Search results for: multiple linear models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5315

Search results for: multiple linear models

4685 Towards End-To-End Disease Prediction from Raw Metagenomic Data

Authors: Maxence Queyrel, Edi Prifti, Alexandre Templier, Jean-Daniel Zucker

Abstract:

Analysis of the human microbiome using metagenomic sequencing data has demonstrated high ability in discriminating various human diseases. Raw metagenomic sequencing data require multiple complex and computationally heavy bioinformatics steps prior to data analysis. Such data contain millions of short sequences read from the fragmented DNA sequences and stored as fastq files. Conventional processing pipelines consist in multiple steps including quality control, filtering, alignment of sequences against genomic catalogs (genes, species, taxonomic levels, functional pathways, etc.). These pipelines are complex to use, time consuming and rely on a large number of parameters that often provide variability and impact the estimation of the microbiome elements. Training Deep Neural Networks directly from raw sequencing data is a promising approach to bypass some of the challenges associated with mainstream bioinformatics pipelines. Most of these methods use the concept of word and sentence embeddings that create a meaningful and numerical representation of DNA sequences, while extracting features and reducing the dimensionality of the data. In this paper we present an end-to-end approach that classifies patients into disease groups directly from raw metagenomic reads: metagenome2vec. This approach is composed of four steps (i) generating a vocabulary of k-mers and learning their numerical embeddings; (ii) learning DNA sequence (read) embeddings; (iii) identifying the genome from which the sequence is most likely to come and (iv) training a multiple instance learning classifier which predicts the phenotype based on the vector representation of the raw data. An attention mechanism is applied in the network so that the model can be interpreted, assigning a weight to the influence of the prediction for each genome. Using two public real-life data-sets as well a simulated one, we demonstrated that this original approach reaches high performance, comparable with the state-of-the-art methods applied directly on processed data though mainstream bioinformatics workflows. These results are encouraging for this proof of concept work. We believe that with further dedication, the DNN models have the potential to surpass mainstream bioinformatics workflows in disease classification tasks.

Keywords: Metagenomics, phenotype prediction, deep learning, embeddings, multiple instance learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 910
4684 Application of Adaptive Neuro-Fuzzy Inference System in the Prediction of Economic Crisis Periods in USA

Authors: Eleftherios Giovanis

Abstract:

In this paper discrete choice models, Logit and Probit are examined in order to predict the economic recession or expansion periods in USA. Additionally we propose an adaptive neuro-fuzzy inference system with triangular membership function. We examine the in-sample period 1947-2005 and we test the models in the out-of sample period 2006-2009. The forecasting results indicate that the Adaptive Neuro-fuzzy Inference System (ANFIS) model outperforms significant the Logit and Probit models in the out-of sample period. This indicates that neuro-fuzzy model provides a better and more reliable signal on whether or not a financial crisis will take place.

Keywords: ANFIS, discrete choice models, financial crisis, USeconomy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1610
4683 Statistical Analysis for Overdispersed Medical Count Data

Authors: Y. N. Phang, E. F. Loh

Abstract:

Many researchers have suggested the use of zero inflated Poisson (ZIP) and zero inflated negative binomial (ZINB) models in modeling overdispersed medical count data with extra variations caused by extra zeros and unobserved heterogeneity. The studies indicate that ZIP and ZINB always provide better fit than using the normal Poisson and negative binomial models in modeling overdispersed medical count data. In this study, we proposed the use of Zero Inflated Inverse Trinomial (ZIIT), Zero Inflated Poisson Inverse Gaussian (ZIPIG) and zero inflated strict arcsine models in modeling overdispered medical count data. These proposed models are not widely used by many researchers especially in the medical field. The results show that these three suggested models can serve as alternative models in modeling overdispersed medical count data. This is supported by the application of these suggested models to a real life medical data set. Inverse trinomial, Poisson inverse Gaussian and strict arcsine are discrete distributions with cubic variance function of mean. Therefore, ZIIT, ZIPIG and ZISA are able to accommodate data with excess zeros and very heavy tailed. They are recommended to be used in modeling overdispersed medical count data when ZIP and ZINB are inadequate.

Keywords: Zero inflated, inverse trinomial distribution, Poisson inverse Gaussian distribution, strict arcsine distribution, Pearson’s goodness of fit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3315
4682 Survival of Neutrino Mass Models in Nonthermal Leptogenesis

Authors: Amal Kr Sarma, H Zeen Devi, N Nimai Singh

Abstract:

The Constraints imposed by non-thermal leptogenesis on the survival of the neutrino mass models describing the presently available neutrino mass patterns, are studied numerically. We consider the Majorana CP violating phases coming from right-handed Majorana mass matrices to estimate the baryon asymmetry of the universe, for different neutrino mass models namely quasi-degenerate, inverted hierarchical and normal hierarchical models, with tribimaximal mixings. Considering two possible diagonal forms of Dirac neutrino mass matrix as either charged lepton or up-quark mass matrix, the heavy right-handed mass matrices are constructed from the light neutrino mass matrix. Only the normal hierarchical model leads to the best predictions of baryon asymmetry of the universe, consistent with observations in non-thermal leptogenesis scenario.

Keywords: Thermal leptogenesis, Non-thermal leptogenesis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1286
4681 Unsupervised Texture Classification and Segmentation

Authors: V.P.Subramanyam Rallabandi, S.K.Sett

Abstract:

An unsupervised classification algorithm is derived by modeling observed data as a mixture of several mutually exclusive classes that are each described by linear combinations of independent non-Gaussian densities. The algorithm estimates the data density in each class by using parametric nonlinear functions that fit to the non-Gaussian structure of the data. This improves classification accuracy compared with standard Gaussian mixture models. When applied to textures, the algorithm can learn basis functions for images that capture the statistically significant structure intrinsic in the images. We apply this technique to the problem of unsupervised texture classification and segmentation.

Keywords: Gaussian Mixture Model, Independent Component Analysis, Segmentation, Unsupervised Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1592
4680 Integrated Models of Reading Comprehension: Understanding to Impact Teaching: The Teacher’s Central Role

Authors: Sally A. Brown

Abstract:

Over the last 30 years, researchers have developed models or frameworks to provide a more structured understanding of the reading comprehension process. Cognitive information processing models and social cognitive theories both provide frameworks to inform reading comprehension instruction. The purpose of this paper is to (a) provide an overview of the historical development of reading comprehension theory, (b) review the literature framed by cognitive information processing, social cognitive, and integrated reading comprehension theories, and (c) demonstrate how these frameworks inform instruction. As integrated models of reading can guide the interpretation of various factors related to student learning, an integrated framework designed by the researcher will be presented. Results indicated that features of cognitive processing and social cognitivism theory—represented in the integrated framework—highlight the importance of the role of the teacher. This model can aide teachers in not only improving reading comprehension instruction but in identifying areas of challenge for students.

Keywords: Explicit instruction, integrated models of reading comprehension, reading comprehension, teacher’s role.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 190
4679 Multiple Crack Identification Using Frequency Measurement

Authors: J.W. Xiang, M. Liang

Abstract:

This paper presents a method to detect multiple cracks based on frequency information. When a structure is subjected to dynamic or static loads, cracks may develop and the modal frequencies of the cracked structure may change. To detect cracks in a structure, we construct a high precision wavelet finite element (EF) model of a certain structure using the B-spline wavelet on the interval (BSWI). Cracks can be modeled by rotational springs and added to the FE model. The crack detection database will be obtained by solving that model. Then the crack locations and depths can be determined based on the frequency information from the database. The performance of the proposed method has been numerically verified by a rotor example.

Keywords: Rotor, frequency measurement, multiple cracks, wavelet finite element method, identification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1631
4678 Integrated Approaches to Enhance Aggregate Production Planning with Inventory Uncertainty Based On Improved Harmony Search Algorithm

Authors: P. Luangpaiboon, P. Aungkulanon

Abstract:

This work presents a multiple objective linear programming (MOLP) model based on the desirability function approach for solving the aggregate production planning (APP) decision problem upon Masud and Hwang-s model. The proposed model minimises total production costs, carrying or backordering costs and rates of change in labor levels. An industrial case demonstrates the feasibility of applying the proposed model to the APP problems with three scenarios of inventory levels. The proposed model yields an efficient compromise solution and the overall levels of DM satisfaction with the multiple combined response levels. There has been a trend to solve complex planning problems using various metaheuristics. Therefore, in this paper, the multi-objective APP problem is solved by hybrid metaheuristics of the hunting search (HuSIHSA) and firefly (FAIHSA) mechanisms on the improved harmony search algorithm. Results obtained from the solution of are then compared. It is observed that the FAIHSA can be used as a successful alternative solution mechanism for solving APP problems over three scenarios. Furthermore, the FAIHSA provides a systematic framework for facilitating the decision-making process, enabling a decision maker interactively to modify the desirability function approach and related model parameters until a good optimal solution is obtained with proper selection of control parameters when compared.

Keywords: Aggregate Production Planning, Desirability Function Approach, Improved Harmony Search Algorithm, Hunting Search Algorithm and Firefly Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1927
4677 Stability Analysis of Fractional Order Systems with Time Delay

Authors: Hong Li, Shou-Ming Zhong, Hou-Biao Li

Abstract:

In this paper, we mainly study the stability of linear and interval linear fractional systems with time delay. By applying the characteristic equations, a necessary and sufficient stability condition is obtained firstly, and then some sufficient conditions are deserved. In addition, according to the equivalent relationship of fractional order systems with order 0 < α ≤ 1 and with order 1 ≤ β < 2, one may get more relevant theorems. Finally, two examples are provided to demonstrate the effectiveness of our results.

Keywords: Fractional order systems, Time delay, Characteristic equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3661
4676 Models to Customise Web Service Discovery Result using Static and Dynamic Parameters

Authors: Kee-Leong Tan, Cheng-Suan Lee, Hui-Na Chua

Abstract:

This paper presents three models which enable the customisation of Universal Description, Discovery and Integration (UDDI) query results, based on some pre-defined and/or real-time changing parameters. These proposed models detail the requirements, design and techniques which make ranking of Web service discovery results from a service registry possible. Our contribution is two fold: First, we present an extension to the UDDI inquiry capabilities. This enables a private UDDI registry owner to customise or rank the query results, based on its business requirements. Second, our proposal utilises existing technologies and standards which require minimal changes to existing UDDI interfaces or its data structures. We believe these models will serve as valuable reference for enhancing the service discovery methods within a private UDDI registry environment.

Keywords: Web service, discovery, semantic, SOA, registry, UDDI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1486
4675 On the Construction of Lightweight Circulant Maximum Distance Separable Matrices

Authors: Qinyi Mei, Li-Ping Wang

Abstract:

MDS matrices are of great significance in the design of block ciphers and hash functions. In the present paper, we investigate the problem of constructing MDS matrices which are both lightweight and low-latency. We propose a new method of constructing lightweight MDS matrices using circulant matrices which can be implemented efficiently in hardware. Furthermore, we provide circulant MDS matrices with as few bit XOR operations as possible for the classical dimensions 4 × 4, 8 × 8 over the space of linear transformations over finite field F42 . In contrast to previous constructions of MDS matrices, our constructions have achieved fewer XORs.

Keywords: Linear diffusion layer, circulant matrix, lightweight, MDS matrix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 853
4674 Advances in Artificial Intelligence Using Speech Recognition

Authors: Khaled M. Alhawiti

Abstract:

This research study aims to present a retrospective study about speech recognition systems and artificial intelligence. Speech recognition has become one of the widely used technologies, as it offers great opportunity to interact and communicate with automated machines. Precisely, it can be affirmed that speech recognition facilitates its users and helps them to perform their daily routine tasks, in a more convenient and effective manner. This research intends to present the illustration of recent technological advancements, which are associated with artificial intelligence. Recent researches have revealed the fact that speech recognition is found to be the utmost issue, which affects the decoding of speech. In order to overcome these issues, different statistical models were developed by the researchers. Some of the most prominent statistical models include acoustic model (AM), language model (LM), lexicon model, and hidden Markov models (HMM). The research will help in understanding all of these statistical models of speech recognition. Researchers have also formulated different decoding methods, which are being utilized for realistic decoding tasks and constrained artificial languages. These decoding methods include pattern recognition, acoustic phonetic, and artificial intelligence. It has been recognized that artificial intelligence is the most efficient and reliable methods, which are being used in speech recognition.

Keywords: Speech recognition, acoustic phonetic, artificial intelligence, Hidden Markov Models (HMM), statistical models of speech recognition, human machine performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7978
4673 Robust Fuzzy Observer Design for Nonlinear Systems

Authors: Michal Polanský, C. Ardil

Abstract:

This paper shows a new method for design of fuzzy observers for Takagi-Sugeno systems. The method is based on Linear matrix inequalities (LMIs) and it allows to insert H constraint into the design procedure. The speed of estimation can tuned be specification of a decay rate of the observer closed loop system. We discuss here also the influence of parametric uncertainties at the output control system stability.

Keywords: H norm, Linear Matrix Inequalities, Observers, Takagi-Sugeno Systems, Parallel Distributed Compensation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2541
4672 The Economic Lot Scheduling Problem in Flow Lines with Sequence-Dependent Setups

Authors: M. Heydari, S. A. Torabi

Abstract:

The problem of lot sizing, sequencing and scheduling multiple products in flow line production systems has been studied by several authors. Almost all of the researches in this area assumed that setup times and costs are sequence –independent even though sequence dependent setups are common in practice. In this paper we present a new mixed integer non linear program (MINLP) and a heuristic method to solve the problem in sequence dependent case. Furthermore, a genetic algorithm has been developed which applies this constructive heuristic to generate initial population. These two proposed solution methods are compared on randomly generated problems. Computational results show a clear superiority of our proposed GA for majority of the test problems.

Keywords: Economic lot scheduling problem, finite horizon, genetic algorithm, mixed zero-one nonlinear programming, sequence-dependent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1538
4671 Lumped Parameter Models for Numerical Simulation of the Dynamic Response of Hoisting Appliances

Authors: Giovanni Incerti, Luigi Solazzi, Candida Petrogalli

Abstract:

This paper describes three lumped parameters models for the study of the dynamic behavior of a boom crane. The models here proposed allows to evaluate the fluctuations of the load arising from the rope and structure elasticity and from the type of the motion command imposed by the winch. A calculation software was developed in order to determine the actual acceleration of the lifted mass and the dynamic overload during the lifting phase. Some application examples are presented, with the aim of showing the correlation between the magnitude of the stress and the type of the employed motion command.

Keywords: Crane, dynamic model, overloading condition, vibration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1964
4670 Metaheuristic Algorithms for Decoding Binary Linear Codes

Authors: Hassan Berbia, Faissal Elbouanani, Rahal Romadi, Mostafa Belkasmi

Abstract:

This paper introduces two decoders for binary linear codes based on Metaheuristics. The first one uses a genetic algorithm and the second is based on a combination genetic algorithm with a feed forward neural network. The decoder based on the genetic algorithms (DAG) applied to BCH and convolutional codes give good performances compared to Chase-2 and Viterbi algorithm respectively and reach the performances of the OSD-3 for some Residue Quadratic (RQ) codes. This algorithm is less complex for linear block codes of large block length; furthermore their performances can be improved by tuning the decoder-s parameters, in particular the number of individuals by population and the number of generations. In the second algorithm, the search space, in contrast to DAG which was limited to the code word space, now covers the whole binary vector space. It tries to elude a great number of coding operations by using a neural network. This reduces greatly the complexity of the decoder while maintaining comparable performances.

Keywords: Block code, decoding, methaheuristic, genetic algorithm, neural network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2081
4669 Investigation of Different Control Stratgies for UPFC Decoupled Model and the Impact of Location on Control Parameters

Authors: S.A. Alqallaf, S.A. Al-Mawsawi, A. Haider

Abstract:

In order to evaluate the performance of a unified power flow controller (UPFC), mathematical models for steady state and dynamic analysis are to be developed. The steady state model is mainly concerned with the incorporation of the UPFC in load flow studies. Several load flow models for UPFC have been introduced in literature, and one of the most reliable models is the decoupled UPFC model. In spite of UPFC decoupled load flow model simplicity, it is more robust compared to other UPFC load flow models and it contains unique capabilities. Some shortcoming such as additional set of nonlinear equations are to be solved separately after the load flow solution is obtained. The aim of this study is to investigate the different control strategies that can be realized in the decoupled load flow model (individual control and combined control), and the impact of the location of the UPFC in the network on its control parameters.

Keywords: UPFC, Decoupled model, Load flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2001
4668 QSI Dynamical Fetch Policy for SMT

Authors: Shu-Chiao Yang, Jong-Jiann Shieh

Abstract:

A Simultaneous Multithreading (SMT) Processor is capable of executing instructions from multiple threads in the same cycle. SMT in fact was introduced as a powerful architecture to superscalar to increase the throughput of the processor. Simultaneous Multithreading is a technique that permits multiple instructions from multiple independent applications or threads to compete limited resources each cycle. While the fetch unit has been identified as one of the major bottlenecks of SMT architecture, several fetch schemes were proposed by prior works to enhance the fetching efficiency and overall performance. In this paper, we propose a novel fetch policy called queue situation identifier (QSI) which counts some kind of long latency instructions of each thread each cycle then properly selects which threads to fetch next cycle. Simulation results show that in best case our fetch policy can achieve 30% on speedup and also can reduce the data cache level 1 miss rate.

Keywords: SMT, QSI, DL1 miss rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1269
4667 Application of “Multiple Risk Communicator“ to the Personal Information Leakage Problem

Authors: Mitsuhiro Taniyama, Yuu Hidaka, Masato Arai, Satoshi Kai, Hiromi Igawa, Hiroshi Yajima, Ryoichi Sasaki

Abstract:

Along with the progress of our information society, various risks are becoming increasingly common, causing multiple social problems. For this reason, risk communications for establishing consensus among stakeholders who have different priorities have become important. However, it is not always easy for the decision makers to agree on measures to reduce risks based on opposing concepts, such as security, privacy and cost. Therefore, we previously developed and proposed the “Multiple Risk Communicator" (MRC) with the following functions: (1) modeling the support role of the risk specialist, (2) an optimization engine, and (3) displaying the computed results. In this paper, MRC program version 1.0 is applied to the personal information leakage problem. The application process and validation of the results are discussed.

Keywords: Decision Making, Personal Information Leakage Problem, Risk Communication, Risk Management

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1608
4666 A Combined Approach of a Sequential Life Testing and an Accelerated Life Testing Applied to a Low-Alloy High Strength Steel Component

Authors: D. I. De Souza, D. R. Fonseca, G. P. Azevedo

Abstract:

Sometimes the amount of time available for testing could be considerably less than the expected lifetime of the component. To overcome such a problem, there is the accelerated life-testing alternative aimed at forcing components to fail by testing them at much higher-than-intended application conditions. These models are known as acceleration models. One possible way to translate test results obtained under accelerated conditions to normal using conditions could be through the application of the “Maxwell Distribution Law.” In this paper we will apply a combined approach of a sequential life testing and an accelerated life testing to a low alloy high-strength steel component used in the construction of overpasses in Brazil. The underlying sampling distribution will be three-parameter Inverse Weibull model. To estimate the three parameters of the Inverse Weibull model we will use a maximum likelihood approach for censored failure data. We will be assuming a linear acceleration condition. To evaluate the accuracy (significance) of the parameter values obtained under normal conditions for the underlying Inverse Weibull model we will apply to the expected normal failure times a sequential life testing using a truncation mechanism. An example will illustrate the application of this procedure.

Keywords: Sequential Life Testing, Accelerated Life Testing, Underlying Three-Parameter Weibull Model, Maximum Likelihood Approach, Hypothesis Testing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1639
4665 A Super-Efficiency Model for Evaluating Efficiency in the Presence of Time Lag Effect

Authors: Yanshuang Zhang, Byungho Jeong

Abstract:

In many cases, there are some time lag between the consumption of inputs and the production of outputs. This time lag effect should be considered in evaluating the performance of organizations. Recently, a couple of DEA models were developed for considering time lag effect in efficiency evaluation of research activities. Multi-periods input(MpI) and Multi-periods output(MpO) models are integrate models to calculate simple efficiency considering time lag effect. However, these models can’t discriminate efficient DMUs because of the nature of basic DEA model in which efficiency scores are limited to ‘1’. That is, efficient DMUs can’t be discriminated because their efficiency scores are same. Thus, this paper suggests a super-efficiency model for efficiency evaluation under the consideration of time lag effect based on the MpO model. A case example using a long term research project is given to compare the suggested model with the MpO model.

Keywords: DEA, Super-efficiency, Time Lag.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1619
4664 Low Voltage High Gain Linear Class AB CMOS OTA with DC Level Input Stage

Authors: Houda Bdiri Gabbouj, Néjib Hassen, Kamel Besbes

Abstract:

This paper presents a low-voltage low-power differential linear transconductor with near rail-to-rail input swing. Based on the current-mirror OTA topology, the proposed transconductor combines the Flipped Voltage Follower (FVF) technique to linearize the transconductor behavior that leads to class- AB linear operation and the virtual transistor technique to lower the effective threshold voltages of the transistors which offers an advantage in terms of low supply requirement. Design of the OTA has been discussed. It operates at supply voltages of about ±0.8V. Simulation results for 0.18μm TSMC CMOS technology show a good input range of 1Vpp with a high DC gain of 81.53dB and a total harmonic distortion of -40dB at 1MHz for an input of 1Vpp. The main aim of this paper is to present and compare new OTA design with high transconductance, which has a potential to be used in low voltage applications.

Keywords: Amplifier class AB, current mirror, flipped voltage follower, low voltage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4526
4663 Constant Factor Approximation Algorithm for p-Median Network Design Problem with Multiple Cable Types

Authors: Chaghoub Soraya, Zhang Xiaoyan

Abstract:

This research presents the first constant approximation algorithm to the p-median network design problem with multiple cable types. This problem was addressed with a single cable type and there is a bifactor approximation algorithm for the problem. To the best of our knowledge, the algorithm proposed in this paper is the first constant approximation algorithm for the p-median network design with multiple cable types. The addressed problem is a combination of two well studied problems which are p-median problem and network design problem. The introduced algorithm is a random sampling approximation algorithm of constant factor which is conceived by using some random sampling techniques form the literature. It is based on a redistribution Lemma from the literature and a steiner tree problem as a subproblem. This algorithm is simple, and it relies on the notions of random sampling and probability. The proposed approach gives an approximation solution with one constant ratio without violating any of the constraints, in contrast to the one proposed in the literature. This paper provides a (21 + 2)-approximation algorithm for the p-median network design problem with multiple cable types using random sampling techniques.

Keywords: Approximation algorithms, buy-at-bulk, combinatorial optimization, network design, p-median.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 595
4662 Empirical Mode Decomposition Based Multiscale Analysis of Physiological Signal

Authors: Young-Seok Choi

Abstract:

We present a refined multiscale Shannon entropy for analyzing electroencephalogram (EEG), which reflects the underlying dynamics of EEG over multiple scales. The rationale behind this method is that neurological signals such as EEG possess distinct dynamics over different spectral modes. To deal with the nonlinear and nonstationary nature of EEG, the recently developed empirical mode decomposition (EMD) is incorporated, allowing a decomposition of EEG into its inherent spectral components, referred to as intrinsic mode functions (IMFs). By calculating the Shannon entropy of IMFs in a time-dependent manner and summing them over adaptive multiple scales, it results in an adaptive subscale entropy measure of EEG. Simulation and experimental results show that the proposed entropy properly reveals the dynamical changes over multiple scales.

Keywords: EEG, subscale entropy, Empirical mode decomposition, Intrinsic mode function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1714
4661 Robust H∞ Filter Design for Uncertain Fuzzy Descriptor Systems: LMI-Based Design

Authors: Wudhichai Assawinchaichote, Sing Kiong Nguang

Abstract:

This paper examines the problem of designing a robust H∞ filter for a class of uncertain fuzzy descriptor systems described by a Takagi-Sugeno (TS) fuzzy model. Based on a linear matrix inequality (LMI) approach, LMI-based sufficient conditions for the uncertain nonlinear descriptor systems to have an H∞ performance are derived. To alleviate the ill-conditioning resulting from the interaction of slow and fast dynamic modes, solutions to the problem are given in terms of linear matrix inequalities which are independent of the singular perturbation ε, when ε is sufficiently small. The proposed approach does not involve the separation of states into slow and fast ones and it can be applied not only to standard, but also to nonstandard uncertain nonlinear descriptor systems. A numerical example is provided to illustrate the design developed in this paper.

Keywords: H∞ control, Takagi-Sugeno (TS) fuzzy model, Linear Matrix Inequalities (LMIs), Descriptor systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1403
4660 Analysis of Synchronous Machine Excitation Systems: Comparative Study

Authors: Shewit Tsegaye, Kinde A. Fante

Abstract:

This paper presents the comparison and performance evaluation of synchronous machine excitation models. The two models, DC1A and AC4A, are among the IEEE standardized model structures for representing the wide variety of synchronous machine excitation systems. The performance evaluation of these models is done using SIMULINK simulation software. The simulation results obtained using transient analysis show that the DC1A excitation system is more reliable and stable than AC4A excitation system.

Keywords: Excitation system, synchronous machines, AC and DC regulators.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3883
4659 A Comparative Analysis of Multiple Criteria Decision Making Analysis Methods for Strategic, Tactical, and Operational Decisions in Military Fighter Aircraft Selection

Authors: C. Ardil

Abstract:

This paper considers a comparative analysis of multiple criteria decision making analysis methods for strategic, tactical, and operational decisions in military fighter aircraft selection for the air force fleet planning. The evaluation criteria governing the decision analysis process are determined from the literature for the three existing military combat aircraft. Military fighter aircraft selection problem is structured using "preference analysis for reference ideal solution (PARIS)” approach in multiple criteria decision analysis (MCDMA). Systematic comparisons were made with existing MCDMA methods (PARIS, and TOPSIS) to verify the stability and accuracy of the results obtained. The proposed integrated MCDMA systematic approach is expected to address the issues encountered in the aircraft selection process. The comparative analysis results show that the proposed method is an effective and accurate tool that can help analysts make better strategic, tactical, and operational decisions.

Keywords: aircraft, military fighter aircraft selection, multiple criteria decision making, multiple criteria decision making analysis, mean weight, entropy weight, MCDMA, PARIS, TOPSIS, Saab Gripen, Dassault Rafale, Eurofighter Typhoon

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 574
4658 Directionally-Sensitive Personal Wearable Radiation Dosimeter

Authors: Hai Huu Le, Paul Junor, Moshi Geso, Graeme O’Keefe

Abstract:

In this paper, the authors propose a personal wearable directionally-sensitive radiation dosimeter using multiple semiconductor CdZnTe detectors. The proposed dosimeter not only measures the real-time dose rate but also provide the direction of the radioactive source. A linear relationship between radioactive source direction and the radiation intensity measured by each detectors is established and an equation to determine the source direction is derived by the authors. The efficiency and accuracy of the proposed dosimeter is verified by simulation using Geant4 package. Results have indicated that in a measurement duration of about 7 seconds, the proposed dosimeter was able to estimate the direction of a 10μCi 137/55Cs radioactive source to within 2 degrees.

Keywords: Dose rate, Geant4 package, radiation detectors, radioactive source direction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1193
4657 Extended Cubic B-spline Interpolation Method Applied to Linear Two-Point Boundary Value Problems

Authors: Nur Nadiah Abd Hamid, Ahmad Abd. Majid, Ahmad Izani Md. Ismail

Abstract:

Linear two-point boundary value problem of order two is solved using extended cubic B-spline interpolation method. There is one free parameters, λ, that control the tension of the solution curve. For some λ, this method produced better results than cubic B-spline interpolation method.

Keywords: two-point boundary value problem, B-spline, extendedcubic B-spline.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2180
4656 Predominance of Teaching Models Used by Math Teachers in Secondary Education

Authors: Verónica Diaz Quezada

Abstract:

This research examines the teaching models used by secondary math teachers when teaching logarithmic, quadratic and exponential functions. For this, descriptive case studies have been carried out on 5 secondary teachers. These teachers have been chosen from 3 scientific-humanistic and technical schools, in Chile. Data have been obtained through non-participant class observation and the application of a questionnaire and a rubric to teachers. According to the results, the didactic model that prevails is the one that starts with an interactive strategy, moves to a more content-based structure, and ends with a reinforcement stage. Nonetheless, there is always influence from teachers, their methods, and the group of students.

Keywords: Teaching models, math teachers, functions, secondary education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 804