Search results for: Teaching and Learning.
1579 Movies and Dynamic Mathematical Objects on Trigonometry for Mobile Phones
Authors: Kazuhisa Takagi
Abstract:
This paper is about movies and dynamic objects for mobile phones. Dynamic objects are the software programmed by JavaScript. They consist of geometric figures and work on HTML5-compliant browsers. Mobile phones are very popular among teenagers. They like watching movies and playing games on them. So, mathematics movies and dynamic objects would enhance teaching and learning processes. In the movies, manga characters speak with artificially synchronized voices. They teach trigonometry together with dynamic mathematical objects. Many movies are created. They are Windows Media files or MP4 movies. These movies and dynamic objects are not only used in the classroom but also distributed to students. By watching movies, students can study trigonometry before or after class.
Keywords: Dynamic mathematical object, JavaScript, Google drive, transfer jet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10101578 A Methodology to Virtualize Technical Engineering Laboratories: MastrLAB-VR
Authors: Ivana Scidà, Francesco Alotto, Anna Osello
Abstract:
Due to the importance given today to innovation, the education sector is evolving thanks digital technologies. Virtual Reality (VR) can be a potential teaching tool offering many advantages in the field of training and education, as it allows to acquire theoretical knowledge and practical skills using an immersive experience in less time than the traditional educational process. These assumptions allow to lay the foundations for a new educational environment, involving and stimulating for students. Starting from the objective of strengthening the innovative teaching offer and the learning processes, the case study of the research concerns the digitalization of MastrLAB, High Quality Laboratory (HQL) belonging to the Department of Structural, Building and Geotechnical Engineering (DISEG) of the Polytechnic of Turin, a center specialized in experimental mechanical tests on traditional and innovative building materials and on the structures made with them. The MastrLAB-VR has been developed, a revolutionary innovative training tool designed with the aim of educating the class in total safety on the techniques of use of machinery, thus reducing the dangers arising from the performance of potentially dangerous activities. The virtual laboratory, dedicated to the students of the Building and Civil Engineering Courses of the Polytechnic of Turin, has been projected to simulate in an absolutely realistic way the experimental approach to the structural tests foreseen in their courses of study: from the tensile tests to the relaxation tests, from the steel qualification tests to the resilience tests on elements at environmental conditions or at characterizing temperatures. The research work proposes a methodology for the virtualization of technical laboratories through the application of Building Information Modelling (BIM), starting from the creation of a digital model. The process includes the creation of an independent application, which with Oculus Rift technology will allow the user to explore the environment and interact with objects through the use of joypads. The application has been tested in prototype way on volunteers, obtaining results related to the acquisition of the educational notions exposed in the experience through a virtual quiz with multiple answers, achieving an overall evaluation report. The results have shown that MastrLAB-VR is suitable for both beginners and experts and will be adopted experimentally for other laboratories of the University departments.
Keywords: Building Information Modelling, digital learning, education, virtual laboratory, virtual reality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8421577 MR-Implantology: Exploring the Use for Mixed Reality in Dentistry Education
Authors: Areej R. Banjar, Abraham G. Campbell
Abstract:
The use of Mixed Reality (MR) in teaching and training is growing popular and can improve students’ ability to perform technical procedures. This paper outlines the creation of an interactive educational MR 3D application that aims to improve the quality of instruction for dentistry students. This application is called ”MR-Implantology” and aims to teach and train dentistry students on single dental implant placement. MR-Implantology uses cone-beam computed tomography (CBCT) images as the source for 3D dental models that dentistry students will be able to freely manipulate within a 3D MR world to aid their learning process.
Keywords: Cone-Beam Computed Tomography, dentistry education, implantology, Mixed Reality, MR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5051576 Using Interval Trees for Approximate Indexing of Instances
Authors: Khalil el Hindi
Abstract:
This paper presents a simple and effective method for approximate indexing of instances for instance based learning. The method uses an interval tree to determine a good starting search point for the nearest neighbor. The search stops when an early stopping criterion is met. The method proved to be very effective especially when only the first nearest neighbor is required.
Keywords: Instance based learning, interval trees, the knn algorithm, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15101575 Meta-Learning for Hierarchical Classification and Applications in Bioinformatics
Authors: Fabio Fabris, Alex A. Freitas
Abstract:
Hierarchical classification is a special type of classification task where the class labels are organised into a hierarchy, with more generic class labels being ancestors of more specific ones. Meta-learning for classification-algorithm recommendation consists of recommending to the user a classification algorithm, from a pool of candidate algorithms, for a dataset, based on the past performance of the candidate algorithms in other datasets. Meta-learning is normally used in conventional, non-hierarchical classification. By contrast, this paper proposes a meta-learning approach for more challenging task of hierarchical classification, and evaluates it in a large number of bioinformatics datasets. Hierarchical classification is especially relevant for bioinformatics problems, as protein and gene functions tend to be organised into a hierarchy of class labels. This work proposes meta-learning approach for recommending the best hierarchical classification algorithm to a hierarchical classification dataset. This work’s contributions are: 1) proposing an algorithm for splitting hierarchical datasets into new datasets to increase the number of meta-instances, 2) proposing meta-features for hierarchical classification, and 3) interpreting decision-tree meta-models for hierarchical classification algorithm recommendation.Keywords: Algorithm recommendation, meta-learning, bioinformatics, hierarchical classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13701574 Genetic Algorithms for Feature Generation in the Context of Audio Classification
Authors: José A. Menezes, Giordano Cabral, Bruno T. Gomes
Abstract:
Choosing good features is an essential part of machine learning. Recent techniques aim to automate this process. For instance, feature learning intends to learn the transformation of raw data into a useful representation to machine learning tasks. In automatic audio classification tasks, this is interesting since the audio, usually complex information, needs to be transformed into a computationally convenient input to process. Another technique tries to generate features by searching a feature space. Genetic algorithms, for instance, have being used to generate audio features by combining or modifying them. We find this approach particularly interesting and, despite the undeniable advances of feature learning approaches, we wanted to take a step forward in the use of genetic algorithms to find audio features, combining them with more conventional methods, like PCA, and inserting search control mechanisms, such as constraints over a confusion matrix. This work presents the results obtained on particular audio classification problems.
Keywords: Feature generation, feature learning, genetic algorithm, music information retrieval.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10781573 Effects of Multimedia-based Instructional Designs for Arabic Language Learning among Pupils of Different Achievement Levels
Authors: Aldalalah, M. Osamah, Soon Fook Fong & Ababneh, W. Ziad
Abstract:
The purpose of this study is to investigate the effects of modality principles in instructional software among first grade pupils- achievements in the learning of Arabic Language. Two modes of instructional software were systematically designed and developed, audio with images (AI), and text with images (TI). The quasi-experimental design was used in the study. The sample consisted of 123 male and female pupils from IRBED Education Directorate, Jordan. The pupils were randomly assigned to any one of the two modes. The independent variable comprised the two modes of the instructional software, the students- achievement levels in the Arabic Language class and gender. The dependent variable was the achievements of the pupils in the Arabic Language test. The theoretical framework of this study was based on Mayer-s Cognitive Theory of Multimedia Learning. Four hypotheses were postulated and tested. Analyses of Variance (ANOVA) showed that pupils using the (AI) mode performed significantly better than those using (TI) mode. This study concluded that the audio with images mode was an important aid to learning as compared to text with images mode.Keywords: Cognitive theory of Multimedia Learning, ModalityPrinciple, Multimedia, Arabic Language learning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22651572 A Hybrid System of Hidden Markov Models and Recurrent Neural Networks for Learning Deterministic Finite State Automata
Authors: Pavan K. Rallabandi, Kailash C. Patidar
Abstract:
In this paper, we present an optimization technique or a learning algorithm using the hybrid architecture by combining the most popular sequence recognition models such as Recurrent Neural Networks (RNNs) and Hidden Markov models (HMMs). In order to improve the sequence/pattern recognition/classification performance by applying a hybrid/neural symbolic approach, a gradient descent learning algorithm is developed using the Real Time Recurrent Learning of Recurrent Neural Network for processing the knowledge represented in trained Hidden Markov Models. The developed hybrid algorithm is implemented on automata theory as a sample test beds and the performance of the designed algorithm is demonstrated and evaluated on learning the deterministic finite state automata.Keywords: Hybrid systems, Hidden Markov Models, Recurrent neural networks, Deterministic finite state automata.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28841571 Comparison of Deep Convolutional Neural Networks Models for Plant Disease Identification
Authors: Megha Gupta, Nupur Prakash
Abstract:
Identification of plant diseases has been performed using machine learning and deep learning models on the datasets containing images of healthy and diseased plant leaves. The current study carries out an evaluation of some of the deep learning models based on convolutional neural network architectures for identification of plant diseases. For this purpose, the publicly available New Plant Diseases Dataset, an augmented version of PlantVillage dataset, available on Kaggle platform, containing 87,900 images has been used. The dataset contained images of 26 diseases of 14 different plants and images of 12 healthy plants. The CNN models selected for the study presented in this paper are AlexNet, ZFNet, VGGNet (four models), GoogLeNet, and ResNet (three models). The selected models are trained using PyTorch, an open-source machine learning library, on Google Colaboratory. A comparative study has been carried out to analyze the high degree of accuracy achieved using these models. The highest test accuracy and F1-score of 99.59% and 0.996, respectively, were achieved by using GoogLeNet with Mini-batch momentum based gradient descent learning algorithm.
Keywords: comparative analysis, convolutional neural networks, deep learning, plant disease identification
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6381570 Computational Intelligence Hybrid Learning Approach to Time Series Forecasting
Authors: Chunshien Li, Jhao-Wun Hu, Tai-Wei Chiang, Tsunghan Wu
Abstract:
Time series forecasting is an important and widely popular topic in the research of system modeling. This paper describes how to use the hybrid PSO-RLSE neuro-fuzzy learning approach to the problem of time series forecasting. The PSO algorithm is used to update the premise parameters of the proposed prediction system, and the RLSE is used to update the consequence parameters. Thanks to the hybrid learning (HL) approach for the neuro-fuzzy system, the prediction performance is excellent and the speed of learning convergence is much faster than other compared approaches. In the experiments, we use the well-known Mackey-Glass chaos time series. According to the experimental results, the prediction performance and accuracy in time series forecasting by the proposed approach is much better than other compared approaches, as shown in Table IV. Excellent prediction performance by the proposed approach has been observed.Keywords: forecasting, hybrid learning (HL), Neuro-FuzzySystem (NFS), particle swarm optimization (PSO), recursiveleast-squares estimator (RLSE), time series
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15591569 Continual Learning Using Data Generation for Hyperspectral Remote Sensing Scene Classification
Authors: Samiah Alammari, Nassim Ammour
Abstract:
When providing a massive number of tasks successively to a deep learning process, a good performance of the model requires preserving the previous tasks data to retrain the model for each upcoming classification. Otherwise, the model performs poorly due to the catastrophic forgetting phenomenon. To overcome this shortcoming, we developed a successful continual learning deep model for remote sensing hyperspectral image regions classification. The proposed neural network architecture encapsulates two trainable subnetworks. The first module adapts its weights by minimizing the discrimination error between the land-cover classes during the new task learning, and the second module tries to learn how to replicate the data of the previous tasks by discovering the latent data structure of the new task dataset. We conduct experiments on hyperspectral image (HSI) dataset on Indian Pines. The results confirm the capability of the proposed method.
Keywords: Continual learning, data reconstruction, remote sensing, hyperspectral image segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2321568 Combining ILP with Semi-supervised Learning for Web Page Categorization
Authors: Nuanwan Soonthornphisaj, Boonserm Kijsirikul
Abstract:
This paper presents a semi-supervised learning algorithm called Iterative-Cross Training (ICT) to solve the Web pages classification problems. We apply Inductive logic programming (ILP) as a strong learner in ICT. The objective of this research is to evaluate the potential of the strong learner in order to boost the performance of the weak learner of ICT. We compare the result with the supervised Naive Bayes, which is the well-known algorithm for the text classification problem. The performance of our learning algorithm is also compare with other semi-supervised learning algorithms which are Co-Training and EM. The experimental results show that ICT algorithm outperforms those algorithms and the performance of the weak learner can be enhanced by ILP system.
Keywords: Inductive Logic Programming, Semi-supervisedLearning, Web Page Categorization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16431567 A Survey of Sentiment Analysis Based on Deep Learning
Authors: Pingping Lin, Xudong Luo, Yifan Fan
Abstract:
Sentiment analysis is a very active research topic. Every day, Facebook, Twitter, Weibo, and other social media, as well as significant e-commerce websites, generate a massive amount of comments, which can be used to analyse peoples opinions or emotions. The existing methods for sentiment analysis are based mainly on sentiment dictionaries, machine learning, and deep learning. The first two kinds of methods rely on heavily sentiment dictionaries or large amounts of labelled data. The third one overcomes these two problems. So, in this paper, we focus on the third one. Specifically, we survey various sentiment analysis methods based on convolutional neural network, recurrent neural network, long short-term memory, deep neural network, deep belief network, and memory network. We compare their futures, advantages, and disadvantages. Also, we point out the main problems of these methods, which may be worthy of careful studies in the future. Finally, we also examine the application of deep learning in multimodal sentiment analysis and aspect-level sentiment analysis.Keywords: Natural language processing, sentiment analysis, document analysis, multimodal sentiment analysis, deep learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20041566 Gamification of eHealth Business Cases to Enhance Rich Learning Experience
Authors: Kari Björn
Abstract:
Introduction of games has expanded the application area of computer-aided learning tools to wide variety of age groups of learners. Serious games engage the learners into a real-world -type of simulation and potentially enrich the learning experience. Institutional background of a Bachelor’s level engineering program in Information and Communication Technology is introduced, with detailed focus on one of its majors, Health Technology. As part of a Customer Oriented Software Application thematic semester, one particular course of “eHealth Business and Solutions” is described and reflected in a gamified framework. Learning a consistent view into vast literature of business management, strategies, marketing and finance in a very limited time enforces selection of topics relevant to the industry. Health Technology is a novel and growing industry with a growing sector in consumer wearable devices and homecare applications. The business sector is attracting new entrepreneurs and impatient investor funds. From engineering education point of view the sector is driven by miniaturizing electronics, sensors and wireless applications. However, the market is highly consumer-driven and usability, safety and data integrity requirements are extremely high. When the same technology is used in analysis or treatment of patients, very strict regulatory measures are enforced. The paper introduces a course structure using gamification as a tool to learn the most essential in a new market: customer value proposition design, followed by a market entry game. Students analyze the existing market size and pricing structure of eHealth web-service market and enter the market as a steering group of their company, competing against the legacy players and with each other. The market is growing but has its rules of demand and supply balance. New products can be developed with an R&D-investment, and targeted to market with unique quality- and price-combinations. Product cost structure can be improved by investing to enhanced production capacity. Investments can be funded optionally by foreign capital. Students make management decisions and face the dynamics of the market competition in form of income statement and balance sheet after each decision cycle. The focus of the learning outcome is to understand customer value creation to be the source of cash flow. The benefit of gamification is to enrich the learning experience on structure and meaning of financial statements. The paper describes the gamification approach and discusses outcomes after two course implementations. Along the case description of learning challenges, some unexpected misconceptions are noted. Improvements of the game or the semi-gamified teaching pedagogy are discussed. The case description serves as an additional support to new game coordinator, as well as helps to improve the method. Overall, the gamified approach has helped to engage engineering student to business studies in an energizing way.Keywords: Engineering education, integrated curriculum, learning experience, learning outcomes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9571565 Learning Factory for Changeability
Authors: Dennis Gossmann, Habil Peter Nyhuis
Abstract:
Amongst the consistently fluctuating conditions prevailing today, changeability represents a strategic key factor for a manufacturing company to achieve success on the international markets. In order to cope with turbulences and the increasing level of incalculability, not only the flexible design of production systems but in particular the employee as enabler of change provide the focus here. It is important to enable employees from manufacturing companies to participate actively in change events and in change decisions. To this end, the learning factory has been created, which is intended to serve the development of change-promoting competences and the sensitization of employees for the necessity of changes.Keywords: Changeability, human resources, learning factory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17231564 Exploring Students’ Self-Evaluation on Their Learning Outcomes through an Integrated Cumulative Grade Point Average Reporting Mechanism
Authors: Suriyani Ariffin, Nor Aziah Alias, Khairil Iskandar Othman, Haslinda Yusoff
Abstract:
An Integrated Cumulative Grade Point Average (iCGPA) is a mechanism and strategy to ensure the curriculum of an academic programme is constructively aligned to the expected learning outcomes and student performance based on the attainment of those learning outcomes that is reported objectively in a spider web. Much effort and time has been spent to develop a viable mechanism and trains academics to utilize the platform for reporting. The question is: How well do learners conceive the idea of their achievement via iCGPA and whether quality learner attributes have been nurtured through the iCGPA mechanism? This paper presents the architecture of an integrated CGPA mechanism purported to address a holistic evaluation from the evaluation of courses learning outcomes to aligned programme learning outcomes attainment. The paper then discusses the students’ understanding of the mechanism and evaluation of their achievement from the generated spider web. A set of questionnaires were distributed to a group of students with iCGPA reporting and frequency analysis was used to compare the perspectives of students on their performance. In addition, the questionnaire also explored how they conceive the idea of an integrated, holistic reporting and how it generates their motivation to improve. The iCGPA group was found to be receptive to what they have achieved throughout their study period. They agreed that the achievement level generated from their spider web allows them to develop intervention and enhance the programme learning outcomes before they graduate.
Keywords: Learning outcomes attainment, iCGPA, programme learning outcomes, spider web, iCGPA reporting skills.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7761563 Robot Exploration and Navigation in Unseen Environments Using Deep Reinforcement Learning
Authors: Romisaa Ali
Abstract:
This paper presents a comparison between twin-delayed Deep Deterministic Policy Gradient (TD3) and Soft Actor-Critic (SAC) reinforcement learning algorithms in the context of training robust navigation policies for Jackal robots. By leveraging an open-source framework and custom motion control environments, the study evaluates the performance, robustness, and transferability of the trained policies across a range of scenarios. The primary focus of the experiments is to assess the training process, the adaptability of the algorithms, and the robot’s ability to navigate in previously unseen environments. Moreover, the paper examines the influence of varying environment complexities on the learning process and the generalization capabilities of the resulting policies. The results of this study aim to inform and guide the development of more efficient and practical reinforcement learning-based navigation policies for Jackal robots in real-world scenarios.
Keywords: Jackal robot environments, reinforcement learning, TD3, SAC, robust navigation, transferability, Custom Environment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 671562 Generalized Exploratory Model of Human Category Learning
Authors: Toshihiko Matsuka
Abstract:
One problem in evaluating recent computational models of human category learning is that there is no standardized method for systematically comparing the models' assumptions or hypotheses. In the present study, a flexible general model (called GECLE) is introduced that can be used as a framework to systematically manipulate and compare the effects and descriptive validities of a limited number of assumptions at a time. Two example simulation studies are presented to show how the GECLE framework can be useful in the field of human high-order cognition research.Keywords: artificial intelligence, category learning, cognitive modeling, radial basis functions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13851561 Relational Representation in XCSF
Authors: Mohammad Ali Tabarzad, Caro Lucas, Ali Hamzeh
Abstract:
Generalization is one of the most challenging issues of Learning Classifier Systems. This feature depends on the representation method which the system used. Considering the proposed representation schemes for Learning Classifier System, it can be concluded that many of them are designed to describe the shape of the region which the environmental states belong and the other relations of the environmental state with that region was ignored. In this paper, we propose a new representation scheme which is designed to show various relationships between the environmental state and the region that is specified with a particular classifier.Keywords: Classifier Systems, Reinforcement Learning, Relational Representation, XCSF.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13231560 Start Talking in an e-Learning Environment: Building and Sustaining Communities of Practice
Authors: Melissa C. LaDuke
Abstract:
The purpose of this targeted analysis was to identify the use of online communities of practice (CoP) within e-learning environments as a method to build social interaction and student-centered educational experiences. A literature review was conducted to survey and collect scholarly thoughts concerning CoPs from a variety of sources. Data collected included best practices, ties to educational theories, and examples of online CoPs. Social interaction has been identified as a critical piece of the learning infrastructure, specifically for adult learners. CoPs are an effective way to help students connect to each other and the material of interest. The use of CoPs falls in line with many educational theories, including situated learning theory, social constructivism, connectivism, adult learning theory, and motivation. New literacies such as social media and gamification can help increase social interaction in online environments and provide methods to host CoPs. Steps to build and sustain a CoP were discussed in addition to CoP considerations and best practices.
Keywords: Community of practice, knowledge sharing, social interaction, online course design, new literacies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2251559 Integrating Blogging into Peer Assessment on College Students’ English Writing
Authors: Su-Lien Liao
Abstract:
Most of college students in Taiwan do not have sufficient English proficiency to express themselves in written English. Teachers spent a lot of time correcting the errors in students’ English writing, but the results are not satisfactory. This study aims to use blogs as a teaching and learning tool in written English. Before applying peer assessment, students should be trained to be good reviewers. The teacher starts the course by posting the error analysis of students’ first English composition on blogs as the comment models for students. Then the students will go through the process of drafting, composing, peer response and last revision on blogs. Evaluation questionnaires and interviews will be conducted at the end of the course to see the impact and also students’ perception for the course.
Keywords: Blog, Peer assessment, English writing, Error analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19381558 The Students' Learning Effects on Dance Domain of Arts Education
Authors: Sheng-Min Cheng
Abstract:
The purpose of this study was to explore the learning effects on dance domain in Arts Curriculum at junior and senior high levels. A total of 1,366 students from 9th to 11th grade of different areas from Taiwan were administered a self-designed dance achievement test. Data were analyzed through descriptive analysis, independent sample t test, one-way ANOVA and Post hoc comparison analysis using Scheffé Test. The results showed (1) female studentsKeywords: arts education, dance learning effects, secondary level students, dance talented students
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21101557 A Primer to the Learning Readiness Assessment to Raise the Sharing of e-Health Knowledge amongst Libyan Nurses
Authors: Mohamed Elhadi M. Sharif, Mona Masood
Abstract:
The usage of e-health facilities is seen to be the first priority by the Libyan government. As such this paper focuses on how the key factors or elements of working size in terms of technological availability, structural environment, and other competence-related matters may affect nurses’ sharing of knowledge in e-health. Hence, this paper investigates learning readiness assessment to raise e-health for Libyan regional hospitals by using ehealth services in nursing education.
Keywords: Libyan nurses, e-Learning readiness, e-Health.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21721556 The Attitude of Second Year Pharmacy Students towards Lectures, Exams and E-Learning
Authors: Ahmed T. Alahmar
Abstract:
There is an increasing trend toward student-centred interactive e-learning methods and students’ feedback is a valuable tool for improving learning methods. The aim of this study was to explore the attitude of second year pharmacy students at the University of Babylon, Iraq, towards lectures, exams and e-learning. Materials and methods: Ninety pharmacy students were surveyed by paper questionnaire about their preference for lecture format, use of e-files, theoretical lectures versus practical experiments, lecture and lab time. Students were also asked about their predilection for Moodle-based online exams, different types of exam questions, exam time and other extra academic activities. Results: Students prefer to read lectures on paper (73.3%), use of PowerPoint file (76.7%), short lectures of less than 10 pages (94.5%), practical experiments (66.7%), lectures and lab time of less than two hours (89.9% and 96.6 respectively) and intra-lecture discussions (68.9%). Students also like to have paper-based exam (73.3%), short essay (40%) or MCQ (34.4%) questions and also prefer to do extra activities like reports (22.2%), seminars (18.6%) and posters (10.8%). Conclusion: Second year pharmacy students have different attitudes toward traditional and electronic leaning and assessment methods. Using multimedia, e-learning and Moodle are increasingly preferred methods among some students.
Keywords: Pharmacy, students, lecture, exam, e-learning, Moodle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14321555 Promoting Innovation Pedagogy in a Capacity Building Project in Indonesia
Authors: Juha Kettunen
Abstract:
This study presents a project that tests and adjusts active European learning and teaching methods in Indonesian universities to increase their external impact on enterprises and other organizations; it also assesses the implementation of the Erasmus+ projects funded by the European Union. The project is based on the approach of innovation pedagogy that responds to regional development needs and integrates applied research and development projects into education to create capabilities for students to participate in development work after graduation. The assessment of the Erasmus+ project resulted in many improvements that can be made to achieve higher quality and innovativeness. The results of this study are useful for those who want to improve the applied research and development projects of higher education institutions.
Keywords: Higher education, innovations, project management, networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18421554 Machine Learning in Production Systems Design Using Genetic Algorithms
Authors: Abu Qudeiri Jaber, Yamamoto Hidehiko Rizauddin Ramli
Abstract:
To create a solution for a specific problem in machine learning, the solution is constructed from the data or by use a search method. Genetic algorithms are a model of machine learning that can be used to find nearest optimal solution. While the great advantage of genetic algorithms is the fact that they find a solution through evolution, this is also the biggest disadvantage. Evolution is inductive, in nature life does not evolve towards a good solution but it evolves away from bad circumstances. This can cause a species to evolve into an evolutionary dead end. In order to reduce the effect of this disadvantage we propose a new a learning tool (criteria) which can be included into the genetic algorithms generations to compare the previous population and the current population and then decide whether is effective to continue with the previous population or the current population, the proposed learning tool is called as Keeping Efficient Population (KEP). We applied a GA based on KEP to the production line layout problem, as a result KEP keep the evaluation direction increases and stops any deviation in the evaluation.Keywords: Genetic algorithms, Layout problem, Machinelearning, Production system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16291553 Iterative Learning Control of Two Coupled Nonlinear Spherical Tanks
Authors: A. R. Tavakolpour-Saleh, A. R. Setoodeh, E. Ansari
Abstract:
This paper presents modeling and control of a highly nonlinear system including, non-interacting two spherical tanks using iterative learning control (ILC). Consequently, the objective of the paper is to control the liquid levels in the nonlinear tanks. First, a proportional-integral-derivative (PID) controller is applied to the plant model as a suitable benchmark for comparison. Then, dynamic responses of the control system corresponding to different step inputs are investigated. It is found that the conventional PID control is not able to fulfill the design criteria such as desired time constant. Consequently, an iterative learning controller is proposed to accurately control the coupled nonlinear tanks system. The simulation results clearly demonstrate the superiority of the presented ILC approach over the conventional PID controller to cope with the nonlinearities presented in the dynamic system.Keywords: Iterative learning control, spherical tanks, nonlinear system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12491552 Improving Learning Abilities and Inclusion through Movement: The Movi-Mente© Method
Authors: Ivan Traina, Luigi Sangalli, Fabio Tognon, Angelo Lascioli
Abstract:
Currently, challenges regarding preschooler children are mainly focused on a sedentary lifestyle. Also, motor activity in infancy is seen as a tool for the separate acquisition of cognitive and socio-emotional skills rather than considering neuromotor development as a tool for improving learning abilities. The paper utilized an observational research method to shed light on the results of practicing neuromotor exercises in preschool children with disability as well as provide implications for practice.
Keywords: Children with disability, learning abilities, inclusion, neuromotor development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5791551 Learning and Teaching in the Panopticon:Ethical and Social Issues in Creating a Virtual Educational Environment
Authors: K. Sheehy, R. Ferguson, G. Clough
Abstract:
This paper examines ethical and social issues which have proved important when initiating and creating educational spaces within a virtual environment. It focuses on one project, identifying the key decisions made, the barriers to new practice encountered and the impact these had on the project. It demonstrates the importance of the 'backstage' ethical and social issues involved in the creation of a virtual education community and offers conclusions, and questions, which will inform future research and practice in this area. These ethical issues are considered using Knobel-s framework of front-end, in-process and back-end concerns, and include establishing social practices for the islands, allocating access rights, considering personal safety and supporting researchers appropriately within this context.Keywords: distance education, ethics, virtual environments.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14991550 Ontology-Navigated Tutoring System for Flipped-Mastery Model
Authors: Masao Okabe
Abstract:
Nowadays, in Japan, variety of students get into a university and one of the main roles of introductory courses for freshmen is to make such students well prepared for subsequent intermediate courses. For that purpose, the flipped-mastery model is not enough because videos usually used in a flipped classroom is not adaptive and does not fit all freshmen with different academic performances. This paper proposes an ontology-navigated tutoring system called EduGraph. Using EduGraph, students can prepare for and review a class, in a more flexibly personalizable way than by videos. Structuralizing learning materials by its ontology, EduGraph also helps students integrate what they learn as knowledge, and makes learning materials sharable. EduGraph was used for an introductory course for freshmen. This application suggests that EduGraph is effective.
Keywords: Adaptive e-learning, flipped classroom, mastery learning, ontology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 995