Search results for: active appearance models.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3595

Search results for: active appearance models.

2935 An Improved Prediction Model of Ozone Concentration Time Series Based On Chaotic Approach

Authors: N. Z. A. Hamid, M. S. M. Noorani

Abstract:

This study is focused on the development of prediction models of the Ozone concentration time series. Prediction model is built based on chaotic approach. Firstly, the chaotic nature of the time series is detected by means of phase space plot and the Cao method. Then, the prediction model is built and the local linear approximation method is used for the forecasting purposes. Traditional prediction of autoregressive linear model is also built. Moreover, an improvement in local linear approximation method is also performed. Prediction models are applied to the hourly Ozone time series observed at the benchmark station in Malaysia. Comparison of all models through the calculation of mean absolute error, root mean squared error and correlation coefficient shows that the one with improved prediction method is the best. Thus, chaotic approach is a good approach to be used to develop a prediction model for the Ozone concentration time series.

Keywords: Chaotic approach, phase space, Cao method, local linear approximation method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1788
2934 Modeling Default Probabilities of the Chosen Czech Banks in the Time of the Financial Crisis

Authors: Petr Gurný

Abstract:

One of the most important tasks in the risk management is the correct determination of probability of default (PD) of particular financial subjects. In this paper a possibility of determination of financial institution’s PD according to the creditscoring models is discussed. The paper is divided into the two parts. The first part is devoted to the estimation of the three different models (based on the linear discriminant analysis, logit regression and probit regression) from the sample of almost three hundred US commercial banks. Afterwards these models are compared and verified on the control sample with the view to choose the best one. The second part of the paper is aimed at the application of the chosen model on the portfolio of three key Czech banks to estimate their present financial stability. However, it is not less important to be able to estimate the evolution of PD in the future. For this reason, the second task in this paper is to estimate the probability distribution of the future PD for the Czech banks. So, there are sampled randomly the values of particular indicators and estimated the PDs’ distribution, while it’s assumed that the indicators are distributed according to the multidimensional subordinated Lévy model (Variance Gamma model and Normal Inverse Gaussian model, particularly). Although the obtained results show that all banks are relatively healthy, there is still high chance that “a financial crisis” will occur, at least in terms of probability. This is indicated by estimation of the various quantiles in the estimated distributions. Finally, it should be noted that the applicability of the estimated model (with respect to the used data) is limited to the recessionary phase of the financial market.

Keywords: Credit-scoring Models, Multidimensional Subordinated Lévy Model, Probability of Default.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1920
2933 Viewers of Advertisements in Television and Cinema in the Shadow of Visuality

Authors: Mete Kazaz

Abstract:

Despite the internet, which is one of the mass media that has become quite common in recent years, the relationship of Advertisement with Television and Cinema, which have always drawn attention of researchers as basic media and where visual use is in the foreground, have also become the subject of various studies. Based on the assumption that the known fundamental effects of advertisements on consumers are closely related to the creative process of advertisements as well as the nature and characteristics of the medium where they are used, these basic mass media (Television and Cinema) and the consumer motivations of the advertisements they broadcast have become a focus of study. Given that the viewers of the mass media in question have shifted from a passive position to a more active one especially in recent years and approach contents of advertisements, as they do all contents, in a more critical and “pitiless" manner, it is possible to say that individuals make more use of advertisements than in the past and combine their individual goals with the goals of the advertisements. This study, which aims at finding out what the goals of these new individual advertisement use are, how they are shaped by the distinct characteristics of Television and Cinema, where visuality takes precedence as basic mass media, and what kind of places they occupy in the minds of consumers, has determined consumers- motivations as: “Entertainment", “Escapism", “Play", “Monitoring/Discovery", “Opposite Sex" and “Aspirations and Role Models". This study intends to reveal the differences or similarities among the needs and hence the gratifications of viewers who consume advertisements on Television or at the Cinema, which are two basic media where visuality is prioritized.

Keywords: Cinema, Television, Viewers of Advertisements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1389
2932 Economic Evaluation of Degradation by Corrosion of an on-Grid Battery Energy Storage System: A Case Study in Algeria Territory

Authors: Fouzia Brihmat

Abstract:

Economic planning models, which are used to build microgrids and Distributed Energy Resources (DER), are the current norm for expressing such confidence. These models often decide both short-term DER dispatch and long-term DER investments. This research investigates the most cost-effective hybrid (photovoltaic-diesel) renewable energy system (HRES) based on Total Net Present Cost (TNPC) in an Algerian Saharan area, which has a high potential for solar irradiation and has a production capacity of 1 GW/h. Lead-acid batteries have been around much longer and are easier to understand, but have limited storage capacity. Lithium-ion batteries last longer, are lighter, but generally more expensive. By combining the advantages of each chemistry, we produce cost-effective high-capacity battery banks that operate solely on AC coupling. The financial implications of this research describe the corrosion process that occurs at the interface between the active material and grid material of the positive plate of a lead-acid battery. The best cost study for the HRES is completed with the assistance of the HOMER Pro MATLAB Link. Additionally, during the course of the project's 20 years, the system is simulated for each time step. In this model, which takes into consideration decline in solar efficiency, changes in battery storage levels over time, and rises in fuel prices above the rate of inflation, the trade-off is that the model is more accurate, but the computation takes longer. We initially utilized the optimizer to run the model without multi-year in order to discover the best system architecture. The optimal system for the single-year scenario is the Danvest generator, which has 760 kW, 200 kWh of the necessary quantity of lead-acid storage, and a somewhat lower Cost Of Energy (COE) of $0.309/kWh. Different scenarios that account for fluctuations in the gasified biomass generator's production of electricity have been simulated, and various strategies to guarantee the balance between generation and consumption have been investigated.

Keywords: Battery, Corrosion, Diesel, Economic planning optimization, Hybrid energy system, HES, Lead-acid battery, Li-ion battery, multi-year planning, microgrid, price forecast, total net present cost, wind.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 177
2931 Data Collection with Bounded-Sized Messages in Wireless Sensor Networks

Authors: Min Kyung An

Abstract:

In this paper, we study the data collection problem in Wireless Sensor Networks (WSNs) adopting the two interference models: The graph model and the more realistic physical interference model known as Signal-to-Interference-Noise-Ratio (SINR). The main issue of the problem is to compute schedules with the minimum number of timeslots, that is, to compute the minimum latency schedules, such that data from every node can be collected without any collision or interference to a sink node. While existing works studied the problem with unit-sized and unbounded-sized message models, we investigate the problem with the bounded-sized message model, and introduce a constant factor approximation algorithm. To the best known of our knowledge, our result is the first result of the data collection problem with bounded-sized model in both interference models.

Keywords: Data collection, collision-free, interference-free, physical interference model, SINR, approximation, bounded-sized message model, wireless sensor networks, WSN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1222
2930 Thermodynamic Analyses of Information Dissipation along the Passive Dendritic Trees and Active Action Potential

Authors: Bahar Hazal Yalçınkaya, Bayram Yılmaz, Mustafa Özilgen

Abstract:

Brain information transmission in the neuronal network occurs in the form of electrical signals. Neural work transmits information between the neurons or neurons and target cells by moving charged particles in a voltage field; a fraction of the energy utilized in this process is dissipated via entropy generation. Exergy loss and entropy generation models demonstrate the inefficiencies of the communication along the dendritic trees. In this study, neurons of 4 different animals were analyzed with one dimensional cable model with N=6 identical dendritic trees and M=3 order of symmetrical branching. Each branch symmetrically bifurcates in accordance with the 3/2 power law in an infinitely long cylinder with the usual core conductor assumptions, where membrane potential is conserved in the core conductor at all branching points. In the model, exergy loss and entropy generation rates are calculated for each branch of equivalent cylinders of electrotonic length (L) ranging from 0.1 to 1.5 for four different dendritic branches, input branch (BI), and sister branch (BS) and two cousin branches (BC-1 & BC-2). Thermodynamic analysis with the data coming from two different cat motoneuron studies show that in both experiments nearly the same amount of exergy is lost while generating nearly the same amount of entropy. Guinea pig vagal motoneuron loses twofold more exergy compared to the cat models and the squid exergy loss and entropy generation were nearly tenfold compared to the guinea pig vagal motoneuron model. Thermodynamic analysis show that the dissipated energy in the dendritic tress is directly proportional with the electrotonic length, exergy loss and entropy generation. Entropy generation and exergy loss show variability not only between the vertebrate and invertebrates but also within the same class. Concurrently, single action potential Na+ ion load, metabolic energy utilization and its thermodynamic aspect contributed for squid giant axon and mammalian motoneuron model. Energy demand is supplied to the neurons in the form of Adenosine triphosphate (ATP). Exergy destruction and entropy generation upon ATP hydrolysis are calculated. ATP utilization, exergy destruction and entropy generation showed differences in each model depending on the variations in the ion transport along the channels.

Keywords: ATP utilization, entropy generation, exergy loss, neuronal information transmittance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1017
2929 Facilitating Cooperative Knowledge Support by Role-Based Knowledge-Flow Views

Authors: Chih-Wei Lin, Duen-Ren Liu, Hui-Fang Chen

Abstract:

Effective knowledge support relies on providing operation-relevant knowledge to workers promptly and accurately. A knowledge flow represents an individual-s or a group-s knowledge-needs and referencing behavior of codified knowledge during operation performance. The flow has been utilized to facilitate organizational knowledge support by illustrating workers- knowledge-needs systematically and precisely. However, conventional knowledge-flow models cannot work well in cooperative teams, which team members usually have diverse knowledge-needs in terms of roles. The reason is that those models only provide one single view to all participants and do not reflect individual knowledge-needs in flows. Hence, we propose a role-based knowledge-flow view model in this work. The model builds knowledge-flow views (or virtual knowledge flows) by creating appropriate virtual knowledge nodes and generalizing knowledge concepts to required concept levels. The customized views could represent individual role-s knowledge-needs in teamwork context. The novel model indicates knowledge-needs in condensed representation from a roles perspective and enhances the efficiency of cooperative knowledge support in organizations.

Keywords: cooperative knowledge support, knowledge flow, knowledge-flow view, role-based models

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1307
2928 Meta Model Based EA for Complex Optimization

Authors: Maumita Bhattacharya

Abstract:

Evolutionary Algorithms are population-based, stochastic search techniques, widely used as efficient global optimizers. However, many real life optimization problems often require finding optimal solution to complex high dimensional, multimodal problems involving computationally very expensive fitness function evaluations. Use of evolutionary algorithms in such problem domains is thus practically prohibitive. An attractive alternative is to build meta models or use an approximation of the actual fitness functions to be evaluated. These meta models are order of magnitude cheaper to evaluate compared to the actual function evaluation. Many regression and interpolation tools are available to build such meta models. This paper briefly discusses the architectures and use of such meta-modeling tools in an evolutionary optimization context. We further present two evolutionary algorithm frameworks which involve use of meta models for fitness function evaluation. The first framework, namely the Dynamic Approximate Fitness based Hybrid EA (DAFHEA) model [14] reduces computation time by controlled use of meta-models (in this case approximate model generated by Support Vector Machine regression) to partially replace the actual function evaluation by approximate function evaluation. However, the underlying assumption in DAFHEA is that the training samples for the metamodel are generated from a single uniform model. This does not take into account uncertain scenarios involving noisy fitness functions. The second model, DAFHEA-II, an enhanced version of the original DAFHEA framework, incorporates a multiple-model based learning approach for the support vector machine approximator to handle noisy functions [15]. Empirical results obtained by evaluating the frameworks using several benchmark functions demonstrate their efficiency

Keywords: Meta model, Evolutionary algorithm, Stochastictechnique, Fitness function, Optimization, Support vector machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2070
2927 Application of Transportation Models for Analysing Future Intercity and Intracity Travel Patterns in Kuwait

Authors: Srikanth Pandurangi, Basheer Mohammed, Nezar Al Sayegh

Abstract:

In order to meet the increasing demand for housing care for Kuwaiti citizens, the government authorities in Kuwait are undertaking a series of projects in the form of new large cities, outside the current urban area. Al Mutlaa City located to the north-west of the Kuwait Metropolitan Area is one such project out of the 15 planned new cities. The city accommodates a wide variety of residential developments, employment opportunities, commercial, recreational, health care and institutional uses. This paper examines the application of comprehensive transportation demand modeling works undertaken in VISUM platform to understand the future intracity and intercity travel distribution patterns in Kuwait. The scope of models developed varied in levels of detail: strategic model update, sub-area models representing future demand of Al Mutlaa City, sub-area models built to estimate the demand in the residential neighborhoods of the city. This paper aims at offering model update framework that facilitates easy integration between sub-area models and strategic national models for unified traffic forecasts. This paper presents the transportation demand modeling results utilized in informing the planning of multi-modal transportation system for Al Mutlaa City. This paper also presents the household survey data collection efforts undertaken using GPS devices (first time in Kuwait) and notebook computer based digital survey forms for interviewing representative sample of citizens and residents. The survey results formed the basis of estimating trip generation rates and trip distribution coefficients used in the strategic base year model calibration and validation process.

Keywords: GPS based household surveys, transportation infrastructure, origin-destination trip matrices, traffic forecasts, transportation demand modeling, travel behavior patterns.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1711
2926 Performance Improvement in the Bivariate Models by using Modified Marginal Variance of Noisy Observations for Image-Denoising Applications

Authors: R. Senthilkumar

Abstract:

Most simple nonlinear thresholding rules for wavelet- based denoising assume that the wavelet coefficients are independent. However, wavelet coefficients of natural images have significant dependencies. This paper attempts to give a recipe for selecting one of the popular image-denoising algorithms based on VisuShrink, SureShrink, OracleShrink, BayesShrink and BiShrink and also this paper compares different Bivariate models used for image denoising applications. The first part of the paper compares different Shrinkage functions used for image-denoising. The second part of the paper compares different bivariate models and the third part of this paper uses the Bivariate model with modified marginal variance which is based on Laplacian assumption. This paper gives an experimental comparison on six 512x512 commonly used images, Lenna, Barbara, Goldhill, Clown, Boat and Stonehenge. The following noise powers 25dB,26dB, 27dB, 28dB and 29dB are added to the six standard images and the corresponding Peak Signal to Noise Ratio (PSNR) values are calculated for each noise level.

Keywords: BiShrink, Image-Denoising, PSNR, Shrinkage function

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1352
2925 The Giant Component in a Random Subgraph of a Weak Expander

Authors: Yilun Shang

Abstract:

In this paper, we investigate the appearance of the giant component in random subgraphs G(p) of a given large finite graph family Gn = (Vn, En) in which each edge is present independently with probability p. We show that if the graph Gn satisfies a weak isoperimetric inequality and has bounded degree, then the probability p under which G(p) has a giant component of linear order with some constant probability is bounded away from zero and one. In addition, we prove the probability of abnormally large order of the giant component decays exponentially. When a contact graph is modeled as Gn, our result is of special interest in the study of the spread of infectious diseases or the identification of community in various social networks.

Keywords: subgraph, expander, random graph, giant component, percolation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1700
2924 Fuzzy EOQ Models for Deteriorating Items with Stock Dependent Demand and Non-Linear Holding Costs

Authors: G. C. Mahata, A. Goswami

Abstract:

This paper deals with infinite time horizon fuzzy Economic Order Quantity (EOQ) models for deteriorating items with  stock dependent demand rate and nonlinear holding costs by taking deterioration rate θ0 as a triangular fuzzy number  (θ0 −δ 1, θ0, θ0 +δ 2), where 1 2 0 0 <δ ,δ <θ are fixed real numbers. The traditional parameters such as unit cost and ordering  cost have been kept constant but holding cost is considered to vary. Two possibilities of variations in the holding cost function namely, a non-linear function of the length of time for which the item is held in stock and a non-linear function of the amount of on-hand inventory have been used in the models. The approximate optimal solution for the fuzzy cost functions in both these cases have been obtained and the effect of non-linearity in holding costs is studied with the help of a numerical example.

Keywords: Inventory Model, Deterioration, Holding Cost, Fuzzy Total Cost, Extension Principle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1815
2923 Induced Bone Tissue Temperature in Drilling Procedures: A Comparative Laboratory Study with and without Lubrication

Authors: L. Roseiro, C. Veiga, V. Maranha, A.Neto, N. Laraqi, A. Baïri, N. Alilat

Abstract:

In orthopedic surgery there are various situations in which the surgeon needs to implement methods of cutting and drilling the bone. With this type of procedure the generated friction leads to a localized increase in temperature, which may lead to the bone necrosis. Recognizing the importance of studying this phenomenon, an experimental evaluation of the temperatures developed during the procedure of drilling bone has been done. Additionally the influence of the use of the procedure with / without additional lubrication during drilling of bone has also been done. The obtained results are presented and discussed and suggests an advantage in using additional lubrication as a way to minimize the appearance of bone tissue necrosis during bone drilling procedures.

Keywords: Bone Necrosis, Bone Drilling, Thermography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2057
2922 Kinetic Studies on Microbial Production of Tannase Using Redgram Husk

Authors: S. K. Mohan, T. Viruthagiri, C. Arunkumar

Abstract:

Tannase (tannin acyl hydrolase, E.C.3.1.1.20) is an important hydrolysable enzyme with innumerable applications and industrial potential. In the present study, a kinetic model has been developed for the batch fermentation used for the production of tannase by A.flavus MTCC 3783. Maximum tannase activity of 143.30 U/ml was obtained at 96 hours under optimum operating conditions at 35oC, an initial pH of 5.5 and with an inducer tannic acid concentration of 3% (w/v) for a fermentation period of 120 hours. The biomass concentration reaches a maximum of 6.62 g/l at 96 hours and further there was no increase in biomass concentration till the end of the fermentation. Various unstructured kinetic models were analyzed to simulate the experimental values of microbial growth, tannase activity and substrate concentration. The Logistic model for microbial growth , Luedeking - Piret model for production of tannase and Substrate utilization kinetic model for utilization of substrate were capable of predicting the fermentation profile with high coefficient of determination (R2) values of 0.980, 0.942 and 0.983 respectively. The results indicated that the unstructured models were able to describe the fermentation kinetics more effectively.

Keywords: Aspergillus flavus, Batch fermentation, Kinetic model, Tannase, Unstructured models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1569
2921 Estimation of Natural Frequency of the Bearing System under Periodic Force Based on Principal of Hydrodynamic Mass of Fluid

Authors: M. H. Pol, A. Bidi, A. V. Hoseini

Abstract:

Estimation of natural frequency of structures is very important and isn-t usually calculated simply and sometimes complicated. Lack of knowledge about that caused hard damage and hazardous effects. In this paper, with using from two different models in FEM method and based on hydrodynamic mass of fluids, natural frequency of an especial bearing (Fig. 1) in an electric field (or, a periodic force) is calculated in different stiffness and different geometric. In final, the results of two models and analytical solution are compared.

Keywords: Natural frequency of the bearing, Hydrodynamic mass of fluid method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2649
2920 Activation of Prophenoloxidase during Bacterial Injection into the Desert Locust, Schistocerca Gregaria

Authors: Shaiemaa, A. Momen, Dalia, A.M. Salem, Emad, M.S. Barakat, Mohamed, S. Salama

Abstract:

The present study has been conducted to characterize the prophenoloxidase (PPO) system of the desert locust, Schistocerca gregaria following injection of Bacillus thuringiensis kurstaki (Bt). The bulk of PPO system was associated with haemocytes and a little amount was found in plasma. This system was activated by different activators such as laminarin, lipopolysaccharide (LPS) and trypsin suggesting that the stimulatory mechanism may involve an enzyme cascade of one or more associated molecules. These activators did not activate all the molecules of the cascade. Presence of phenoloxidase activity (PO) coincides with the appearance of protein band with molecular weight (MW) 70.154 KD (Kilo Dalton).

Keywords: Schistocerca gregaria, haemolymph, proteins, prophenoloxidase system, phenoloxidase

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1724
2919 Application of Differential Transformation Method for Solving Dynamical Transmission of Lassa Fever Model

Authors: M. A. Omoloye, M. I. Yusuff, O. K. S. Emiola

Abstract:

The use of mathematical models for solving biological problems varies from simple to complex analyses, depending on the nature of the research problems and applicability of the models. The method is more common nowadays. Many complex models become impractical when transmitted analytically. However, alternative approach such as numerical method can be employed. It appropriateness in solving linear and non-linear model equation in Differential Transformation Method (DTM) which depends on Taylor series make it applicable. Hence this study investigates the application of DTM to solve dynamic transmission of Lassa fever model in a population. The mathematical model was formulated using first order differential equation. Firstly, existence and uniqueness of the solution was determined to establish that the model is mathematically well posed for the application of DTM. Numerically, simulations were conducted to compare the results obtained by DTM and that of fourth-order Runge-Kutta method. As shown, DTM is very effective in predicting the solution of epidemics of Lassa fever model.

Keywords: Differential Transform Method, Existence and uniqueness, Lassa fever, Runge-Kutta Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 494
2918 The Effect of Modification and Initial Concentration on Ammonia Removal from Leachate by Zeolite

Authors: Fulya Aydın, Ayşe Kuleyin

Abstract:

The purpose of this study is to investigate the capacity of natural Turkish zeolite for NH4-N removal from landfill leachate. The effects of modification and initial concentration on the removal of NH4-N from leachate were also investigated. The kinetics of adsorption of NH4-N has been discussed using three kinetic models, i.e., the pseudo-second order model, the Elovich equation, the intraparticle diffuion model. Kinetic parameters and correlation coefficients were determined. Equilibrium isotherms for the adsorption of NH4-N were analyzed by Langmuir, Freundlich and Tempkin isotherm models. Langmuir isotherm model was found to best represent the data for NH4-N.

Keywords: Leachate, Ammonium, zeolite

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2368
2917 Classifying and Predicting Efficiencies Using Interval DEA Grid Setting

Authors: Yiannis G. Smirlis

Abstract:

The classification and the prediction of efficiencies in Data Envelopment Analysis (DEA) is an important issue, especially in large scale problems or when new units frequently enter the under-assessment set. In this paper, we contribute to the subject by proposing a grid structure based on interval segmentations of the range of values for the inputs and outputs. Such intervals combined, define hyper-rectangles that partition the space of the problem. This structure, exploited by Interval DEA models and a dominance relation, acts as a DEA pre-processor, enabling the classification and prediction of efficiency scores, without applying any DEA models.

Keywords: Data envelopment analysis, interval DEA, efficiency classification, efficiency prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 941
2916 Negative Selection as a Means of Discovering Unknown Temporal Patterns

Authors: Wanli Ma, Dat Tran, Dharmendra Sharma

Abstract:

The temporal nature of negative selection is an under exploited area. In a negative selection system, newly generated antibodies go through a maturing phase, and the survivors of the phase then wait to be activated by the incoming antigens after certain number of matches. These without having enough matches will age and die, while these with enough matches (i.e., being activated) will become active detectors. A currently active detector may also age and die if it cannot find any match in a pre-defined (lengthy) period of time. Therefore, what matters in a negative selection system is the dynamics of the involved parties in the current time window, not the whole time duration, which may be up to eternity. This property has the potential to define the uniqueness of negative selection in comparison with the other approaches. On the other hand, a negative selection system is only trained with “normal" data samples. It has to learn and discover unknown “abnormal" data patterns on the fly by itself. Consequently, it is more appreciate to utilize negation selection as a system for pattern discovery and recognition rather than just pattern recognition. In this paper, we study the potential of using negative selection in discovering unknown temporal patterns.

Keywords: Artificial Immune Systems, ComputationalIntelligence, Negative Selection, Pattern Discovery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1667
2915 The Democratization of 3D Capturing: An Application Investigating Google Tango Potentials

Authors: Carlo Bianchini, Lorenzo Catena

Abstract:

The appearance of 3D scanners and then, more recently, of image-based systems that generate point clouds directly from common digital images have deeply affected the survey process in terms of both capturing and 2D/3D modelling. In this context, low cost and mobile systems are increasingly playing a key role and actually paving the way to the democratization of what in the past was the realm of few specialized technicians and expensive equipment. The application of Google Tango on the ancient church of Santa Maria delle Vigne in Pratica di Mare – Rome presented in this paper is one of these examples.

Keywords: Architectural survey, augmented/mixed/virtual reality, Google Tango project, image-based 3D capturing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 716
2914 Prediction of Computer and Video Game Playing Population: An Age Structured Model

Authors: T. K. Sriram, Joydip Dhar

Abstract:

Models based on stage structure have found varied applications in population models. This paper proposes a stage structured model to study the trends in the computer and video game playing population of US. The game paying population is divided into three compartments based on their age group. After simulating the mathematical model, a forecast of the number of game players in each stage as well as an approximation of the average age of game players in future has been made.

Keywords: Age structure, Forecasting, Mathematical modeling, Stage structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1906
2913 Hybrid Equity Warrants Pricing Formulation under Stochastic Dynamics

Authors: Teh Raihana Nazirah Roslan, Siti Zulaiha Ibrahim, Sharmila Karim

Abstract:

A warrant is a financial contract that confers the right but not the obligation, to buy or sell a security at a certain price before expiration. The standard procedure to value equity warrants using call option pricing models such as the Black–Scholes model had been proven to contain many flaws, such as the assumption of constant interest rate and constant volatility. In fact, existing alternative models were found focusing more on demonstrating techniques for pricing, rather than empirical testing. Therefore, a mathematical model for pricing and analyzing equity warrants which comprises stochastic interest rate and stochastic volatility is essential to incorporate the dynamic relationships between the identified variables and illustrate the real market. Here, the aim is to develop dynamic pricing formulations for hybrid equity warrants by incorporating stochastic interest rates from the Cox-Ingersoll-Ross (CIR) model, along with stochastic volatility from the Heston model. The development of the model involves the derivations of stochastic differential equations that govern the model dynamics. The resulting equations which involve Cauchy problem and heat equations are then solved using partial differential equation approaches. The analytical pricing formulas obtained in this study comply with the form of analytical expressions embedded in the Black-Scholes model and other existing pricing models for equity warrants. This facilitates the practicality of this proposed formula for comparison purposes and further empirical study.

Keywords: Cox-Ingersoll-Ross model, equity warrants, Heston model, hybrid models, stochastic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 592
2912 Specialized Reduced Models of Dynamic Flows in 2-Stroke Engines

Authors: S. Cagin, X. Fischer, E. Delacourt, N. Bourabaa, C. Morin, D. Coutellier, B. Carré, S. Loumé

Abstract:

The complexity of scavenging by ports and its impact on engine efficiency create the need to understand and to model it as realistically as possible. However, there are few empirical scavenging models and these are highly specialized. In a design optimization process, they appear very restricted and their field of use is limited. This paper presents a comparison of two methods to establish and reduce a model of the scavenging process in 2-stroke diesel engines. To solve the lack of scavenging models, a CFD model has been developed and is used as the referent case. However, its large size requires a reduction. Two techniques have been tested depending on their fields of application: The NTF method and neural networks. They both appear highly appropriate drastically reducing the model’s size (over 90% reduction) with a low relative error rate (under 10%). Furthermore, each method produces a reduced model which can be used in distinct specialized fields of application: the distribution of a quantity (mass fraction for example) in the cylinder at each time step (pseudo-dynamic model) or the qualification of scavenging at the end of the process (pseudo-static model).

Keywords: Diesel engine, Design optimization, Model reduction, Neural network, NTF algorithm, Scavenging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1332
2911 On the Performance of Information Criteria in Latent Segment Models

Authors: Jaime R. S. Fonseca

Abstract:

Nevertheless the widespread application of finite mixture models in segmentation, finite mixture model selection is still an important issue. In fact, the selection of an adequate number of segments is a key issue in deriving latent segments structures and it is desirable that the selection criteria used for this end are effective. In order to select among several information criteria, which may support the selection of the correct number of segments we conduct a simulation study. In particular, this study is intended to determine which information criteria are more appropriate for mixture model selection when considering data sets with only categorical segmentation base variables. The generation of mixtures of multinomial data supports the proposed analysis. As a result, we establish a relationship between the level of measurement of segmentation variables and some (eleven) information criteria-s performance. The criterion AIC3 shows better performance (it indicates the correct number of the simulated segments- structure more often) when referring to mixtures of multinomial segmentation base variables.

Keywords: Quantitative Methods, Multivariate Data Analysis, Clustering, Finite Mixture Models, Information Theoretical Criteria, Simulation experiments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1522
2910 Voltage Stability Investigation of Grid Connected Wind Farm

Authors: Trinh Trong Chuong

Abstract:

At present, it is very common to find renewable energy resources, especially wind power, connected to distribution systems. The impact of this wind power on voltage distribution levels has been addressed in the literature. The majority of this works deals with the determination of the maximum active and reactive power that is possible to be connected on a system load bus, until the voltage at that bus reaches the voltage collapse point. It is done by the traditional methods of PV curves reported in many references. Theoretical expression of maximum power limited by voltage stability transfer through a grid is formulated using an exact representation of distribution line with ABCD parameters. The expression is used to plot PV curves at various power factors of a radial system. Limited values of reactive power can be obtained. This paper presents a method to study the relationship between the active power and voltage (PV) at the load bus to identify the voltage stability limit. It is a foundation to build a permitted working operation region in complying with the voltage stability limit at the point of common coupling (PCC) connected wind farm.

Keywords: Wind generator, Voltage stability, grid connected

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3657
2909 SIFT Accordion: A Space-Time Descriptor Applied to Human Action Recognition

Authors: Olfa.Ben Ahmed, Mahmoud. Mejdoub, Chokri. Ben Amar

Abstract:

Recognizing human action from videos is an active field of research in computer vision and pattern recognition. Human activity recognition has many potential applications such as video surveillance, human machine interaction, sport videos retrieval and robot navigation. Actually, local descriptors and bag of visuals words models achieve state-of-the-art performance for human action recognition. The main challenge in features description is how to represent efficiently the local motion information. Most of the previous works focus on the extension of 2D local descriptors on 3D ones to describe local information around every interest point. In this paper, we propose a new spatio-temporal descriptor based on a spacetime description of moving points. Our description is focused on an Accordion representation of video which is well-suited to recognize human action from 2D local descriptors without the need to 3D extensions. We use the bag of words approach to represent videos. We quantify 2D local descriptor describing both temporal and spatial features with a good compromise between computational complexity and action recognition rates. We have reached impressive results on publicly available action data set

Keywords: Accordion, Bag of Features, Human action, Motion, Moving point, Space-Time Descriptor, SIFT, Video.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2109
2908 Mapping Knowledge Model Onto Java Codes

Authors: B.A.Gobin, R.K.Subramanian

Abstract:

This paper gives an overview of the mapping mechanism of SEAM-a methodology for the automatic generation of knowledge models and its mapping onto Java codes. It discusses the rules that will be used to map the different components in the knowledge model automatically onto Java classes, properties and methods. The aim of developing this mechanism is to help in the creation of a prototype which will be used to validate the knowledge model which has been generated automatically. It will also help to link the modeling phase with the implementation phase as existing knowledge engineering methodologies do not provide for proper guidelines for the transition from the knowledge modeling phase to development phase. This will decrease the development overheads associated to the development of Knowledge Based Systems.

Keywords: KBS, OWL, ontology, knowledge models

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1388
2907 Surface Morphology and Formation of Nanostructured Porous GaN by UV-assisted Electrochemical Etching

Authors: L. S. Chuah, Z. Hassan, C. W. Chin, H. Abu Hassan

Abstract:

This article reports on the studies of porous GaN prepared by ultra-violet (UV) assisted electrochemical etching in a solution of 4:1:1 HF: CH3OH:H2O2 under illumination of an UV lamp with 500 W power for 10, 25 and 35 minutes. The optical properties of porous GaN sample were compared to the corresponding as grown GaN. Porosity induced photoluminescence (PL) intensity enhancement was found in these samples. The resulting porous GaN displays blue shifted PL spectra compared to the as-grown GaN. Appearance of the blue shifted emission is correlated with the development of highly anisotropic structures in the morphology. An estimate of the size of the GaN nanostructure can be obtained with the help of a quantized state effective mass theory.

Keywords: Photoluminescence, porous GaN, electrochemical etching, Si, RF-MBE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1936
2906 Feature Analysis of Predictive Maintenance Models

Authors: Zhaoan Wang

Abstract:

Research in predictive maintenance modeling has improved in the recent years to predict failures and needed maintenance with high accuracy, saving cost and improving manufacturing efficiency. However, classic prediction models provide little valuable insight towards the most important features contributing to the failure. By analyzing and quantifying feature importance in predictive maintenance models, cost saving can be optimized based on business goals. First, multiple classifiers are evaluated with cross-validation to predict the multi-class of failures. Second, predictive performance with features provided by different feature selection algorithms are further analyzed. Third, features selected by different algorithms are ranked and combined based on their predictive power. Finally, linear explainer SHAP (SHapley Additive exPlanations) is applied to interpret classifier behavior and provide further insight towards the specific roles of features in both local predictions and global model behavior. The results of the experiments suggest that certain features play dominant roles in predictive models while others have significantly less impact on the overall performance. Moreover, for multi-class prediction of machine failures, the most important features vary with type of machine failures. The results may lead to improved productivity and cost saving by prioritizing sensor deployment, data collection, and data processing of more important features over less importance features.

Keywords: Automated supply chain, intelligent manufacturing, predictive maintenance machine learning, feature engineering, model interpretation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2012