Search results for: Data delivery
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7763

Search results for: Data delivery

7103 Creative Thinking Skill Approach Through Problem-Based Learning: Pedagogy and Practice in the Engineering Classroom

Authors: Halizah Awang, Ishak Ramly

Abstract:

Problem-based learning (PBL) is one of the student centered approaches and has been considered by a number of higher educational institutions in many parts of the world as a method of delivery. This paper presents a creative thinking approach for implementing Problem-based Learning in Mechanics of Structure within a Malaysian Polytechnics environment. In the learning process, students learn how to analyze the problem given among the students and sharing classroom knowledge into practice. Further, through this course-s emphasis on problem-based learning, students acquire creative thinking skills and professional skills as they tackle complex, interdisciplinary and real-situation problems. Once the creative ideas are generated, there are useful additional techniques for tender ideas that will grow into a productive concept or solution. The combination of creative skills and technical abilities will enable the students to be ready to “hit-the-ground-running" and produce in industry when they graduate.

Keywords: Creative Thinking Skills, Problem-based Learning, Problem Solving.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7323
7102 A Formal Approach for Instructional Design Integrated with Data Visualization for Learning Analytics

Authors: Douglas A. Menezes, Isabel D. Nunes, Ulrich Schiel

Abstract:

Most Virtual Learning Environments do not provide support mechanisms for the integrated planning, construction and follow-up of Instructional Design supported by Learning Analytic results. The present work aims to present an authoring tool that will be responsible for constructing the structure of an Instructional Design (ID), without the data being altered during the execution of the course. The visual interface aims to present the critical situations present in this ID, serving as a support tool for the course follow-up and possible improvements, which can be made during its execution or in the planning of a new edition of this course. The model for the ID is based on High-Level Petri Nets and the visualization forms are determined by the specific kind of the data generated by an e-course, a population of students generating sequentially dependent data.

Keywords: Educational data visualization, high-level petri nets, instructional design, learning analytics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 848
7101 The Emergence of Construction Mafia in South Africa: The Implication on the Construction Industry

Authors: Thandokazi Nyangiwe, Christopher Amoah, Charles P. Mukumba

Abstract:

The South African construction sector is threatened by emerging black business forums called construction mafias. The emergence of the construction mafia has culminated in the disruptions and abandonment of construction sites resulting in the loss of jobs for construction workers. The paper examines the origin of construction mafias and their impact on the construction sector, including the potential ways to cope with their operations. A qualitative research approach was adopted for this study using open-ended interview questions to gather information from 30 key construction industry stakeholders, including contractors, subcontractors, consultants, and the construction project communities. Content and thematic analyses were used to analyses the data collected. The findings suggest that most participants do not fully understand the existence and operations of construction mafias in the construction industry. Construction mafias claim to be part of the local business forums. They disrupt construction projects and demand a certain amount, usually 30% of the construction value. Construction mafias frequently resort to intimidation and violence if their demands are unmet. Their operations have resulted in delayed completion of construction projects, abandonment of projects, and loss of income for the contractor and jobs for the construction workers. The interviews were limited to construction stakeholders. Because of the nature of the mafias’ operations, they could not be accessed for interviews for fear of being identified because of the connotation attached to their role as construction mafias. Construction project owners face disruptions of projects resulting in loss of equipment, materials, and income. Therefore, there is a need to sensitize the construction stakeholders in the construction industry regarding the existence and operations of the construction mafia and the implications on construction project performance and delivery. The findings will give insight into the operations of the construction mafias in the South African construction industry, which has caused disruptions in construction project sites. Stakeholders must find solutions to address the construction mafias’ disruptive actions on construction projects. The study presents an initial inquiry that will come up with how to manage and cope with the growing operations of construction mafias in the South African construction industry.

Keywords: Black business forums, construction mafia, South African construction industry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 240
7100 Visual Text Analytics Technologies for Real-Time Big Data: Chronological Evolution and Issues

Authors: Siti Azrina B. A. Aziz, Siti Hafizah A. Hamid

Abstract:

New approaches to analyze and visualize data stream in real-time basis is important in making a prompt decision by the decision maker. Financial market trading and surveillance, large-scale emergency response and crowd control are some example scenarios that require real-time analytic and data visualization. This situation has led to the development of techniques and tools that support humans in analyzing the source data. With the emergence of Big Data and social media, new techniques and tools are required in order to process the streaming data. Today, ranges of tools which implement some of these functionalities are available. In this paper, we present chronological evolution evaluation of technologies for supporting of real-time analytic and visualization of the data stream. Based on the past research papers published from 2002 to 2014, we gathered the general information, main techniques, challenges and open issues. The techniques for streaming text visualization are identified based on Text Visualization Browser in chronological order. This paper aims to review the evolution of streaming text visualization techniques and tools, as well as to discuss the problems and challenges for each of identified tools.

Keywords: Information visualization, visual analytics, text mining, visual text analytics tools, big data visualization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1002
7099 Churn Prediction for Telecommunication Industry Using Artificial Neural Networks

Authors: Ulas Vural, M. Ergun Okay, E. Mesut Yildiz

Abstract:

Telecommunication service providers demand accurate and precise prediction of customer churn probabilities to increase the effectiveness of their customer relation services. The large amount of customer data owned by the service providers is suitable for analysis by machine learning methods. In this study, expenditure data of customers are analyzed by using an artificial neural network (ANN). The ANN model is applied to the data of customers with different billing duration. The proposed model successfully predicts the churn probabilities at 83% accuracy for only three months expenditure data and the prediction accuracy increases up to 89% when the nine month data is used. The experiments also show that the accuracy of ANN model increases on an extended feature set with information of the changes on the bill amounts.

Keywords: Customer relationship management, churn prediction, telecom industry, deep learning, Artificial Neural Networks, ANN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 760
7098 A Technical Perspective on Roadway Safety in Eastern Province: Data Evaluation and Spatial Analysis

Authors: Muhammad Farhan, Sayed Faruque, Amr Mohammed, Sami Osman, Omar Al-Jabari, Abdul Almojil

Abstract:

Saudi Arabia in recent years has seen drastic increase in traffic related crashes. With population of over 29 million, Saudi Arabia is considered as a fast growing and emerging economy. The rapid population increase and economic growth has resulted in rapid expansion of transportation infrastructure, which has led to increase in road crashes. Saudi Ministry of Interior reported more than 7,000 people killed and 68,000 injured in 2011 ranking Saudi Arabia to be one of the worst worldwide in traffic safety. The traffic safety issues in the country also result in distress to road users and cause and economic loss exceeding 3.7 billion Euros annually. Keeping this in view, the researchers in Saudi Arabia are investigating ways to improve traffic safety conditions in the country. This paper presents a multilevel approach to collect traffic safety related data required to do traffic safety studies in the region. Two highway corridors including King Fahd Highway 39 kilometre and Gulf Cooperation Council Highway 42 kilometre long connecting the cities of Dammam and Khobar were selected as a study area. Traffic data collected included traffic counts, crash data, travel time data, and speed data. The collected data was analysed using geographic information system to evaluate any correlation. Further research is needed to investigate the effectiveness of traffic safety related data when collected in a concerted effort.

Keywords: Crash Data, Data Collection, Traffic Safety.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2352
7097 Machine Scoring Model Using Data Mining Techniques

Authors: Wimalin S. Laosiritaworn, Pongsak Holimchayachotikul

Abstract:

this article proposed a methodology for computer numerical control (CNC) machine scoring. The case study company is a manufacturer of hard disk drive parts in Thailand. In this company, sample of parts manufactured from CNC machine are usually taken randomly for quality inspection. These inspection data were used to make a decision to shut down the machine if it has tendency to produce parts that are out of specification. Large amount of data are produced in this process and data mining could be very useful technique in analyzing them. In this research, data mining techniques were used to construct a machine scoring model called 'machine priority assessment model (MPAM)'. This model helps to ensure that the machine with higher risk of producing defective parts be inspected before those with lower risk. If the defective prone machine is identified sooner, defective part and rework could be reduced hence improving the overall productivity. The results showed that the proposed method can be successfully implemented and approximately 351,000 baht of opportunity cost could have saved in the case study company.

Keywords: Computer Numerical Control, Data Mining, HardDisk Drive.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1395
7096 The Impact of Seasonality on Rainfall Patterns: A Case Study

Authors: Priti Kaushik, Randhir Singh Baghel, Somil Khandelwal

Abstract:

This study uses whole-year data from Rajasthan, India, at the meteorological divisional level to analyze and evaluate long-term spatiotemporal trends in rainfall and looked at the data from each of the thirteen tehsils in the Jaipur district to see how the rainfall pattern has altered over the last 10 years. Data on daily rainfall from the Indian Meteorological Department (IMD) in Jaipur are available for the years 2012 through 2021. We mainly focus on comparing data of tehsil wise in the Jaipur district, Rajasthan, India. Also analyzed is the fact that July and August always see higher rainfall than any other month. Rainfall usually starts to rise around week 25th and peaks in weeks 32nd or 33rd. They showed that on several occasions, 2017 saw the least amount of rainfall during a long span of 10 years. The greatest rain fell between 2012 and 2021 in 2013, 2019, and 2020.

Keywords: Data analysis, extreme events, rainfall, descriptive case studies, precipitation temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 190
7095 Enhance the Power of Sentiment Analysis

Authors: Yu Zhang, Pedro Desouza

Abstract:

Since big data has become substantially more accessible and manageable due to the development of powerful tools for dealing with unstructured data, people are eager to mine information from social media resources that could not be handled in the past. Sentiment analysis, as a novel branch of text mining, has in the last decade become increasingly important in marketing analysis, customer risk prediction and other fields. Scientists and researchers have undertaken significant work in creating and improving their sentiment models. In this paper, we present a concept of selecting appropriate classifiers based on the features and qualities of data sources by comparing the performances of five classifiers with three popular social media data sources: Twitter, Amazon Customer Reviews, and Movie Reviews. We introduced a couple of innovative models that outperform traditional sentiment classifiers for these data sources, and provide insights on how to further improve the predictive power of sentiment analysis. The modeling and testing work was done in R and Greenplum in-database analytic tools.

Keywords: Sentiment Analysis, Social Media, Twitter, Amazon, Data Mining, Machine Learning, Text Mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3518
7094 A Strategy for Scaling-Up Vitamin A Supplementation in a Remote Rural Setting

Authors: Wisdom G. Dube, Talent Makoni, Tasiana K. Nyadzayo, Namukolo M. Covic

Abstract:

Vitamin A deficiency is a public health problem in Zimbabwe. Addressing vitamin A deficiency has the potential of enhancing resistance to disease and reducing mortality especially in children less than 5 years. We implemented and adapted vitamin A outreach supplementation strategy within the National Immunization Days and Extended Programme of Immunization in a rural district in Zimbabwe. Despite usual operational challenges faced this approach enabled the district to increase delivery of supplementation coverage. This paper describes the outreach strategy that was implemented in the remote rural district. The strategy covered 63 outreach sites with 2 sites being covered per day and visited once per month for the whole year. Coverage reached 71% in an area of previous coverage rates of around less than 50%. We recommend further exploration of this strategy by others working in similar circumstances. This strategy can be a potential way for use by Scaling-Up-Nutrition member states.

Keywords: Coverage, Strategy, Supplementation, Vitamin A.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1666
7093 Cloud Computing-s Software-as-a-Service (SaaS) Delivery Model Benefits Technical Courses in Higher Education

Authors: Janet L. Kourik, Jiangping Wang

Abstract:

Software-as-a-Service (SaaS) is a form of cloud computing that relieves the user of the burden of hardware and software installation and management. SaaS can be used at the course level to enhance curricula and student experience. When cloud computing and SaaS are included in educational literature, the focus is typically on implementing administrative functions. Yet, SaaS can make more immediate and substantial contributions to the technical course content in educational offerings. This paper explores cloud computing and SaaS, provides examples, reports on experiences using SaaS to offer specialized software in courses, and analyzes the advantages and disadvantages of using SaaS at the course level. The paper contributes to the literature in higher education by analyzing the major technical concepts, potential, and constraints for using SaaS to deliver specialized software at the course level. Further it may enable more educators and students to benefit from this emerging technology.

Keywords: Cloud computing, software-as-a-service, e-service, higher education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2424
7092 Lineup Optimization Model of Basketball Players Based on the Prediction of Recursive Neural Networks

Authors: Wang Yichen, Haruka Yamashita

Abstract:

In recent years, in the field of sports, decision making such as member in the game and strategy of the game based on then analysis of the accumulated sports data are widely attempted. In fact, in the NBA basketball league where the world's highest level players gather, to win the games, teams analyze the data using various statistical techniques. However, it is difficult to analyze the game data for each play such as the ball tracking or motion of the players in the game, because the situation of the game changes rapidly, and the structure of the data should be complicated. Therefore, it is considered that the analysis method for real time game play data is proposed. In this research, we propose an analytical model for "determining the optimal lineup composition" using the real time play data, which is considered to be difficult for all coaches. In this study, because replacing the entire lineup is too complicated, and the actual question for the replacement of players is "whether or not the lineup should be changed", and “whether or not Small Ball lineup is adopted”. Therefore, we propose an analytical model for the optimal player selection problem based on Small Ball lineups. In basketball, we can accumulate scoring data for each play, which indicates a player's contribution to the game, and the scoring data can be considered as a time series data. In order to compare the importance of players in different situations and lineups, we combine RNN (Recurrent Neural Network) model, which can analyze time series data, and NN (Neural Network) model, which can analyze the situation on the field, to build the prediction model of score. This model is capable to identify the current optimal lineup for different situations. In this research, we collected all the data of accumulated data of NBA from 2019-2020. Then we apply the method to the actual basketball play data to verify the reliability of the proposed model.

Keywords: Recurrent Neural Network, players lineup, basketball data, decision making model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 829
7091 The Alliance for Grassland Renewal: A Model for Teaching Endophyte Technology

Authors: C. A. Roberts, J. G. Andrae, S. R. Smith, M. H. Poore, C. A. Young, D. W. Hancock, G. J. Pent

Abstract:

To the author’s best knowledge, there are no published reports of effective methods for teaching fescue toxicosis and grass endophyte technology in the USA. To address this need, a group of university scientists, industry representatives, government agents, and livestock producers formed an organization called the Alliance for Grassland Renewal. One goal of the Alliance was to develop a teaching method that could be employed across all regions in the USA and all sectors of the agricultural community. The first step in developing this method was identification of experts who were familiar with the science and management of fescue toxicosis. The second step was curriculum development. Experts wrote a curriculum that addressed all aspects of toxicosis and management, including toxicology, animal nutrition, pasture management, economics, and mycology. The curriculum was created for presentation in lectures, laboratories, and in the field. The curriculum was in that it could be delivered across state lines, regardless of peculiar, in-state recommendations. The curriculum was also unique as it was unanimously supported by private companies otherwise in competition with each other. The final step in developing this teaching method was formulating a delivery plan. All experts, including university, industry, government, and production, volunteered to travel from any state in the USA, converge in one location, teach a 1-day workshop, then travel to the next location. The results of this teaching method indicate widespread success. Since 2012, experts across the entire USA have converged to teach Alliance workshops in Kansas, Oklahoma, Missouri, Kentucky, Georgia, South Carolina, North Carolina, and Virginia, with ongoing workshops in Arkansas and Tennessee. Data from post-workshop surveys indicate that instruction has been effective, as at least 50% of the participants stated their intention to adopt the endophyte technology presented in these workshops. The teaching method developed by the Alliance for Grassland Renewal has proved to be effective, and the Alliance continues to expand across the USA.

Keywords: Endophyte, Epichloë coenophiala, ergot alkaloids, fescue toxicosis, tall fescue.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 785
7090 New Multisensor Data Fusion Method Based on Probabilistic Grids Representation

Authors: Zhichao Zhao, Yi Liu, Shunping Xiao

Abstract:

A new data fusion method called joint probability density matrix (JPDM) is proposed, which can associate and fuse measurements from spatially distributed heterogeneous sensors to identify the real target in a surveillance region. Using the probabilistic grids representation, we numerically combine the uncertainty regions of all the measurements in a general framework. The NP-hard multisensor data fusion problem has been converted to a peak picking problem in the grids map. Unlike most of the existing data fusion method, the JPDM method dose not need association processing, and will not lead to combinatorial explosion. Its convergence to the CRLB with a diminishing grid size has been proved. Simulation results are presented to illustrate the effectiveness of the proposed technique.

Keywords: Cramer-Rao lower bound (CRLB), data fusion, probabilistic grids, joint probability density matrix, localization, sensor network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1803
7089 Sampled-Data Model Predictive Tracking Control for Mobile Robot

Authors: Wookyong Kwon, Sangmoon Lee

Abstract:

In this paper, a sampled-data model predictive tracking control method is presented for mobile robots which is modeled as constrained continuous-time linear parameter varying (LPV) systems. The presented sampled-data predictive controller is designed by linear matrix inequality approach. Based on the input delay approach, a controller design condition is derived by constructing a new Lyapunov function. Finally, a numerical example is given to demonstrate the effectiveness of the presented method.

Keywords: Model predictive control, sampled-data control, linear parameter varying systems, LPV.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1277
7088 Talent Management through Integration of Talent Value Chain and Human Capital Analytics Approaches

Authors: Wuttigrai Ngamsirijit

Abstract:

Talent management in today’s modern organizations has become data-driven due to a demand for objective human resource decision making and development of analytics technologies. HR managers have been faced with some obstacles in exploiting data and information to obtain their effective talent management decisions. These include process-based data and records; insufficient human capital-related measures and metrics; lack of capabilities in data modeling in strategic manners; and, time consuming to add up numbers and make decisions. This paper proposes a framework of talent management through integration of talent value chain and human capital analytics approaches. It encompasses key data, measures, and metrics regarding strategic talent management decisions along the organizational and talent value chain. Moreover, specific predictive and prescriptive models incorporating these data and information are recommended to help managers in understanding the state of talent, gaps in managing talent and the organization, and the ways to develop optimized talent strategies.    

Keywords: Decision making, human capital analytics, talent management, talent value chain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 966
7087 Impact of Node Density and Transmission Range on the Performance of OLSR and DSDV Routing Protocols in VANET City Scenarios

Authors: Yassine Meraihi, Dalila Acheli, Rabah Meraihi

Abstract:

Vehicular Ad hoc Network (VANET) is a special case of Mobile Ad hoc Network (MANET) used to establish communications and exchange information among nearby vehicles and between vehicles and nearby fixed infrastructure. VANET is seen as a promising technology used to provide safety, efficiency, assistance and comfort to the road users. Routing is an important issue in Vehicular Ad Hoc Network to find and maintain communication between vehicles due to the highly dynamic topology, frequently disconnected network and mobility constraints.

This paper evaluates the performance of two most popular proactive routing protocols OLSR and DSDV in real city traffic scenario on the basis of three metrics namely Packet delivery ratio, throughput and average end to end delay by varying vehicles density and transmission range.

Keywords: DSDV, OLSR, Quality of service, Routing protocols, VANET.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2276
7086 Enhancing K-Means Algorithm with Initial Cluster Centers Derived from Data Partitioning along the Data Axis with the Highest Variance

Authors: S. Deelers, S. Auwatanamongkol

Abstract:

In this paper, we propose an algorithm to compute initial cluster centers for K-means clustering. Data in a cell is partitioned using a cutting plane that divides cell in two smaller cells. The plane is perpendicular to the data axis with the highest variance and is designed to reduce the sum squared errors of the two cells as much as possible, while at the same time keep the two cells far apart as possible. Cells are partitioned one at a time until the number of cells equals to the predefined number of clusters, K. The centers of the K cells become the initial cluster centers for K-means. The experimental results suggest that the proposed algorithm is effective, converge to better clustering results than those of the random initialization method. The research also indicated the proposed algorithm would greatly improve the likelihood of every cluster containing some data in it.

Keywords: Clustering algorithm, K-means algorithm, Datapartitioning, Initial cluster centers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2866
7085 Traditional Grocery Stores and Business Management in Bangkok

Authors: Suppara Charoenpoom

Abstract:

This paper was aimed to survey the level of awareness of traditional grocery stores in Bangkok in these categories: location, service quality, risk, shopping, worthwhile, shopping satisfaction, and future shopping intention. The paper was also aimed to survey factors influencing the decision to shop at traditional grocery stores in Bangkok in the future. The findings revealed that consumers had a high level of awareness of traditional grocery stores in Bangkok. Consumers were aware that the price was higher and it was riskier to buy goods and services at traditional grocery stores but they still had a high level of preference to patronage traditional grocery stores. This was due to the reasons that there was a high level of satisfaction from the factors of the friendliness of the owner, the ability to negotiate the price, the ability to buy on credit, free delivery, and the enjoyment to meet with other customers in the same neighborhood.

Keywords: Business Management, Thai Economy, Traditional Grocery Store.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2530
7084 Semi-Supervised Outlier Detection Using a Generative and Adversary Framework

Authors: Jindong Gu, Matthias Schubert, Volker Tresp

Abstract:

In many outlier detection tasks, only training data belonging to one class, i.e., the positive class, is available. The task is then to predict a new data point as belonging either to the positive class or to the negative class, in which case the data point is considered an outlier. For this task, we propose a novel corrupted Generative Adversarial Network (CorGAN). In the adversarial process of training CorGAN, the Generator generates outlier samples for the negative class, and the Discriminator is trained to distinguish the positive training data from the generated negative data. The proposed framework is evaluated using an image dataset and a real-world network intrusion dataset. Our outlier-detection method achieves state-of-the-art performance on both tasks.

Keywords: Outlier detection, generative adversary networks, semi-supervised learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1074
7083 Methodology of the Turkey’s National Geographic Information System Integration Project

Authors: Buse A. Ataç, Doğan K. Cenan, Arda Çetinkaya, Naz D. Şahin, Köksal Sanlı, Zeynep Koç, Akın Kısa

Abstract:

With its spatial data reliability, interpretation and questioning capabilities, Geographical Information Systems make significant contributions to scientists, planners and practitioners. Geographic information systems have received great attention in today's digital world, growing rapidly, and increasing the efficiency of use. Access to and use of current and accurate geographical data, which are the most important components of the Geographical Information System, has become a necessity rather than a need for sustainable and economic development. This project aims to enable sharing of data collected by public institutions and organizations on a web-based platform. Within the scope of the project, INSPIRE (Infrastructure for Spatial Information in the European Community) data specifications are considered as a road-map. In this context, Turkey's National Geographic Information System (TUCBS) Integration Project supports sharing spatial data within 61 pilot public institutions as complied with defined national standards. In this paper, which is prepared by the project team members in the TUCBS Integration Project, the technical process with a detailed methodology is explained. In this context, the main technical processes of the Project consist of Geographic Data Analysis, Geographic Data Harmonization (Standardization), Web Service Creation (WMS, WFS) and Metadata Creation-Publication. In this paper, the integration process carried out to provide the data produced by 61 institutions to be shared from the National Geographic Data Portal (GEOPORTAL), have been trying to be conveyed with a detailed methodology.

Keywords: Data specification, geoportal, GIS, INSPIRE, TUCBS, Turkey’s National Geographic Information System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 694
7082 Real-Time Episodic Memory Construction for Optimal Action Selection in Cognitive Robotics

Authors: Deon de Jager, Yahya Zweiri, Dimitrios Makris

Abstract:

The three most important components in the cognitive architecture for cognitive robotics is memory representation, memory recall, and action-selection performed by the executive. In this paper, action selection, performed by the executive, is defined as a memory quantification and optimization process. The methodology describes the real-time construction of episodic memory through semantic memory optimization. The optimization is performed by set-based particle swarm optimization, using an adaptive entropy memory quantification approach for fitness evaluation. The performance of the approach is experimentally evaluated by simulation, where a UAV is tasked with the collection and delivery of a medical package. The experiments show that the UAV dynamically uses the episodic memory to autonomously control its velocity, while successfully completing its mission.

Keywords: Cognitive robotics, semantic memory, episodic memory, maximum entropy principle, particle swarm optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1635
7081 Zinc Oxide Nanoparticles Modified with Galactose as Potential Drug Carrier with Reduced Releasing of Zinc Ions

Authors: Jolanta Pulit-Prociak, Olga Długosz, Marcin Banach

Abstract:

The toxicity of bare zinc oxide nanoparticles used as drug carriers may be the result of releasing zinc ions. Thus, zinc oxide nanoparticles modified with galactose were obtained. The process of their formation was conducted in the microwave field. The physicochemical properties of the obtained products were studied. The size and electrokinetic potential were defined by using dynamic light scattering technique. The crystalline properties were assessed by X-ray diffractometry. In order to confirm the formation of the desired products, Fourier-transform infrared spectroscopy was used. Releasing of zinc ions from the prepared products when comparing to the bare oxide was analyzed. It was found out that modification of zinc oxide nanoparticles with galactose limits the releasing of zinc ions which are responsible for the toxic effect of the whole carrier-drug conjugate.

Keywords: Nanomaterials, zinc oxide, drug delivery system, toxicity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 554
7080 Exploring SSD Suitable Allocation Schemes Incompliance with Workload Patterns

Authors: Jae Young Park, Hwansu Jung, Jong Tae Kim

Abstract:

In the Solid-State-Drive (SSD) performance, whether the data has been well parallelized is an important factor. SSD parallelization is affected by allocation scheme and it is directly connected to SSD performance. There are dynamic allocation and static allocation in representative allocation schemes. Dynamic allocation is more adaptive in exploiting write operation parallelism, while static allocation is better in read operation parallelism. Therefore, it is hard to select the appropriate allocation scheme when the workload is mixed read and write operations. We simulated conditions on a few mixed data patterns and analyzed the results to help the right choice for better performance. As the results, if data arrival interval is long enough prior operations to be finished and continuous read intensive data environment static allocation is more suitable. Dynamic allocation performs the best on write performance and random data patterns.

Keywords: Dynamic allocation, NAND Flash based SSD, SSD parallelism, static allocation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1993
7079 WebAppShield: An Approach Exploiting Machine Learning to Detect SQLi Attacks in an Application Layer in Run-Time

Authors: Ahmed Abdulla Ashlam, Atta Badii, Frederic Stahl

Abstract:

In recent years, SQL injection attacks have been identified as being prevalent against web applications. They affect network security and user data, which leads to a considerable loss of money and data every year. This paper presents the use of classification algorithms in machine learning using a method to classify the login data filtering inputs into "SQLi" or "Non-SQLi,” thus increasing the reliability and accuracy of results in terms of deciding whether an operation is an attack or a valid operation. A method as a Web-App is developed for auto-generated data replication to provide a twin of the targeted data structure. Shielding against SQLi attacks (WebAppShield) that verifies all users and prevents attackers (SQLi attacks) from entering and or accessing the database, which the machine learning module predicts as "Non-SQLi", has been developed. A special login form has been developed with a special instance of the data validation; this verification process secures the web application from its early stages. The system has been tested and validated, and up to 99% of SQLi attacks have been prevented.

Keywords: SQL injection, attacks, web application, accuracy, database, WebAppShield.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 443
7078 Adaptive Kernel Principal Analysis for Online Feature Extraction

Authors: Mingtao Ding, Zheng Tian, Haixia Xu

Abstract:

The batch nature limits the standard kernel principal component analysis (KPCA) methods in numerous applications, especially for dynamic or large-scale data. In this paper, an efficient adaptive approach is presented for online extraction of the kernel principal components (KPC). The contribution of this paper may be divided into two parts. First, kernel covariance matrix is correctly updated to adapt to the changing characteristics of data. Second, KPC are recursively formulated to overcome the batch nature of standard KPCA.This formulation is derived from the recursive eigen-decomposition of kernel covariance matrix and indicates the KPC variation caused by the new data. The proposed method not only alleviates sub-optimality of the KPCA method for non-stationary data, but also maintains constant update speed and memory usage as the data-size increases. Experiments for simulation data and real applications demonstrate that our approach yields improvements in terms of both computational speed and approximation accuracy.

Keywords: adaptive method, kernel principal component analysis, online extraction, recursive algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1552
7077 Reciprocating Compressor Optimum Design and Manufacturing with Respect to Performance, Reliability and Cost

Authors: A. Almasi

Abstract:

Reciprocating compressors are flexible to handle wide capacity and condition swings, offer a very efficient method of compressing almost any gas mixture in wide range of pressure, can generate high head independent of density, and have numerous applications and wide power ratings. These make them vital component in various units of industrial plants. In this paper optimum reciprocating compressor configuration regarding interstage pressures, low suction pressure, non-lubricated cylinder, speed of machine, capacity control system, compressor valve, lubrication system, piston rod coating, cylinder liner material, barring device, pressure drops, rod load, pin reversal, discharge temperature, cylinder coolant system, performance, flow, coupling, special tools, condition monitoring (including vibration, thermal and rod drop monitoring), commercial points, delivery and acoustic conditions are presented.

Keywords: Design, optimum, reciprocating compressor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9881
7076 Adaptive Fuzzy Routing in Opportunistic Network (AFRON)

Authors: Payam Nabhani, Sima Radmanesh

Abstract:

Opportunistic network is a kind of Delay Tolerant Networks (DTN) where the nodes in this network come into contact with each other opportunistically and communicate wirelessly and, an end-to-end path between source and destination may have never existed, and disconnection and reconnection is common in the network. In such a network, because of the nature of opportunistic network, perhaps there is no a complete path from source to destination for most of the time and even if there is a path; the path can be very unstable and may change or break quickly. Therefore, routing is one of the main challenges in this environment and, in order to make communication possible in an opportunistic network, the intermediate nodes have to play important role in the opportunistic routing protocols. In this paper we proposed an Adaptive Fuzzy Routing in opportunistic network (AFRON). This protocol is using the simple parameters as input parameters to find the path to the destination node. Using Message Transmission Count, Message Size and Time To Live parameters as input fuzzy to increase delivery ratio and decrease the buffer consumption in the all nodes of network.

Keywords: Opportunistic Routing, Fuzzy Routing, Opportunistic Network, Message Routing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1537
7075 Proposing an Efficient Method for Frequent Pattern Mining

Authors: Vaibhav Kant Singh, Vijay Shah, Yogendra Kumar Jain, Anupam Shukla, A.S. Thoke, Vinay KumarSingh, Chhaya Dule, Vivek Parganiha

Abstract:

Data mining, which is the exploration of knowledge from the large set of data, generated as a result of the various data processing activities. Frequent Pattern Mining is a very important task in data mining. The previous approaches applied to generate frequent set generally adopt candidate generation and pruning techniques for the satisfaction of the desired objective. This paper shows how the different approaches achieve the objective of frequent mining along with the complexities required to perform the job. This paper will also look for hardware approach of cache coherence to improve efficiency of the above process. The process of data mining is helpful in generation of support systems that can help in Management, Bioinformatics, Biotechnology, Medical Science, Statistics, Mathematics, Banking, Networking and other Computer related applications. This paper proposes the use of both upward and downward closure property for the extraction of frequent item sets which reduces the total number of scans required for the generation of Candidate Sets.

Keywords: Data Mining, Candidate Sets, Frequent Item set, Pruning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1683
7074 Danger Theory and Intelligent Data Processing

Authors: Anjum Iqbal, Mohd Aizaini Maarof

Abstract:

Artificial Immune System (AIS) is relatively naive paradigm for intelligent computations. The inspiration for AIS is derived from natural Immune System (IS). Classically it is believed that IS strives to discriminate between self and non-self. Most of the existing AIS research is based on this approach. Danger Theory (DT) argues this approach and proposes that IS fights against danger producing elements and tolerates others. We, the computational researchers, are not concerned with the arguments among immunologists but try to extract from it novel abstractions for intelligent computation. This paper aims to follow DT inspiration for intelligent data processing. The approach may introduce new avenue in intelligent processing. The data used is system calls data that is potentially significant in intrusion detection applications.

Keywords: artificial immune system, danger theory, intelligent processing, system calls

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1883