in predicting densities of all mentioned refrigerants in both super and sub critical regions. Typically, this refrigerant is known to offer advantages such as ozone depleting potential equal to zero, Global warming potential equal to 140, and no toxic.
Keywords: Refrigerant, cooling systems, Sub-CriticalRegions, volumetric properties, efficiency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 216271 Controlled Release of Glucosamine from Pluronic-Based Hydrogels for the Treatment of Osteoarthritis
Authors: Papon Thamvasupong, Kwanchanok Viravaidya-Pasuwat
Abstract:
Osteoarthritis affects a lot of people worldwide. Local injection of glucosamine is one of the alternative treatment methods to replenish the natural lubrication of cartilage. However, multiple injections can potentially lead to possible bacterial infection. Therefore, a drug delivery system is desired to reduce the frequencies of injections. A hydrogel is one of the delivery systems that can control the release of drugs. Thermo-reversible hydrogels can be beneficial to the drug delivery system especially in the local injection route because this formulation can change from liquid to gel after getting into human body. Once the gel is in the body, it will slowly release the drug in a controlled manner. In this study, various formulations of Pluronic-based hydrogels were synthesized for the controlled release of glucosamine. One of the challenges of the Pluronic controlled release system is its fast dissolution rate. To overcome this problem, alginate and calcium sulfate (CaSO4) were added to the polymer solution. The characteristics of the hydrogels were investigated including the gelation temperature, gelation time, hydrogel dissolution and glucosamine release mechanism. Finally, a mathematical model of glucosamine release from Pluronic-alginate-hyaluronic acid hydrogel was developed. Our results have shown that crosslinking Pluronic gel with alginate did not significantly extend the dissolution rate of the gel. Moreover, the gel dissolution profiles and the glucosamine release mechanisms were best described using the zeroth-order kinetic model, indicating that the release of glucosamine was primarily governed by the gel dissolution.
Keywords: Controlled release, drug delivery system, glucosamine, Pluronic® F-127, thermoreversible hydrogel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 168770 An Environmental Impact Tool to Assess National Energy Scenarios
Authors: R. Taviv, A.C. Brent, H. Fortuin
Abstract:
The Long-range Energy and Alternatives Planning (LEAP) energy planning system has been developed for South Africa, for the 2005 base year and a limited number of plausible future scenarios that may have significant implications (negative or positive) in terms of environmental impacts. The system quantifies the national energy demand for the domestic, commercial, transport, industry and agriculture sectors, the supply of electricity and liquid fuels, and the resulting emissions. The South African National Energy Research Institute (SANERI) identified the need to develop an environmental assessment tool, based on the LEAP energy planning system, to provide decision-makers and stakeholders with the necessary understanding of the environmental impacts associated with different energy scenarios. A comprehensive analysis of indicators that are used internationally and in South Africa was done and the available data was accessed to select a reasonable number of indicators that could be utilized in energy planning. A consultative process was followed to determine the needs of different stakeholders on the required indicators and also the most suitable form of reporting. This paper demonstrates the application of Energy Environmental Sustainability Indicators (EESIs) as part of the developed tool, which assists with the identification of the environmental consequences of energy generation and use scenarios and thereby promotes sustainability, since environmental considerations can then be integrated into the preparation and adoption of policies, plans, programs and projects. Recommendations are made to refine the tool further for South Africa.
Keywords: Energy modeling, LEAP, environmental impact, environmental indicators, energy sector emissions, sustainable development, South Africa
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 163469 Effects of Process Parameters on the Yield of Oil from Coconut Fruit
Authors: Ndidi F. Amulu, Godian O. Mbah, Maxwel I. Onyiah, Callistus N. Ude
Abstract:
Analysis of the properties of coconut (Cocos nucifera) and its oil was evaluated in this work using standard analytical techniques. The analyses carried out include proximate composition of the fruit, extraction of oil from the fruit using different process parameters and physicochemical analysis of the extracted oil. The results showed the percentage (%) moisture, crude lipid, crude protein, ash and carbohydrate content of the coconut as 7.59, 55.15, 5.65, 7.35 and 19.51 respectively. The oil from the coconut fruit was odourless and yellowish liquid at room temperature (30oC). The treatment combinations used (leaching time, leaching temperature and solute: solvent ratio) showed significant differences (P<0.05) in the yield of oil from coconut flour. The oil yield ranged between 36.25%-49.83%. Lipid indices of the coconut oil indicated the acid value (AV) as 10.05Na0H/g of oil, free fatty acid (FFA) as 5.03%, saponification values (SV) as 183.26mgKOH-1g of oil, iodine value (IV) as 81.00 I2/g of oil, peroxide value (PV) as 5.00 ml/ g of oil and viscosity (V) as 0.002. A standard statistical package minitab version 16.0 program was used in the regression analysis and analysis of variance (ANOVA). The statistical software mentioned above was also used to generate various plots such as single effect plot, interactions effect plot and contour plot. The response or yield of oil from the coconut flour was used to develop a mathematical model that correlates the yield to the process variables studied. The maximum conditions obtained that gave the highest yield of coconut oil were leaching time of 2hrs, leaching temperature of 50oC and solute/solvent ratio of 0.05g/ml.
Keywords: Coconut, oil-extraction, optimization, physicochemical, proximate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 265468 Solubility of Organics in Water and Silicon Oil: A Comparative Study
Authors: Edison Muzenda
Abstract:
The aim of this study was to compare the solubility of selected volatile organic compounds in water and silicon oil using the simple static headspace method. The experimental design allowed equilibrium achievement within 30 – 60 minutes. Infinite dilution activity coefficients and Henry-s law constants for various organics representing esters, ketones, alkanes, aromatics, cycloalkanes and amines were measured at 303K. The measurements were reproducible with a relative standard deviation and coefficient of variation of 1.3x10-3 and 1.3 respectively. The static determined activity coefficients using shaker flasks were reasonably comparable to those obtained using the gas liquid - chromatographic technique and those predicted using the group contribution methods mainly the UNIFAC. Silicon oil chemically known as polydimethysiloxane was found to be better absorbent for VOCs than water which quickly becomes saturated. For example the infinite dilution mole fraction based activity coefficients of hexane is 0.503 and 277 000 in silicon oil and water respectively. Thus silicon oil gives a superior factor of 550 696. Henry-s law constants and activity coefficients at infinite dilution play a significant role in the design of scrubbers for abatement of volatile organic compounds from contaminated air streams. This paper presents the phase equilibrium of volatile organic compounds in very dilute aqueous and polymeric solutions indicating the movement and fate of chemical in air and solvent. The successful comparison of the results obtained here and those obtained using other methods by the same authors and in literature, means that the results obtained here are reliable.
Keywords: Abatement, absorbent, activity coefficients, equilibrium, Henry's law constant.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 268367 Distribution of Phospholipids, Cholesterol and Carotenoids in Two-Solvent System during Egg Yolk Oil Solvent Extraction
Authors: Aleksandrs Kovalcuks, Mara Duma
Abstract:
Egg yolk oil is a concentrated source of egg bioactive compounds, such as fat-soluble vitamins, phospholipids, cholesterol, carotenoids and others. To extract lipids and other fat-soluble nutrients from liquid egg yolk, a two-step extraction process involving polar (ethanol) and non-polar (hexane) solvents were used. This extraction technique was based on egg yolk bioactive compounds polarities, where non-polar compound was extracted into non-polar hexane, but polar in to polar alcohol/water phase. But many egg yolk bioactive compounds are not strongly polar or non-polar. Egg yolk phospholipids, cholesterol and pigments are amphipatic (have both polar and non-polar regions) and their behavior in ethanol/hexane solvent system is not clear. The aim of this study was to clarify the behavior of phospholipids, cholesterol and carotenoids during extraction of egg yolk oil with ethanol and hexane and determine the loss of these compounds in egg yolk oil. Egg yolks and egg yolk oil were analyzed for phospholipids (phosphatidylcholine (PC) and phosphatidylethanolamine (PE)), cholesterol and carotenoids (lutein, zeaxanthin, canthaxanthin and β-carotene) content using GC-FID and HPLC methods. PC and PE are polar lipids and were extracted into polar ethanol phase. Concentration of PC in ethanol was 97.89% and PE 99.81% from total egg yolk phospholipids. Due to cholesterol’s partial extraction into ethanol, cholesterol content in egg yolk oil was reduced in comparison to its total content presented in egg yolk lipids. The highest amount of lutein and zeaxanthin was concentrated in ethanol extract. The opposite situation was observed with canthaxanthin and β-carotene, which became the main pigments of egg yolk oil.
Keywords: Cholesterol, egg yolk oil, lutein, phospholipids, solvent extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 187766 Leatherback Turtle (Dermochelys coriacea) after Incubation Eggshell in Andaman Sea, Thailand Study: Microanalysis on Ultrastructure and Elemental Composition
Authors: M. Areekijseree, M. Pumipaiboon, S. Nuamsukon, K. Kittiwattanawong, C. Thongchai, S. Sikiwat, T. Chuen-Im
Abstract:
There are few studies on eggshell of leatherback turtle which is endangered species in Thailand. This study was focusing on the ultrastructure and elemental composition of leatherback turtle eggshells collected from Andaman Sea Shore, Thailand during the nesting season using scanning electron microscope (SEM). Three eggshell layers of leatherback turtle; the outer cuticle layer or calcareous layer, the middle layer or middle multistrata layer and the inner fibrous layer were recognized. The outer calcareous layer was thick and porosity which consisted of loose nodular units of various crystal shapes and sizes. The loose attachment between these units resulted in numerous spaces and openings. The middle layer was compact thick with several multistrata and contained numerous openings connecting to both outer cuticle layer and inner fibrous layer. The inner fibrous layer was compact and thin, and composed of numerous reticular fibers. Energy dispersive X-ray microanalysis detector revealed energy spectrum of X-rays character emitted from all elements on each layer. The percentages of all elements were found in the following order: carbon (C) > oxygen (O) > calcium (Ca) > sulfur (S) > potassium (K) > aluminum (Al) > iodine (I) > silicon (Si) > chlorine (Cl) > sodium (Na) > fluorine (F) > phosphorus (P) > magnesium (Mg). Each layer consisted of high percentage of CaCO3 (approximately 98%) implying that it was essential for turtle embryonic development. A significant difference was found in the percentages of Ca and Mo in the 3layers. Moreover, transition metal, metal and toxic non-metal contaminations were found in leatherback turtle eggshell samples. These were palladium (Pd), molybdenum (Mo), copper (Cu), aluminum (Al), lead (Pb), and bromine (Br). The contamination elements were seen in the outer layers except for Mo. All elements were readily observed and mapped using Smiling program. X-ray images which mapped the location of all elements were showed. Calcium containing in the eggshell appeared in high contents and was widely distributing in clusters of the outer cuticle layer to form CaCO3 structure. Moreover, the accumulation of Na and Cl was observed to form NaCl which was widely distributing in 3 eggshell layers. The results from this study would be valuable on assessing the emergent success in this endangered species.
Keywords: Leatherback turtle (Dermochelys coriacea), SEM (SEI/EDX), turtle eggshell.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 200165 Origanum vulgare as a Possible Modulator of Testicular Endocrine Function in Mice
Authors: Eva Tvrdá, Barbora Babečková, Michal Ďuračka, Róbert Kirchner, Július Árvay
Abstract:
This study was designed to assess the in vitro effects of Origanum vulgare L. (oregano) extract on the testicular steroidogenesis. We focused on identifying major biomolecules present in the oregano extract, as well as to investigate its in vitro impact on the secretion of cholesterol, testosterone, dehydroepiandrosterone and androstenedione by murine testicular fragments. The extract was subjected to high performance liquid chromatography (HPLC) which identified cyranosid, daidzein, thymol, rosmarinic and trans-caffeic acid among the predominant biochemical components of oregano. For the in vitro experiments, testicular fragments from 20 sexually mature Institute of Cancer Research (ICR) mice were incubated in the absence (control group) or presence of the oregano extract at selected concentrations (10, 100 and 1000 μg/mL) for 24 h. Cholesterol levels were quantified using photometry and the hormones were assessed by ELISA (Enzyme-Linked Immunosorbent Assay). Our data revealed that the release of cholesterol and androstenedione (but not dehydroepiandrosterone and testosterone) by the testicular fragments was significantly impacted by the oregano extract in a dose-dependent fashion. Supplementation of the extract resulted in a significant decline of cholesterol (P < 0.05 in case of 100 μg/mL; P < 0.01 with respect 100 μg/mL extract), as well as androstenedione (P < 0.01 with respect to 100 and 1000 μg/mL extract). Our results suggest that the biomolecules present in Origanum vulgare L. could exhibit a dose-dependent impact on the secretion of male steroids, playing a role in the regulation of testicular steroidogenesis.
Keywords: Mice, Origanum vulgare L., steroidogenesis, testes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 107664 Experimental and CFD Simulation of the Jet Pump for Air Bubbles Formation
Authors: L. Grinis, N. Lubashevsky, Y. Ostrovski
Abstract:
A jet pump is a type of pump that accelerates the flow of a secondary fluid (driven fluid) by introducing a motive fluid with high velocity into a converging-diverging nozzle. Jet pumps are also known as adductors or ejectors depending on the motivator phase. The ejector's motivator is of a gaseous nature, usually steam or air, while the educator's motivator is a liquid, usually water. Jet pumps are devices that use air bubbles and are widely used in wastewater treatment processes. In this work, we will discuss about the characteristics of the jet pump and the computational simulation of this device. To find the optimal angle and depth for the air pipe, so as to achieve the maximal air volumetric flow rate, an experimental apparatus was constructed to ascertain the best geometrical configuration for this new type of jet pump. By using 3D printing technology, a series of jet pumps was printed and tested whilst aspiring to maximize air flow rate dependent on angle and depth of the air pipe insertion. The experimental results show a major difference of up to 300% in performance between the different pumps (ratio of air flow rate to supplied power) where the optimal geometric model has an insertion angle of 600 and air pipe insertion depth ending at the center of the mixing chamber. The differences between the pumps were further explained by using CFD for better understanding the reasons that affect the airflow rate. The validity of the computational simulation and the corresponding assumptions have been proved experimentally. The present research showed high degree of congruence with the results of the laboratory tests. This study demonstrates the potential of using of the jet pump in many practical applications.
Keywords: Air bubbles, CFD simulation, jet pump, practical applications.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 202363 The Effect of Curcumin on Cryopreserved Bovine Semen
Authors: Eva Tvrdá, Marek Halenár, Hana Greifová, Alica Mackovich, Faridullah Hashim, Norbert Lukáč
Abstract:
Oxidative stress associated with semen cryopreservation may result in lipid peroxidation (LPO), DNA damage and apoptosis, leading to decreased sperm motility and fertilization ability. Curcumin (CUR), a natural phenol isolated from Curcuma longa Linn. has been presented as a possible supplement for a more effective semen cryopreservation because of its antioxidant properties. This study focused to evaluate the effects of CUR on selected oxidative stress parameters in cryopreserved bovine semen. 20 bovine ejaculates were split into two aliquots and diluted with a commercial semen extender containing CUR (50 μmol/L) or no supplement (control), cooled to 4 °C, frozen and kept in liquid nitrogen. Frozen straws were thawed in a water bath for subsequent experiments. Computer assisted semen analysis was used to evaluate spermatozoa motility, and reactive oxygen species (ROS) generation was quantified by using luminometry. Superoxide generation was evaluated with the NBT test, and LPO was assessed via the TBARS assay. CUR supplementation significantly (P<0.001) increased the spermatozoa motility and provided a significantly higher protection against ROS (P<0.001) or superoxide (P<0.01) overgeneration caused by semen freezing and thawing. Furthermore, CUR administration resulted in a significantly (P<0.01) lower LPO of the experimental semen samples. In conclusion, CUR exhibits significant ROS-scavenging activities which may prevent oxidative insults to cryopreserved spermatozoa and thus may enhance the post-thaw functional activity of male gametes.
Keywords: Bulls, cryopreservation, curcumin, lipid peroxidation, reactive oxygen species, spermatozoa.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 217162 Evaluation of Shear Strength Parameters of Amended Loess through Using Common Admixtures in Gorgan, Iran
Authors: Seyed Erfan Hosseini, Mohammad K. Alizadeh, Amir Mesbah
Abstract:
Non-saturated soils that while saturation greatly decrease their volume, have sudden settlement due to increasing humidity, fracture and structural crack are called loess soils. Whereas importance of civil projects including: dams, canals and constructions bearing this type of soil and thereof problems, it is required for carrying out more research and study in relation to loess soils. This research studies shear strength parameters by using grading test, Atterberg limit, compression, direct shear and consolidation and then effect of using cement and lime additives on stability of loess soils is studied. In related tests, lime and cement are separately added to mixed ratios under different percentages of soil and for different times the stabilized samples are processed and effect of aforesaid additives on shear strength parameters of soil is studied. Results show that upon passing time the effect of additives and collapsible potential is greatly decreased and upon increasing percentage of cement and lime the maximum dry density is decreased; however, optimum humidity is increased. In addition, liquid limit and plastic index is decreased; however, plastic index limit is increased. It is to be noted that results of direct shear test reveal increasing shear strength of soil due to increasing cohesion parameter and soil friction angle.Keywords: Loess Soils, Shear Strength, Cement, Lime.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 201561 The Effect of Zeolite on Sandy-Silt Soil Mechanical Properties
Authors: Shahryar Aftabi, Saeed Fathi, Mohammad H. Aminfar
Abstract:
It is well known that cemented sand is one of the best approaches for soil stabilization. In some cases, a blend of sand, cement and other pozzolan materials such as zeolite, nano-particles and fiber can be widely (commercially) available and be effectively used in soil stabilization, especially in road construction. In this research, we investigate the effects of CaO which is based on the geotechnical characteristics of zeolite composition with sandy silt soil. Zeolites have low amount of CaO in their structures, that is, varying from 3% to 10%, and by removing the cement paste, we want to investigate the effect of zeolite pozzolan without any activator on soil samples strength. In this research, experiments are concentrated on various weight percentages of zeolite in the soil to examine the effect of the zeolite on drainage shear strength and California Bearing Ratio (CBR) both with and without curing. The study also investigates their liquid limit and plastic limit behavior and makes a comparative result by using Feng's and Wroth-Wood's methods in fall cone (cone penetrometer) device; in the final the SEM images have been presented. The results show that by increasing the percentage of zeolite in without-curing samples, the fine zeolite particles increase some soil's strength, but in the curing-state we can see a relatively higher strength toward without-curing state, since the zeolites have no plastic behavior, the pozzolanic property of zeolites plays a much higher role than cementing properties. Indeed, it is better to combine zeolite particle with activator material such as cement or lime to gain better results.
Keywords: CBR, direct shear, fall-cone, sandy-silt, SEM, zeolite.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 62560 An Investigation of Surface Texturing by Ultrasonic Impingement of Micro-Particles
Authors: Nagalingam Arun Prasanth, Ahmed Syed Adnan, S. H. Yeo
Abstract:
Surface topography plays a significant role in the functional performance of engineered parts. It is important to have a control on the surface geometry and understanding on the surface details to get the desired performance. Hence, in the current research contribution, a non-contact micro-texturing technique has been explored and developed. The technique involves ultrasonic excitation of a tool as a prime source of surface texturing for aluminum alloy workpieces. The specimen surface is polished first and is then immersed in a liquid bath containing 10% weight concentration of Ti6Al4V grade 5 spherical powders. A submerged slurry jet is used to recirculate the spherical powders under the ultrasonic horn which is excited at an ultrasonic frequency and amplitude of 40 kHz and 70 µm respectively. The distance between the horn and workpiece surface was remained fixed at 200 µm using a precision control stage. Texturing effects were investigated for different process timings of 1, 3 and 5 s. Thereafter, the specimens were cleaned in an ultrasonic bath for 5 mins to remove loose debris on the surface. The developed surfaces are characterized by optical and contact surface profiler. The optical microscopic images show a texture of circular spots on the workpiece surface indented by titanium spherical balls. Waviness patterns obtained from contact surface profiler supports the texturing effect produced from the proposed technique. Furthermore, water droplet tests were performed to show the efficacy of the proposed technique to develop hydrophilic surfaces and to quantify the texturing effect produced.
Keywords: Surface texturing, surface modification, topography, ultrasonic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 97459 Participation in IAEA Proficiency Test to Analyse Cobalt, Strontium and Caesium in Seawater Using Direct Counting and Radiochemical Techniques
Authors: S. Visetpotjanakit, C. Khrautongkieo
Abstract:
Radiation monitoring in the environment and foodstuffs is one of the main responsibilities of Office of Atoms for Peace (OAP) as the nuclear regulatory body of Thailand. The main goal of the OAP is to assure the safety of the Thai people and environment from any radiological incidents. Various radioanalytical methods have been developed to monitor radiation and radionuclides in the environmental and foodstuff samples. To validate our analytical performance, several proficiency test exercises from the International Atomic Energy Agency (IAEA) have been performed. Here, the results of a proficiency test exercise referred to as the Proficiency Test for Tritium, Cobalt, Strontium and Caesium Isotopes in Seawater 2017 (IAEA-RML-2017-01) are presented. All radionuclides excepting ³H were analysed using various radioanalytical methods, i.e. direct gamma-ray counting for determining ⁶⁰Co, ¹³⁴Cs and ¹³⁷Cs and developed radiochemical techniques for analysing ¹³⁴Cs, ¹³⁷Cs using AMP pre-concentration technique and 90Sr using di-(2-ethylhexyl) phosphoric acid (HDEHP) liquid extraction technique. The analysis results were submitted to IAEA. All results passed IAEA criteria, i.e. accuracy, precision and trueness and obtained ‘Accepted’ statuses. These confirm the data quality from the OAP environmental radiation laboratory to monitor radiation in the environment.
Keywords: International atomic energy agency, proficiency test, radiation monitoring, seawater.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 83558 Production of Biocomposites Using Chars Obtained by Co-Pyrolysis of Olive Pomace with Plastic Wastes
Authors: Esra Yel, Tabriz Aslanov, Merve Sogancioglu, Suheyla Kocaman, Gulnare Ahmetli
Abstract:
The disposal of waste plastics has become a major worldwide environmental problem. Pyrolysis of waste plastics is one of the routes to waste minimization and recycling that has been gaining interest. In pyrolysis, the pyrolysed material is separated into gas, liquid (both are fuel) and solid (char) products. All fractions have utilities and economical value depending upon their characteristics. The first objective of this study is to determine the co-pyrolysis product fractions of waste HDPE- (high density polyethylene) and LDPE (low density polyethylene)-olive pomace (OP) and to determine the qualities of the solid product char. Chars obtained at 700 °C pyrolysis were used in biocomposite preparation as additive. As the second objective, the effects of char on biocomposite quality were investigated. Pyrolysis runs were performed at temperature 700 °C with heating rates of 5 °C/min. Biocomposites were prepared by mixing of chars with bisphenol-F type epoxy resin in various wt%. Biocomposite properties were determined by measuring electrical conductivity, surface hardness, Young’s modulus and tensile strength of the composites. The best electrical conductivity results were obtained with HDPE-OP char. For HDPE-OP char and LDPE-OP char, compared to neat epoxy, the tensile strength values of the composites increased by 102% and 78%, respectively, at 10% char dose. The hardness measurements showed similar results to the tensile tests, since there is a correlation between the hardness and the tensile strength.Keywords: Pyrolysis, olive pomace, char, biocomposite, PE plastics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 191157 Effect of Genotype, Explant Type and Growth Regulators on The Accumulation of Flavonoides of (Silybum marianum L.) in In vitro Culture
Authors: A. Pourjabar, S.A. Mohammadi, R. Ghahramanzadeh, Gh. Salimi
Abstract:
The extract of milk thistle contains a mix of flavonolignans termed silymarine.. In order to analysis influence of growth regulators, genotype, explant and subculture on the accumulation of flavonolignans, a study was carried out by using two genotype (Budakalszi and Noor abad moghan cultivars), cotyledon and hypocotyle explants, solid media of MS supplemented by different combinations of two growth regulators; Kinetin (0.1, 1 mg/l) and 2,4-D (1, 2 mg/l). Seeds of the plant were germinated in MS media whitout growth regulators in growth chamber at 26°C and darkness condition. In order to callus induction, the culture media was supplemented whit different concentrations of 2,4-D and kinetin. Calli obtained from explants were sub-cultured four times into the fresh media of the first experiment. flavonoides was extracted from calli in four subcultures. The flavonoid components were determined by high- performance liquid choromatography (HPLC) and separated into Taxifolin, Silydianin+Silychristin, Silybin A+B and Isosilybin A+B. Results showed that with increasing callus age, increased accumulation of silybin A+B, but reduced Isosilybin A+B content. Highest accumulation of Taxifolin was observed at first calli. Calli produced from cotyledon explant of Budakalszi cultivar were superior for Silybin A+B, where calli from hypocotyl explant produced higher amount of Taxifolin and Silydianin+Silychristin. The best cultivar for Silymarin production in this study was Budakalszi cultivar. High amount of SBN A+B and TXF were obtained from hypocotil explant.
Keywords: Callus culture, Flavonolignans, Silimarine
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 194256 Geotechnical Properties and Compressibility Behavior of Organic Dredged Soils
Authors: Inci Develioglu, Hasan Firat Pulat
Abstract:
Sustainable development is one of the most important topics in today's world, and it is also an important research topic for geoenvironmental engineering. Dredging process is performed to expand the river and port channel, flood control and accessing harbors. Every year large amount of sediment are dredged for these purposes. Dredged marine soils can be reused as filling materials, road and foundation embankments, construction materials and wildlife habitat developments. In this study, geotechnical engineering properties and compressibility behavior of dredged soil obtained from the Izmir Bay were investigated. The samples with four different organic matter contents were obtained and particle size distributions, consistency limits, pH and specific gravity tests were performed. The consolidation tests were conducted to examine organic matter content (OMC) effects on compressibility behavior of dredged soil. This study has shown that the OMC has an important effect on the engineering properties of dredged soils. The liquid and plastic limits increased with increasing OMC. The lowest specific gravity belonged to sample which has the maximum OMC. The specific gravity values ranged between 2.76 and 2.52. The maximum void ratio difference belongs to sample with the highest OMC (De11% = 0.38). As the organic matter content of the samples increases, the change in the void ratio has also increased. The compression index increases with increasing OMC.
Keywords: Compressibility, consolidation, geotechnical properties, organic matter content, organic soils.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 196855 The MUST ADS Concept
Authors: J-B. Clavel, N. Thiollière, B. Mouginot
Abstract:
The presented work is motivated by a French law regarding nuclear waste management. A new conceptual Accelerator Driven System (ADS) designed for the Minor Actinides (MA) transmutation has been assessed by numerical simulation. The MUltiple Spallation Target (MUST) ADS combines high thermal power (up to 1.4 GWth) and high specific power. A 30 mA and 1 GeV proton beam is divided into three secondary beams transmitted on three liquid lead-bismuth spallation targets. Neutron and thermalhydraulic simulations have been performed with the code MURE, based on the Monte-Carlo transport code MCNPX. A methodology has been developed to define characteristic of the MUST ADS concept according to a specific transmutation scenario. The reference scenario is based on a MA flux (neptunium, americium and curium) providing from European Fast Reactor (EPR) and a plutonium multireprocessing strategy is accounted for. The MUST ADS reference concept is a sodium cooled fast reactor. The MA fuel at equilibrium is mixed with MgO inert matrix to limit the core reactivity and improve the fuel thermal conductivity. The fuel is irradiated over five years. Five years of cooling and two years for the fuel fabrication are taken into account. The MUST ADS reference concept burns about 50% of the initial MA inventory during a complete cycle. In term of mass, up to 570 kg/year are transmuted in one concept. The methodology to design the MUST ADS and to calculate fuel composition at equilibrium is precisely described in the paper. A detailed fuel evolution analysis is performed and the reference scenario is compared to a scenario where only americium transmutation is performed.Keywords: Accelerator Driven System, double strata scenario, minor actinides, MUST, transmutation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 169554 The Influence of Biofuels on the Permeability of Sand-Bentonite Liners
Authors: Mousa Bani Baker, Maria Elektorowicz, Adel Hanna, Altayeb Qasem
Abstract:
Liners are made to protect the groundwater table from the infiltration of leachate which normally carries different kinds of toxic materials from landfills. Although these liners are engineered to last for long period of time; unfortunately these liners fail; therefore, toxic materials pass to groundwater. This paper focuses on the changes of the hydraulic conductivity of a sand-bentonite liner due to the infiltration of biofuel and ethanol fuel. Series of laboratory tests were conducted in 20-cm-high PVC columns. Several compositions of sand-bentonite liners were tested: 95% sand: 5% bentonite; 90% sand: 10% bentonite; and 100% sand (passed mesh #40). The columns were subjected to extreme pressures of 40 kPa, and 100 kPa to evaluate the transport of alternative fuels (biofuel and ethanol fuel). For comparative studies, similar tests were carried out using water. Results showed that hydraulic conductivity increased due to the infiltration of alternative fuels through the liners. Accordingly, the increase in the hydraulic conductivity showed significant dependency on the type of liner mixture and the characteristics of the liquid. The hydraulic conductivity of a liner (subjected to biofuel infiltration) consisting of 5% bentonite: 95% sand under pressure of 40 kPa and 100 kPa had increased by one fold. In addition, the hydraulic conductivity of a liner consisting of 10% bentonite: 90% sand under pressure of 40 kPa and 100 kPa and infiltrated by biofuel had increased by three folds. On the other hand, the results obtained by water infiltration under 40 kPa showed lower hydraulic conductivities of 1.50×10-5 and 1.37×10-9 cm/s for 5% bentonite: 95% sand, and 10% bentonite: 90% sand, respectively. Similarly, under 100 kPa, the hydraulic conductivities were 2.30×10-5 and 1.90×10-9 cm/s for 5% bentonite: 95% sand, and 10% bentonite: 90% sand, respectively.Keywords: Biofuel, Ethanol; Hydraulic conductivity Landfill, Leakage, Liner failure, Liner performance Fine-grained soils, Particle size, Sand-bentonite.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 201753 Numerical Simulation of the Flowing of Ice Slurry in Seawater Pipe of Polar Ships
Authors: Li Xu, Huanbao Jiang, Zhenfei Huang, Lailai Zhang
Abstract:
In recent years, as global warming, the sea-ice extent of North Arctic undergoes an evident decrease and Arctic channel has attracted the attention of shipping industry. Ice crystals existing in the seawater of Arctic channel which enter the seawater system of the ship with the seawater were found blocking the seawater pipe. The appearance of cooler paralysis, auxiliary machine error and even ship power system paralysis may be happened if seriously. In order to reduce the effect of high temperature in auxiliary equipment, seawater system will use external ice-water to participate in the cooling cycle and achieve the state of its flow. The distribution of ice crystals in seawater pipe can be achieved. As the ice slurry system is solid liquid two-phase system, the flow process of ice-water mixture is very complex and diverse. In this paper, the flow process in seawater pipe of ice slurry is simulated with fluid dynamics simulation software based on k-ε turbulence model. As the ice packing fraction is a key factor effecting the distribution of ice crystals, the influence of ice packing fraction on the flowing process of ice slurry is analyzed. In this work, the simulation results show that as the ice packing fraction is relatively large, the distribution of ice crystals is uneven in the flowing process of the seawater which has such disadvantage as increase the possibility of blocking, that will provide scientific forecasting methods for the forming of ice block in seawater piping system. It has important significance for the reliability of the operating of polar ships in the future.Keywords: Ice slurry, seawater pipe, ice packing fraction, numerical simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1385