Search results for: trial wave function.
2135 Efficient Pipelined Hardware Implementation of RIPEMD-160 Hash Function
Authors: H. E. Michail, V. N. Thanasoulis, G. A. Panagiotakopoulos, A. P. Kakarountas, C. E. Goutis
Abstract:
In this paper an efficient implementation of Ripemd- 160 hash function is presented. Hash functions are a special family of cryptographic algorithms, which is used in technological applications with requirements for security, confidentiality and validity. Applications like PKI, IPSec, DSA, MAC-s incorporate hash functions and are used widely today. The Ripemd-160 is emanated from the necessity for existence of very strong algorithms in cryptanalysis. The proposed hardware implementation can be synthesized easily for a variety of FPGA and ASIC technologies. Simulation results, using commercial tools, verified the efficiency of the implementation in terms of performance and throughput. Special care has been taken so that the proposed implementation doesn-t introduce extra design complexity; while in parallel functionality was kept to the required levels.Keywords: Hardware implementation, hash functions, Ripemd-160, security.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18952134 On General Stability for Switched Positive Linear Systems with Bounded Time-varying Delays
Authors: Xiu Liu, Shouming Zhong, Xiuyong Ding
Abstract:
This paper focuses on the problem of a common linear copositive Lyapunov function(CLCLF) existence for discrete-time switched positive linear systems(SPLSs) with bounded time-varying delays. In particular, applying system matrices, a special class of matrices are constructed in an appropriate manner. Our results reveal that the existence of a common copositive Lyapunov function can be related to the Schur stability of such matrices. A simple example is provided to illustrate the implication of our results.
Keywords: Common linear co-positive Lyapunov functions, positive systems, switched systems, delays.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14472133 Effect of Biostimulants to Control the Phelipanche ramosa L. Pomel in Processing Tomato Crop
Authors: G. Disciglio, G. Gatta, F. Lops, A. Libutti, A. Tarantino, E. Tarantino
Abstract:
The experimental trial was carried out in open field at Foggia district (Apulia Region, Southern Italy), during the spring-summer season 2014, in order to evaluate the effect of four biostimulant products (RadiconÒ, Viormon plusÒ, LysodinÒ and SiaptonÒ 10L), compared with a control (no biostimulant), on the infestation of processing tomato crop (cv Dres) by the chlorophyll-lacking root parasite Phelipanche ramosa. Biostimulants consist in different categories of products (microbial inoculants, humic and fulvic acids, hydrolyzed proteins and aminoacids, seaweed extracts) which play various roles in plant growing, including the improvement of crop resistance and quali-quantitative characteristics of yield. The experimental trial was arranged according to a complete randomized block design with five treatments, each of one replicated three times. The processing tomato seedlings were transplanted on 5 May 2014. Throughout the crop cycle, P. ramosa infestation was assessed according to the number of emerged shoots (branched plants) counted in each plot, at 66, 78 and 92 day after transplanting. The tomato fruits were harvested at full-stage of maturity on 8 August 2014. From each plot, the marketable yield was measured and the quali-quantitative yield parameters (mean weight, dry matter content, colour coordinate, colour index and soluble solids content of the fruits) were determined. The whole dataset was tested according to the basic assumptions for the analysis of variance (ANOVA) and the differences between the means were determined using Tukey’s tests at the 5% probability level. The results of the study showed that none of the applied biostimulants provided a whole control of Phelipanche, although some positive effects were obtained from their application. To this respect, the RadiconÒ appeared to be the most effective in reducing the infestation of this root-parasite in tomato crop. This treatment also gave the higher tomato yield.
Keywords: Biostimulants, control methods, Phelipanche ramosa, processing tomato crop.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19042132 Wind-Induced Phenomenon in a Closed Water Area with Floating-Leaved Plant
Authors: Akinori Ozaki
Abstract:
In this study, in order to clarify wind-induced phenomena, especially vertical mixing of density stratification in a closed water area with floating-leaved plants, we conducted hydraulic experiments on wind flow characteristics, wind wave characteristics, entrainment phenomena and turbulent structure by using a wind tunnel test tank and simulated floating-leaved plants. From the experimental results of wind flow and wind wave characteristics, we quantified the impact of the occupancy rate of the plants on their resistance characteristics. From the experimental results of entrainment phenomena, we defined the parameter that could explain the magnitude of mixing between the density stratifications, and quantified the impact of the occupancy rate on vertical mixing between stratifications. From the experimental results of the turbulent structure of the upper layer, we clarified the differences in small-scale turbulence components at each occupancy rate and quantified the impact of the occupancy rate on the turbulence characteristics. For a summary of this study, we theoretically quantified wind-induced entrainment phenomena in a closed water area with luxuriant growth of floating-leaved plants. The results indicated that the impact of luxuriant growth of floating-leaved plants in a closed water body could be seen in the difference in small-scale fluid characteristics, and these characteristics could be expressed using the small-scale turbulent components.Keywords: Density Stratification, Floating-leaved Plant, Wind-induced Entrainment Phenomenon, Turbulent Structure
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18082131 A Fuzzy Nonlinear Regression Model for Interval Type-2 Fuzzy Sets
Authors: O. Poleshchuk, E.Komarov
Abstract:
This paper presents a regression model for interval type-2 fuzzy sets based on the least squares estimation technique. Unknown coefficients are assumed to be triangular fuzzy numbers. The basic idea is to determine aggregation intervals for type-1 fuzzy sets, membership functions of whose are low membership function and upper membership function of interval type-2 fuzzy set. These aggregation intervals were called weighted intervals. Low and upper membership functions of input and output interval type-2 fuzzy sets for developed regression models are considered as piecewise linear functions.
Keywords: Interval type-2 fuzzy sets, fuzzy regression, weighted interval.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22182130 Problem-based Learning Approach to Human Computer Interaction
Authors: Oon-Seng Tan
Abstract:
Human Computer Interaction (HCI) has been an emerging field that draws in the experts from various fields to enhance the application of computer programs and the ease of computer users. HCI has much to do with learning and cognition and an emerging approach to learning and problem-solving is problembased learning (PBL). The processes of PBL involve important cognitive functions in the various stages. This paper will illustrate how closely related fields to HCI, PBL and cognitive psychology can benefit from informing each other through analysing various cognitive functions. Several cognitive functions from cognitive function disc (CFD) would be presented and discussed in relation to human-computer interface. This paper concludes with the implications of bridging the gaps amongst these disciplines.Keywords: problem-based learning, human computerinteraction, cognitive psychology, Cognitive Function Disc (CFD)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25142129 Multi-Layer Perceptron and Radial Basis Function Neural Network Models for Classification of Diabetic Retinopathy Disease Using Video-Oculography Signals
Authors: Ceren Kaya, Okan Erkaymaz, Orhan Ayar, Mahmut Özer
Abstract:
Diabetes Mellitus (Diabetes) is a disease based on insulin hormone disorders and causes high blood glucose. Clinical findings determine that diabetes can be diagnosed by electrophysiological signals obtained from the vital organs. 'Diabetic Retinopathy' is one of the most common eye diseases resulting on diabetes and it is the leading cause of vision loss due to structural alteration of the retinal layer vessels. In this study, features of horizontal and vertical Video-Oculography (VOG) signals have been used to classify non-proliferative and proliferative diabetic retinopathy disease. Twenty-five features are acquired by using discrete wavelet transform with VOG signals which are taken from 21 subjects. Two models, based on multi-layer perceptron and radial basis function, are recommended in the diagnosis of Diabetic Retinopathy. The proposed models also can detect level of the disease. We show comparative classification performance of the proposed models. Our results show that proposed the RBF model (100%) results in better classification performance than the MLP model (94%).
Keywords: Diabetic retinopathy, discrete wavelet transform, multi-layer perceptron, radial basis function, video-oculography.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13462128 Finding an Optimized Discriminate Function for Internet Application Recognition
Authors: E. Khorram, S.M. Mirzababaei
Abstract:
Everyday the usages of the Internet increase and simply a world of the data become accessible. Network providers do not want to let the provided services to be used in harmful or terrorist affairs, so they used a variety of methods to protect the special regions from the harmful data. One of the most important methods is supposed to be the firewall. Firewall stops the transfer of such packets through several ways, but in some cases they do not use firewall because of its blind packet stopping, high process power needed and expensive prices. Here we have proposed a method to find a discriminate function to distinguish between usual packets and harmful ones by the statistical processing on the network router logs. So an administrator can alarm to the user. This method is very fast and can be used simply in adjacent with the Internet routers.
Keywords: Data Mining, Firewall, Optimization, Packetclassification, Statistical Pattern Recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14082127 First Aid Application on Mobile Device
Authors: Komwit Surachat, Supasit Kajkamhaeng, Kasikrit Damkliang, Watanyoo Tiprat, Taninnuch Wacharanimit
Abstract:
An accident is an unexpected and unplanned situation that happens and affects human in a negative outcome. The accident can cause an injury to a human biological organism. Thus, the provision of initial care for an illness or injury is very important move to prepare the patients/victims before sending to the doctor. In this paper, a First Aid Application is developed to give some directions for preliminary taking care of patient/victim via Android mobile device. Also, the navigation function using Google Maps API is implemented in this paper for searching a suitable path to the nearest hospital. Therefore, in the emergency case, this function can be activated and navigate patients/victims to the hospital with the shortest path.Keywords: First Aid Application, Android, Google Maps API, Navigation System.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 60022126 Improving RBF Networks Classification Performance by using K-Harmonic Means
Authors: Z. Zainuddin, W. K. Lye
Abstract:
In this paper, a clustering algorithm named KHarmonic means (KHM) was employed in the training of Radial Basis Function Networks (RBFNs). KHM organized the data in clusters and determined the centres of the basis function. The popular clustering algorithms, namely K-means (KM) and Fuzzy c-means (FCM), are highly dependent on the initial identification of elements that represent the cluster well. In KHM, the problem can be avoided. This leads to improvement in the classification performance when compared to other clustering algorithms. A comparison of the classification accuracy was performed between KM, FCM and KHM. The classification performance is based on the benchmark data sets: Iris Plant, Diabetes and Breast Cancer. RBFN training with the KHM algorithm shows better accuracy in classification problem.Keywords: Neural networks, Radial basis functions, Clusteringmethod, K-harmonic means.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18502125 Enhanced Particle Swarm Optimization Approach for Solving the Non-Convex Optimal Power Flow
Authors: M. R. AlRashidi, M. F. AlHajri, M. E. El-Hawary
Abstract:
An enhanced particle swarm optimization algorithm (PSO) is presented in this work to solve the non-convex OPF problem that has both discrete and continuous optimization variables. The objective functions considered are the conventional quadratic function and the augmented quadratic function. The latter model presents non-differentiable and non-convex regions that challenge most gradient-based optimization algorithms. The optimization variables to be optimized are the generator real power outputs and voltage magnitudes, discrete transformer tap settings, and discrete reactive power injections due to capacitor banks. The set of equality constraints taken into account are the power flow equations while the inequality ones are the limits of the real and reactive power of the generators, voltage magnitude at each bus, transformer tap settings, and capacitor banks reactive power injections. The proposed algorithm combines PSO with Newton-Raphson algorithm to minimize the fuel cost function. The IEEE 30-bus system with six generating units is used to test the proposed algorithm. Several cases were investigated to test and validate the consistency of detecting optimal or near optimal solution for each objective. Results are compared to solutions obtained using sequential quadratic programming and Genetic Algorithms.Keywords: Particle Swarm Optimization, Optimal Power Flow, Economic Dispatch.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23682124 Offset Dependent Uniform Delay Mathematical Optimization Model for Signalized Traffic Network Using Differential Evolution Algorithm
Authors: Tahseen Al-Shaikhli, Halim Ceylan, Jonathan Weaver, Osman Nuri Çelik, Onur Gungor Sahin
Abstract:
A concept of uniform delay offset dependent mathematical optimization problem is derived as the main objective for this study using a differential evolution algorithm. Furthermore, the objectives are to control the coordination problem which mainly depends on offset selection, and to estimate the uniform delay based on the offset choice at each signalized intersection. The assumption is the periodic sinusoidal function for arrival and departure patterns. The cycle time is optimized at the entry links and the optimized value is used in the non-entry links as a common cycle time. The offset optimization algorithm is used to calculate the uniform delay at each link. The results are illustrated by using a case study and compared with the canonical uniform delay model derived by Webster and the highway capacity manual’s model. The findings show that the derived model minimizes the total uniform delay to almost half compared to conventional models; the mathematical objective function is robust; the algorithm convergence time is fast.
Keywords: Area traffic control, differential evolution, offset variable, sinusoidal periodic function, traffic flow, uniform delay.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3662123 New Exact Solutions for the (3+1)-Dimensional Breaking Soliton Equation
Authors: Mohammad Taghi Darvishi, Maliheh Najafi, Mohammad Najafi
Abstract:
In this work, we obtain some analytic solutions for the (3+1)-dimensional breaking soliton after obtaining its Hirota-s bilinear form. Our calculations show that, three-wave method is very easy and straightforward to solve nonlinear partial differential equations.
Keywords: (3+1)-dimensional breaking soliton equation, Hirota'sbilinear form.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16712122 Spline Basis Neural Network Algorithm for Numerical Integration
Authors: Lina Yan, Jingjing Di, Ke Wang
Abstract:
A new basis function neural network algorithm is proposed for numerical integration. The main idea is to construct neural network model based on spline basis functions, which is used to approximate the integrand by training neural network weights. The convergence theorem of the neural network algorithm, the theorem for numerical integration and one corollary are presented and proved. The numerical examples, compared with other methods, show that the algorithm is effective and has the characteristics such as high precision and the integrand not required known. Thus, the algorithm presented in this paper can be widely applied in many engineering fields.
Keywords: Numerical integration, Spline basis function, Neural network algorithm
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29282121 Absorption Center of Photophoresis with in Micro-Sized and Spheroidal Particles in a Gaseous Medium
Authors: Wen-Ken Li, Pei-Yuan Tzeng, Chyi-Yeou Soong, Chung-Ho Liu
Abstract:
The present study is concerned with the absorption center of photophoresis within a micro-sized and spheroidal particle in a gaseous medium. A particle subjected to an intense light beam can absorb electromagnetic energy within the particle unevenly, which results in photophoretic force to drive the particle in motion. By evaluating the energy distribution systematically at various conditions, the study focuses on the effects of governing parameters, such as particle aspect ratio, size parameter, refractivity, and absorptivity, on the heat source function within the particle and their potential influences to the photophoresis.Keywords: photophoresis, spheroidal particle, aspect ratio, refractivity, absorptivity, heat source function
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13952120 Comparison of Different Hydrograph Routing Techniques in XPSTORM Modelling Software: A Case Study
Authors: Fatema Akram, Mohammad Golam Rasul, Mohammad Masud Kamal Khan, Md. Sharif Imam Ibne Amir
Abstract:
A variety of routing techniques are available to develop surface runoff hydrographs from rainfall. The selection of runoff routing method is very vital as it is directly related to the type of watershed and the required degree of accuracy. There are different modelling softwares available to explore the rainfall-runoff process in urban areas. XPSTORM, a link-node based, integrated stormwater modelling software, has been used in this study for developing surface runoff hydrograph for a Golf course area located in Rockhampton in Central Queensland in Australia. Four commonly used methods, namely SWMM runoff, Kinematic wave, Laurenson, and Time-Area are employed to generate runoff hydrograph for design storm of this study area. In runoff mode of XPSTORM, the rainfall, infiltration, evaporation and depression storage for subcatchments were simulated and the runoff from the subcatchment to collection node was calculated. The simulation results are presented, discussed and compared. The total surface runoff generated by SWMM runoff, Kinematic wave and Time-Area methods are found to be reasonably close, which indicates any of these methods can be used for developing runoff hydrograph of the study area. Laurenson method produces a comparatively less amount of surface runoff, however, it creates highest peak of surface runoff among all which may be suitable for hilly region. Although the Laurenson hydrograph technique is widely acceptable surface runoff routing technique in Queensland (Australia), extensive investigation is recommended with detailed topographic and hydrologic data in order to assess its suitability for use in the case study area.
Keywords: ARI, design storm, IFD, rainfall temporal pattern, routing techniques, surface runoff, XPSTORM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 50462119 The Gerber-Shiu Functions of a Risk Model with Two Classes of Claims and Random Income
Authors: Shan Gao
Abstract:
In this paper, we consider a risk model involving two independent classes of insurance risks and random premium income. We assume that the premium income process is a Poisson Process, and the claim number processes are independent Poisson and generalized Erlang(n) processes, respectively. Both of the Gerber- Shiu functions with zero initial surplus and the probability generating functions (p.g.f.) of the Gerber-Shiu functions are obtained.
Keywords: Poisson process, generalized Erlang risk process, Gerber-Shiu function, generating function, generalized Lundberg equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13152118 Low Resolution Single Neural Network Based Face Recognition
Authors: Jahan Zeb, Muhammad Younus Javed, Usman Qayyum
Abstract:
This research paper deals with the implementation of face recognition using neural network (recognition classifier) on low-resolution images. The proposed system contains two parts, preprocessing and face classification. The preprocessing part converts original images into blurry image using average filter and equalizes the histogram of those image (lighting normalization). The bi-cubic interpolation function is applied onto equalized image to get resized image. The resized image is actually low-resolution image providing faster processing for training and testing. The preprocessed image becomes the input to neural network classifier, which uses back-propagation algorithm to recognize the familiar faces. The crux of proposed algorithm is its beauty to use single neural network as classifier, which produces straightforward approach towards face recognition. The single neural network consists of three layers with Log sigmoid, Hyperbolic tangent sigmoid and Linear transfer function respectively. The training function, which is incorporated in our work, is Gradient descent with momentum (adaptive learning rate) back propagation. The proposed algorithm was trained on ORL (Olivetti Research Laboratory) database with 5 training images. The empirical results provide the accuracy of 94.50%, 93.00% and 90.25% for 20, 30 and 40 subjects respectively, with time delay of 0.0934 sec per image.Keywords: Average filtering, Bicubic Interpolation, Neurons, vectorization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17502117 Digital Sites- Performative Views
Authors: Gavin Perin, Linda Matthews
Abstract:
Webcam systems now function as the new privileged vantage points from which to view the city. This transformation of CCTV technology from surveillance to promotional tool is significant because its'scopic regime' presents, back to the public, a new virtual 'site' that sits alongside its real-time counterpart. Significantly, thisraw 'image' data can, in fact,be co-optedand processed so as to disrupt their original purpose. This paper will demonstrate this disruptive capacity through an architectural project. It will reveal how the adaption the webcam image offers a technical springboard by which to initiate alternate urban form making decisions and subvert the disciplinary reliance on the 'flat' orthographic plan. In so doing, the paper will show how this 'digital material' exceeds the imagistic function of the image; shiftingit from being a vehicle of signification to a site of affect.Keywords: Surveillance, virtual, scopic, additive
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12852116 A New Model for Economic Optimization of Water Diversion System during Dam Construction using PSO Algorithm
Authors: Saeed Sedighizadeh, Abbas Mansoori, Mohammad Reza Pirestani, Davoud Sedighizadeh
Abstract:
The usual method of river flow diversion involves construction of tunnels and cofferdams. Given the fact that the cost of diversion works could be as high as 10-20% of the total dam construction cost, due attention should be paid to optimum design of the diversion works. The cost of diversion works depends, on factors, such as: the tunnel dimensions and the intended tunneling support measures during and after excavation; quality and characterizes of the rock through which the tunnel should be excavated; the dimensions of the upstream (and downstream) cofferdams; and the magnitude of river flood the system is designed to divert. In this paper by use of the cost of unit prices for tunnel excavation, tunnel lining, tunnel support (rock bolt + shotcrete) and cofferdam fill the cost function was determined. The function is then minimized by the aid of PSO Algorithm (particle swarm optimization). It is found that the optimum diameter and the total diversion cost are directly related to the river flood discharge (Q). It has also shown that in addition to optimum diameter design discharge (Q), river length, tunnel length, is mainly a function of the ratios (not the absolute values) of the unit prices and does not depend on the overall price levels in the respective country. The results of optimization use in some of the case study lead us to significant changes in the cost.
Keywords: Diversion Tunnel, Optimization, PSO Algorithm
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27302115 A Damage Level Assessment Model for Extra High Voltage Transmission Towers
Authors: Huan-Chieh Chiu, Hung-Shuo Wu, Chien-Hao Wang, Yu-Cheng Yang, Ching-Ya Tseng, Joe-Air Jiang
Abstract:
Power failure resulting from tower collapse due to violent seismic events might bring enormous and inestimable losses. The Chi-Chi earthquake, for example, strongly struck Taiwan and caused huge damage to the power system on September 21, 1999. Nearly 10% of extra high voltage (EHV) transmission towers were damaged in the earthquake. Therefore, seismic hazards of EHV transmission towers should be monitored and evaluated. The ultimate goal of this study is to establish a damage level assessment model for EHV transmission towers. The data of earthquakes provided by Taiwan Central Weather Bureau serve as a reference and then lay the foundation for earthquake simulations and analyses afterward. Some parameters related to the damage level of each point of an EHV tower are simulated and analyzed by the data from monitoring stations once an earthquake occurs. Through the Fourier transform, the seismic wave is then analyzed and transformed into different wave frequencies, and the data would be shown through a response spectrum. With this method, the seismic frequency which damages EHV towers the most is clearly identified. An estimation model is built to determine the damage level caused by a future seismic event. Finally, instead of relying on visual observation done by inspectors, the proposed model can provide a power company with the damage information of a transmission tower. Using the model, manpower required by visual observation can be reduced, and the accuracy of the damage level estimation can be substantially improved. Such a model is greatly useful for health and construction monitoring because of the advantages of long-term evaluation of structural characteristics and long-term damage detection.Keywords: Smart grid, EHV transmission tower, response spectrum, damage level monitoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10662114 In Silico Analysis of Pax6 Interacting Proteins Indicates Missing Molecular Links in Development of Brain and Associated Disease
Authors: Ratnakar Tripathi, Rajnikant Mishra
Abstract:
The PAX6, a transcription factor, is essential for the morphogenesis of the eyes, brain, pituitary and pancreatic islets. In rodents, the loss of Pax6 function leads to central nervous system defects, anophthalmia, and nasal hypoplasia. The haplo-insufficiency of Pax6 causes microphthalmia, aggression and other behavioral abnormalities. It is also required in brain patterning and neuronal plasticity. In human, heterozygous mutation of Pax6 causes loss of iris [aniridia], mental retardation and glucose intolerance. The 3- deletion in Pax6 leads to autism and aniridia. The phenotypes are variable in peneterance and expressivity. However, mechanism of function and interaction of PAX6 with other proteins during development and associated disease are not clear. It is intended to explore interactors of PAX6 to elucidated biology of PAX6 function in the tissues where it is expressed and also in the central regulatory pathway. This report describes In-silico approaches to explore interacting proteins of PAX6. The models show several possible proteins interacting with PAX6 like MITF, SIX3, SOX2, SOX3, IPO13, TRIM, and OGT. Since the Pax6 is a critical transcriptional regulator and master control gene of eye and brain development it might be interacting with other protein involved in morphogenesis [TGIF, TGF, Ras etc]. It is also presumed that matricelluar proteins [SPARC, thrombospondin-1 and osteonectin etc] are likely to interact during transport and processing of PAX6 and are somewhere its cascade. The proteins involved in cell survival and cell proliferation can also not be ignored.
Keywords: Interacting Proteins, Pax6, PIP, STRING
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19662113 Radial Basis Surrogate Model Integrated to Evolutionary Algorithm for Solving Computation Intensive Black-Box Problems
Authors: Abdulbaset Saad, Adel Younis, Zuomin Dong
Abstract:
For design optimization with high-dimensional expensive problems, an effective and efficient optimization methodology is desired. This work proposes a series of modification to the Differential Evolution (DE) algorithm for solving computation Intensive Black-Box Problems. The proposed methodology is called Radial Basis Meta-Model Algorithm Assisted Differential Evolutionary (RBF-DE), which is a global optimization algorithm based on the meta-modeling techniques. A meta-modeling assisted DE is proposed to solve computationally expensive optimization problems. The Radial Basis Function (RBF) model is used as a surrogate model to approximate the expensive objective function, while DE employs a mechanism to dynamically select the best performing combination of parameters such as differential rate, cross over probability, and population size. The proposed algorithm is tested on benchmark functions and real life practical applications and problems. The test results demonstrate that the proposed algorithm is promising and performs well compared to other optimization algorithms. The proposed algorithm is capable of converging to acceptable and good solutions in terms of accuracy, number of evaluations, and time needed to converge.
Keywords: Differential evolution, engineering design, expensive computations, meta-modeling, radial basis function, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11732112 Evaluating Generative Neural Attention Weights-Based Chatbot on Customer Support Twitter Dataset
Authors: Sinarwati Mohamad Suhaili, Naomie Salim, Mohamad Nazim Jambli
Abstract:
Sequence-to-sequence (seq2seq) models augmented with attention mechanisms are increasingly important in automated customer service. These models, adept at recognizing complex relationships between input and output sequences, are essential for optimizing chatbot responses. Central to these mechanisms are neural attention weights that determine the model’s focus during sequence generation. Despite their widespread use, there remains a gap in the comparative analysis of different attention weighting functions within seq2seq models, particularly in the context of chatbots utilizing the Customer Support Twitter (CST) dataset. This study addresses this gap by evaluating four distinct attention-scoring functions—dot, multiplicative/general, additive, and an extended multiplicative function with a tanh activation parameter — in neural generative seq2seq models. Using the CST dataset, these models were trained and evaluated over 10 epochs with the AdamW optimizer. Evaluation criteria included validation loss and BLEU scores implemented under both greedy and beam search strategies with a beam size of k = 3. Results indicate that the model with the tanh-augmented multiplicative function significantly outperforms its counterparts, achieving the lowest validation loss (1.136484) and the highest BLEU scores (0.438926 under greedy search, 0.443000 under beam search, k = 3). These findings emphasize the crucial influence of selecting an appropriate attention-scoring function to enhance the performance of seq2seq models for chatbots, particularly highlighting the model integrating tanh activation as a promising approach to improving chatbot quality in customer support contexts.
Keywords: Attention weight, chatbot, encoder-decoder, neural generative attention, score function, sequence-to-sequence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 902111 A Functional Interpretation of Quantum Theory
Authors: Hans H. Diel
Abstract:
In this paper a functional interpretation of quantum theory (QT) with emphasis on quantum field theory (QFT) is proposed. Besides the usual statements on relations between a functions initial state and final state, a functional interpretation also contains a description of the dynamic evolution of the function. That is, it describes how things function. The proposed functional interpretation of QT/QFT has been developed in the context of the author-s work towards a computer model of QT with the goal of supporting the largest possible scope of QT concepts. In the course of this work, the author encountered a number of problems inherent in the translation of quantum physics into a computer program. He came to the conclusion that the goal of supporting the major QT concepts can only be satisfied, if the present model of QT is supplemented by a "functional interpretation" of QT/QFT. The paper describes a proposal for thatKeywords: Computability, Foundation of Quantum Mechanics, Measurement Problem, Models of Physics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20412110 IFS on the Multi-Fuzzy Fractal Space
Authors: Nadia M. G. AL-Sa'idi, Muhammad Rushdan Md. Sd., Adil M. Ahmed
Abstract:
The IFS is a scheme for describing and manipulating complex fractal attractors using simple mathematical models. More precisely, the most popular “fractal –based" algorithms for both representation and compression of computer images have involved some implementation of the method of Iterated Function Systems (IFS) on complete metric spaces. In this paper a new generalized space called Multi-Fuzzy Fractal Space was constructed. On these spases a distance function is defined, and its completeness is proved. The completeness property of this space ensures the existence of a fixed-point theorem for the family of continuous mappings. This theorem is the fundamental result on which the IFS methods are based and the fractals are built. The defined mappings are proved to satisfy some generalizations of the contraction condition.
Keywords: Fuzzy metric space, Fuzzy fractal space, Multi fuzzy fractal space.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19732109 The Study of Rapeseed Characteristics by Factor Analysis under Normal and Drought Stress Conditions
Authors: Ali Bakhtiari Gharibdosti, Mohammad Hosein Bijeh Keshavarzi, Samira Alijani
Abstract:
To understand internal characteristics relationships and determine factors which explain under consideration characteristics in rapeseed varieties, 10 rapeseed genotypes were implemented in complete accidental plot with three-time repetitions under drought stress in 2009-2010 in research field of agriculture college, Islamic Azad University, Karaj branch. In this research, 11 characteristics include of characteristics related to growth, production and functions stages was considered. Variance analysis results showed that there is a significant difference among rapeseed varieties characteristics. By calculating simple correlation coefficient under both conditions, normal and drought stress indicate that seed function characteristics in plant and pod number have positive and significant correlation in 1% probable level with seed function and selection on the base of these characteristics was effective for improving this function. Under normal and drought stress, analyzing the main factors showed that numbers of factors which have more than one amount, had five factors under normal conditions which were 82.72% of total variance totally, but under drought stress four factors diagnosed which were 76.78% of total variance. By considering total results of this research and by assessing effective characteristics for factor analysis and selecting different components of these characteristics, they can be used for modifying works to select applicable and tolerant genotypes in drought stress conditions.Keywords: Correlation, drought stress, factor analysis, rapeseed.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7012108 Hypersonic Flow of CO2-N2 Mixture around a Spacecraft during the Atmospheric Reentry
Authors: Zineddine Bouyahiaoui, Rabah Haoui
Abstract:
The aim of this work is to analyze a flow around the axisymmetric blunt body taken into account the chemical and vibrational nonequilibrium flow. This work concerns the entry of spacecraft in the atmosphere of the planet Mars. Since the equations involved are non-linear partial derivatives, the volume method is the only way to solve this problem. The choice of the mesh and the CFL is a condition for the convergence to have the stationary solution.Keywords: Hypersonic flow, nonequilibrium flow, shock wave, blunt body.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9262107 Performance Analysis of Evolutionary ANN for Output Prediction of a Grid-Connected Photovoltaic System
Authors: S.I Sulaiman, T.K Abdul Rahman, I. Musirin, S. Shaari
Abstract:
This paper presents performance analysis of the Evolutionary Programming-Artificial Neural Network (EPANN) based technique to optimize the architecture and training parameters of a one-hidden layer feedforward ANN model for the prediction of energy output from a grid connected photovoltaic system. The ANN utilizes solar radiation and ambient temperature as its inputs while the output is the total watt-hour energy produced from the grid-connected PV system. EP is used to optimize the regression performance of the ANN model by determining the optimum values for the number of nodes in the hidden layer as well as the optimal momentum rate and learning rate for the training. The EPANN model is tested using two types of transfer function for the hidden layer, namely the tangent sigmoid and logarithmic sigmoid. The best transfer function, neural topology and learning parameters were selected based on the highest regression performance obtained during the ANN training and testing process. It is observed that the best transfer function configuration for the prediction model is [logarithmic sigmoid, purely linear].Keywords: Artificial neural network (ANN), Correlation coefficient (R), Evolutionary programming-ANN (EPANN), Photovoltaic (PV), logarithmic sigmoid and tangent sigmoid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19002106 A Perceptual Image Coding method of High Compression Rate
Authors: Fahmi Kammoun, Mohamed Salim Bouhlel
Abstract:
In the framework of the image compression by Wavelet Transforms, we propose a perceptual method by incorporating Human Visual System (HVS) characteristics in the quantization stage. Indeed, human eyes haven-t an equal sensitivity across the frequency bandwidth. Therefore, the clarity of the reconstructed images can be improved by weighting the quantization according to the Contrast Sensitivity Function (CSF). The visual artifact at low bit rate is minimized. To evaluate our method, we use the Peak Signal to Noise Ratio (PSNR) and a new evaluating criteria witch takes into account visual criteria. The experimental results illustrate that our technique shows improvement on image quality at the same compression ratio.Keywords: Contrast Sensitivity Function, Human Visual System, Image compression, Wavelet transforms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1874