Search results for: image segmentation
1021 Binarization of Text Region based on Fuzzy Clustering and Histogram Distribution in Signboards
Authors: Jonghyun Park, Toan Nguyen Dinh, Gueesang Lee
Abstract:
In this paper, we present a novel approach to accurately detect text regions including shop name in signboard images with complex background for mobile system applications. The proposed method is based on the combination of text detection using edge profile and region segmentation using fuzzy c-means method. In the first step, we perform an elaborate canny edge operator to extract all possible object edges. Then, edge profile analysis with vertical and horizontal direction is performed on these edge pixels to detect potential text region existing shop name in a signboard. The edge profile and geometrical characteristics of each object contour are carefully examined to construct candidate text regions and classify the main text region from background. Finally, the fuzzy c-means algorithm is performed to segment and detected binarize text region. Experimental results show that our proposed method is robust in text detection with respect to different character size and color and can provide reliable text binarization result.Keywords: Text detection, edge profile, signboard image, fuzzy clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22261020 The Water Level Detection Algorithm Using the Accumulated Histogram with Band Pass Filter
Authors: Sangbum Park, Namki Lee, Youngjoon Han, Hernsoo Hahn
Abstract:
In this paper, we propose the robust water level detection method based on the accumulated histogram under small changed image which is acquired from water level surveillance camera. In general surveillance system, this is detecting and recognizing invasion from searching area which is in big change on the sequential images. However, in case of a water level detection system, these general surveillance techniques are not suitable due to small change on the water surface. Therefore the algorithm introduces the accumulated histogram which is emphasizing change of water surface in sequential images. Accumulated histogram is based on the current image frame. The histogram is cumulating differences between previous images and current image. But, these differences are also appeared in the land region. The band pass filter is able to remove noises in the accumulated histogram Finally, this algorithm clearly separates water and land regions. After these works, the algorithm converts from the water level value on the image space to the real water level on the real space using calibration table. The detected water level is sent to the host computer with current image. To evaluate the proposed algorithm, we use test images from various situations.Keywords: accumulated histogram, water level detection, band pass filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19991019 The Use of Complex Contourlet Transform on Fusion Scheme
Authors: Dipeng Chen, Qi Li
Abstract:
Image fusion aims to enhance the perception of a scene by combining important information captured by different sensors. Dual-Tree Complex Wavelet (DT-CWT) has been thouroughly investigated for image fusion, since it takes advantages of approximate shift invariance and direction selectivity. But it can only handle limited direction information. To allow a more flexible directional expansion for images, we propose a novel fusion scheme, referred to as complex contourlet transform (CCT). It successfully incorporates directional filter banks (DFB) into DT-CWT. As a result it efficiently deal with images containing contours and textures, whereas it retains the property of shift invariance. Experimental results demonstrated that the method features high quality fusion performance and can facilitate many image processing applications.Keywords: Complex contourlet transform, Complex wavelettransform, Fusion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15941018 Robust Camera Calibration using Discrete Optimization
Authors: Stephan Rupp, Matthias Elter, Michael Breitung, Walter Zink, Christian Küblbeck
Abstract:
Camera calibration is an indispensable step for augmented reality or image guided applications where quantitative information should be derived from the images. Usually, a camera calibration is obtained by taking images of a special calibration object and extracting the image coordinates of projected calibration marks enabling the calculation of the projection from the 3d world coordinates to the 2d image coordinates. Thus such a procedure exhibits typical steps, including feature point localization in the acquired images, camera model fitting, correction of distortion introduced by the optics and finally an optimization of the model-s parameters. In this paper we propose to extend this list by further step concerning the identification of the optimal subset of images yielding the smallest overall calibration error. For this, we present a Monte Carlo based algorithm along with a deterministic extension that automatically determines the images yielding an optimal calibration. Finally, we present results proving that the calibration can be significantly improved by automated image selection.Keywords: Camera Calibration, Discrete Optimization, Monte Carlo Method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18141017 Noise Reduction in Image Sequences using an Effective Fuzzy Algorithm
Authors: Mahmoud Saeidi, Khadijeh Saeidi, Mahmoud Khaleghi
Abstract:
In this paper, we propose a novel spatiotemporal fuzzy based algorithm for noise filtering of image sequences. Our proposed algorithm uses adaptive weights based on a triangular membership functions. In this algorithm median filter is used to suppress noise. Experimental results show when the images are corrupted by highdensity Salt and Pepper noise, our fuzzy based algorithm for noise filtering of image sequences, are much more effective in suppressing noise and preserving edges than the previously reported algorithms such as [1-7]. Indeed, assigned weights to noisy pixels are very adaptive so that they well make use of correlation of pixels. On the other hand, the motion estimation methods are erroneous and in highdensity noise they may degrade the filter performance. Therefore, our proposed fuzzy algorithm doesn-t need any estimation of motion trajectory. The proposed algorithm admissibly removes noise without having any knowledge of Salt and Pepper noise density.Keywords: Image Sequences, Noise Reduction, fuzzy algorithm, triangular membership function
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18801016 Near-Lossless Image Coding based on Orthogonal Polynomials
Authors: Krishnamoorthy R, Rajavijayalakshmi K, Punidha R
Abstract:
In this paper, a near lossless image coding scheme based on Orthogonal Polynomials Transform (OPT) has been presented. The polynomial operators and polynomials basis operators are obtained from set of orthogonal polynomials functions for the proposed transform coding. The image is partitioned into a number of distinct square blocks and the proposed transform coding is applied to each of these individually. After applying the proposed transform coding, the transformed coefficients are rearranged into a sub-band structure. The Embedded Zerotree (EZ) coding algorithm is then employed to quantize the coefficients. The proposed transform is implemented for various block sizes and the performance is compared with existing Discrete Cosine Transform (DCT) transform coding scheme.Keywords: Near-lossless Coding, Orthogonal Polynomials Transform, Embedded Zerotree Coding
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19441015 A Deep Learning Framework for Polarimetric SAR Change Detection Using Capsule Network
Authors: Sanae Attioui, Said Najah
Abstract:
The Earth's surface is constantly changing through forces of nature and human activities. Reliable, accurate, and timely change detection is critical to environmental monitoring, resource management, and planning activities. Recently, interest in deep learning algorithms, especially convolutional neural networks, has increased in the field of image change detection due to their powerful ability to extract multi-level image features automatically. However, these networks are prone to drawbacks that limit their applications, which reside in their inability to capture spatial relationships between image instances, as this necessitates a large amount of training data. As an alternative, Capsule Network has been proposed to overcome these shortcomings. Although its effectiveness in remote sensing image analysis has been experimentally verified, its application in change detection tasks remains very sparse. Motivated by its greater robustness towards improved hierarchical object representation, this study aims to apply a capsule network for PolSAR image Change Detection. The experimental results demonstrate that the proposed change detection method can yield a significantly higher detection rate compared to methods based on convolutional neural networks.
Keywords: Change detection, capsule network, deep network, Convolutional Neural Networks, polarimetric synthetic aperture radar images, PolSAR images.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4981014 CBIR Using Multi-Resolution Transform for Brain Tumour Detection and Stages Identification
Authors: H. Benjamin Fredrick David, R. Balasubramanian, A. Anbarasa Pandian
Abstract:
Image retrieval is the most interesting technique which is being used today in our digital world. CBIR, commonly expanded as Content Based Image Retrieval is an image processing technique which identifies the relevant images and retrieves them based on the patterns that are extracted from the digital images. In this paper, two research works have been presented using CBIR. The first work provides an automated and interactive approach to the analysis of CBIR techniques. CBIR works on the principle of supervised machine learning which involves feature selection followed by training and testing phase applied on a classifier in order to perform prediction. By using feature extraction, the image transforms such as Contourlet, Ridgelet and Shearlet could be utilized to retrieve the texture features from the images. The features extracted are used to train and build a classifier using the classification algorithms such as Naïve Bayes, K-Nearest Neighbour and Multi-class Support Vector Machine. Further the testing phase involves prediction which predicts the new input image using the trained classifier and label them from one of the four classes namely 1- Normal brain, 2- Benign tumour, 3- Malignant tumour and 4- Severe tumour. The second research work includes developing a tool which is used for tumour stage identification using the best feature extraction and classifier identified from the first work. Finally, the tool will be used to predict tumour stage and provide suggestions based on the stage of tumour identified by the system. This paper presents these two approaches which is a contribution to the medical field for giving better retrieval performance and for tumour stages identification.
Keywords: Brain tumour detection, content based image retrieval, classification of tumours, image retrieval.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7731013 6D Posture Estimation of Road Vehicles from Color Images
Authors: Yoshimoto Kurihara, Tad Gonsalves
Abstract:
Currently, in the field of object posture estimation, there is research on estimating the position and angle of an object by storing a 3D model of the object to be estimated in advance in a computer and matching it with the model. However, in this research, we have succeeded in creating a module that is much simpler, smaller in scale, and faster in operation. Our 6D pose estimation model consists of two different networks – a classification network and a regression network. From a single RGB image, the trained model estimates the class of the object in the image, the coordinates of the object, and its rotation angle in 3D space. In addition, we compared the estimation accuracy of each camera position, i.e., the angle from which the object was captured. The highest accuracy was recorded when the camera position was 75°, the accuracy of the classification was about 87.3%, and that of regression was about 98.9%.
Keywords: AlexNet, Deep learning, image recognition, 6D posture estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5891012 A New Technique for Progressive ECG Transmission using Discrete Radon Transform
Authors: Amine Naït-Ali
Abstract:
The aim of this paper is to present a new method which can be used for progressive transmission of electrocardiogram (ECG). The idea consists in transforming any ECG signal to an image, containing one beat in each row. In the first step, the beats are synchronized in order to reduce the high frequencies due to inter-beat transitions. The obtained image is then transformed using a discrete version of Radon Transform (DRT). Hence, transmitting the ECG, leads to transmit the most significant energy of the transformed image in Radon domain. For decoding purpose, the receptor needs to use the inverse Radon Transform as well as the two synchronization frames. The presented protocol can be adapted for lossy to lossless compression systems. In lossy mode we show that the compression ratio can be multiplied by an average factor of 2 for an acceptable quality of reconstructed signal. These results have been obtained on real signals from MIT database.Keywords: Discrete Radon Transform, ECG compression, synchronization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14281011 Morphing Human Faces: Automatic Control Points Selection and Color Transition
Authors: Stephen Karungaru, Minoru Fukumi, Norio Akamatsu
Abstract:
In this paper, we propose a morphing method by which face color images can be freely transformed. The main focus of this work is the transformation of one face image to another. This method is fully automatic in that it can morph two face images by automatically detecting all the control points necessary to perform the morph. A face detection neural network, edge detection and medium filters are employed to detect the face position and features. Five control points, for both the source and target images, are then extracted based on the facial features. Triangulation method is then used to match and warp the source image to the target image using the control points. Finally color interpolation is done using a color Gaussian model that calculates the color for each particular frame depending on the number of frames used. A real coded Genetic algorithm is used in both the image warping and color blending steps to assist in step size decisions and speed up the morphing. This method results in ''very smooth'' morphs and is fast to process.
Keywords: color transition, genetic algorithms morphing, warping
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28231010 Hand Gesture Recognition using Blob Detection for Immersive Projection Display System
Authors: Hasup Lee, Yoshisuke Tateyama, Tetsuro Ogi
Abstract:
We developed a vision interface immersive projection system, CAVE in virtual rea using hand gesture recognition with computer vis background image was subtracted from current webcam and we convert the color space of the imag Then we mask skin regions using skin color range t a noise reduction operation. We made blobs fro gestures were recognized using these blobs. Using recognition, we could implement an effective bothering devices for CAVE. e framework for an reality research field vision techniques. ent image frame age into HSV space. e threshold and apply from the image and ing our hand gesture e interface without
Keywords: CAVE, Computer Vision, Ges Virtual Reality esture Recognition,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27531009 Optimal Image Representation for Linear Canonical Transform Multiplexing
Authors: Navdeep Goel, Salvador Gabarda
Abstract:
Digital images are widely used in computer applications. To store or transmit the uncompressed images requires considerable storage capacity and transmission bandwidth. Image compression is a means to perform transmission or storage of visual data in the most economical way. This paper explains about how images can be encoded to be transmitted in a multiplexing time-frequency domain channel. Multiplexing involves packing signals together whose representations are compact in the working domain. In order to optimize transmission resources each 4 × 4 pixel block of the image is transformed by a suitable polynomial approximation, into a minimal number of coefficients. Less than 4 × 4 coefficients in one block spares a significant amount of transmitted information, but some information is lost. Different approximations for image transformation have been evaluated as polynomial representation (Vandermonde matrix), least squares + gradient descent, 1-D Chebyshev polynomials, 2-D Chebyshev polynomials or singular value decomposition (SVD). Results have been compared in terms of nominal compression rate (NCR), compression ratio (CR) and peak signal-to-noise ratio (PSNR) in order to minimize the error function defined as the difference between the original pixel gray levels and the approximated polynomial output. Polynomial coefficients have been later encoded and handled for generating chirps in a target rate of about two chirps per 4 × 4 pixel block and then submitted to a transmission multiplexing operation in the time-frequency domain.Keywords: Chirp signals, Image multiplexing, Image transformation, Linear canonical transform, Polynomial approximation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21291008 Shadow Imaging Study of Z-Pinch Dynamic Hohlraum
Authors: Chen Faxin, Feng Jinghua, Yang Jianlun, Li Linbo, Zhou Lin
Abstract:
In order to obtaining the dynamic evolution image of Tungsten array for foam padding, and to research the form of interaction between Tungsten plasma and foam column, a shadow imaging system of four-frame ultraviolet probe laser (266nm)has been designed on 1MA pulse power device. The time resolution of the system is 2.5ns, and static space resolution is superior to 70μm. The radial shadowgraphy image reveals the whole process from the melting and expansion of solid wire to the interaction of the precursor plasma and the foam, from the pinch to rebound inflation. The image shows the continuous interaction of Tungsten plasma and foam in a form of “Raining" within a time of about 50ns, the plasma shell structure has not been found in the whole period of pinch. The quantitative analysis indicates the minimum pinching speed of the foam column is 1.0×106cm/s, and maximum pinching speed is 6.0×106cm/s, and the axial stagnation diameter is approx 1mm.
Keywords: Dynamic hohlraum, Shadowgraphy image, Foam evolution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19181007 Spatial Objects Shaping with High-Pressure Abrasive Water Jet Controlled By Virtual Image Luminance
Authors: P. J. Borkowski, J. A. Borkowski
Abstract:
The paper presents a novel method for the 3D shaping of different materials using a high-pressure abrasive water jet and a flat target image. For steering movement process of the jet a principle similar to raster image way of record and readout was used. However, respective colors of pixel of such a bitmap are connected with adequate jet feed rate that causes erosion of material with adequate depth. Thanks to that innovation, one can observe spatial imaging of the object. Theoretical basis as well as spatial model of material shaping and experimental stand including steering program are presented in. There are also presented methodic and some experimental erosion results as well as practical example of object-s bas-relief made of metal.Keywords: High-pressure, abrasive, water jet, material shaping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14261006 Comparison of Data Reduction Algorithms for Image-Based Point Cloud Derived Digital Terrain Models
Authors: M. Uysal, M. Yilmaz, I. Tiryakioğlu
Abstract:
Digital Terrain Model (DTM) is a digital numerical representation of the Earth's surface. DTMs have been applied to a diverse field of tasks, such as urban planning, military, glacier mapping, disaster management. In the expression of the Earth' surface as a mathematical model, an infinite number of point measurements are needed. Because of the impossibility of this case, the points at regular intervals are measured to characterize the Earth's surface and DTM of the Earth is generated. Hitherto, the classical measurement techniques and photogrammetry method have widespread use in the construction of DTM. At present, RADAR, LiDAR, and stereo satellite images are also used for the construction of DTM. In recent years, especially because of its superiorities, Airborne Light Detection and Ranging (LiDAR) has an increased use in DTM applications. A 3D point cloud is created with LiDAR technology by obtaining numerous point data. However recently, by the development in image mapping methods, the use of unmanned aerial vehicles (UAV) for photogrammetric data acquisition has increased DTM generation from image-based point cloud. The accuracy of the DTM depends on various factors such as data collection method, the distribution of elevation points, the point density, properties of the surface and interpolation methods. In this study, the random data reduction method is compared for DTMs generated from image based point cloud data. The original image based point cloud data set (100%) is reduced to a series of subsets by using random algorithm, representing the 75, 50, 25 and 5% of the original image based point cloud data set. Over the ANS campus of Afyon Kocatepe University as the test area, DTM constructed from the original image based point cloud data set is compared with DTMs interpolated from reduced data sets by Kriging interpolation method. The results show that the random data reduction method can be used to reduce the image based point cloud datasets to 50% density level while still maintaining the quality of DTM.
Keywords: DTM, unmanned aerial vehicle, UAV, random, Kriging.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8101005 Digital Sites- Performative Views
Authors: Gavin Perin, Linda Matthews
Abstract:
Webcam systems now function as the new privileged vantage points from which to view the city. This transformation of CCTV technology from surveillance to promotional tool is significant because its'scopic regime' presents, back to the public, a new virtual 'site' that sits alongside its real-time counterpart. Significantly, thisraw 'image' data can, in fact,be co-optedand processed so as to disrupt their original purpose. This paper will demonstrate this disruptive capacity through an architectural project. It will reveal how the adaption the webcam image offers a technical springboard by which to initiate alternate urban form making decisions and subvert the disciplinary reliance on the 'flat' orthographic plan. In so doing, the paper will show how this 'digital material' exceeds the imagistic function of the image; shiftingit from being a vehicle of signification to a site of affect.Keywords: Surveillance, virtual, scopic, additive
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12851004 A Stable Pose Estimation Method for the Biped Robot using Image Information
Authors: Sangbum Park, Youngjoon Han
Abstract:
This paper proposes a balance control scheme for a biped robot to trace an arbitrary path using image information. While moving, it estimates the zero moment point(ZMP) of the biped robot in the next step using a Kalman filter and renders an appropriate balanced pose of the robot. The ZMP can be calculated from the robot's pose, which is measured from the reference object image acquired by a CCD camera on the robot's head. For simplifying the kinematical model, the coordinates systems of individual joints of each leg are aligned and the robot motion is approximated as an inverted pendulum so that a simple linear dynamics, 3D-LIPM(3D-Linear Inverted Pendulum Mode) can be applied. The efficiency of the proposed algorithm has been proven by the experiments performed on unknown trajectory.
Keywords: Biped robot, Zero moment point, Balance control, Kalman filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14051003 Image Haze Removal Using Scene Depth Based Spatially Varying Atmospheric Light in Haar Lifting Wavelet Domain
Authors: Prabh Preet Singh, Harpreet Kaur
Abstract:
This paper presents a method for single image dehazing based on dark channel prior (DCP). The property that the intensity of the dark channel gives an approximate thickness of the haze is used to estimate the transmission and atmospheric light. Instead of constant atmospheric light, the proposed method employs scene depth to estimate spatially varying atmospheric light as it truly occurs in nature. Haze imaging model together with the soft matting method has been used in this work to produce high quality haze free image. Experimental results demonstrate that the proposed approach produces better results than the classic DCP approach as color fidelity and contrast of haze free image are improved and no over-saturation in the sky region is observed. Further, lifting Haar wavelet transform is employed to reduce overall execution time by a factor of two to three as compared to the conventional approach.
Keywords: Depth based atmospheric light, dark channel prior, lifting wavelet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5531002 Haptics Enabled of ine AFM Image Analysis
Authors: Bhatti A., Nahavandi S., Hossny M.
Abstract:
Current advancements in nanotechnology are dependent on the capabilities that can enable nano-scientists to extend their eyes and hands into the nano-world. For this purpose, a haptics (devices capable of recreating tactile or force sensations) based system for AFM (Atomic Force Microscope) is proposed. The system enables the nano-scientists to touch and feel the sample surfaces, viewed through AFM, in order to provide them with better understanding of the physical properties of the surface, such as roughness, stiffness and shape of molecular architecture. At this stage, the proposed work uses of ine images produced using AFM and perform image analysis to create virtual surfaces suitable for haptics force analysis. The research work is in the process of extension from of ine to online process where interaction will be done directly on the material surface for realistic analysis.
Keywords: Haptics, AFM, force feedback, image analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15721001 Speckle Reducing Contourlet Transform for Medical Ultrasound Images
Authors: P.S. Hiremath, Prema T. Akkasaligar, Sharan Badiger
Abstract:
Speckle noise affects all coherent imaging systems including medical ultrasound. In medical images, noise suppression is a particularly delicate and difficult task. A tradeoff between noise reduction and the preservation of actual image features has to be made in a way that enhances the diagnostically relevant image content. Even though wavelets have been extensively used for denoising speckle images, we have found that denoising using contourlets gives much better performance in terms of SNR, PSNR, MSE, variance and correlation coefficient. The objective of the paper is to determine the number of levels of Laplacian pyramidal decomposition, the number of directional decompositions to perform on each pyramidal level and thresholding schemes which yields optimal despeckling of medical ultrasound images, in particular. The proposed method consists of the log transformed original ultrasound image being subjected to contourlet transform, to obtain contourlet coefficients. The transformed image is denoised by applying thresholding techniques on individual band pass sub bands using a Bayes shrinkage rule. We quantify the achieved performance improvement.Keywords: Contourlet transform, Despeckling, Pyramidal directionalfilter bank, Thresholding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24461000 Statistical Texture Analysis
Authors: G. N. Srinivasan, G. Shobha
Abstract:
This paper presents an overview of the methodologies and algorithms for statistical texture analysis of 2D images. Methods for digital-image texture analysis are reviewed based on available literature and research work either carried out or supervised by the authors.Keywords: Image Texture, Texture Analysis, Statistical Approaches, Structural approaches, spectral approaches, Morphological approaches, Fractals, Fourier Transforms, Gabor Filters, Wavelet transforms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 937999 Image Processing Using Color and Object Information for Wireless Capsule Endoscopy
Authors: Jin-Hee Park, Yong-Gyu Lee, Gilwon Yoon
Abstract:
Wireless capsule endoscopy provides real-time images in the digestive tract. Capsule images are usually low resolution and are diverse images due to travel through various regions of human body. Color information has been a primary reference in predicting abnormalities such as bleeding. Often color is not sufficient for this purpose. In this study, we took morphological shapes into account as additional, but important criterion. First, we processed gastric images in order to indentify various objects in the image. Then, we analyzed color information in the object. In this way, we could remove unnecessary information and increase the accuracy. Compared to our previous investigations, we could handle images of various degrees of brightness and improve our diagnostic algorithm.
Keywords: Capsule Endoscopy, HSV model, Image processing, Object Identification, Color Separation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2053998 3D Face Recognition Using Modified PCA Methods
Authors: Omid Gervei, Ahmad Ayatollahi, Navid Gervei
Abstract:
In this paper we present an approach for 3D face recognition based on extracting principal components of range images by utilizing modified PCA methods namely 2DPCA and bidirectional 2DPCA also known as (2D) 2 PCA.A preprocessing stage was implemented on the images to smooth them using median and Gaussian filtering. In the normalization stage we locate the nose tip to lay it at the center of images then crop each image to a standard size of 100*100. In the face recognition stage we extract the principal component of each image using both 2DPCA and (2D) 2 PCA. Finally, we use Euclidean distance to measure the minimum distance between a given test image to the training images in the database. We also compare the result of using both methods. The best result achieved by experiments on a public face database shows that 83.3 percent is the rate of face recognition for a random facial expression.Keywords: 3D face recognition, 2DPCA, (2D) 2 PCA, Rangeimage
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3066997 Manufacturing Process and Cost Estimation through Process Detection by Applying Image Processing Technique
Authors: Chalakorn Chitsaart, Suchada Rianmora, Noppawat Vongpiyasatit
Abstract:
In order to reduce the transportation time and cost for direct interface between customer and manufacturer, the image processing technique has been introduced in this research where designing part and defining manufacturing process can be performed quickly. A3D virtual model is directly generated from a series of multi-view images of an object, and it can be modified, analyzed, and improved the structure, or function for the further implementations, such as computer-aided manufacturing (CAM). To estimate and quote the production cost, the user-friendly platform has been developed in this research where the appropriate manufacturing parameters and process detections have been identified and planned by CAM simulation.
Keywords: Image processing technique, Feature detections, Surface registrations, Capturing multi-view images, Production costs, and Manufacturing processes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1975996 FPGA Hardware Implementation and Evaluation of a Micro-Network Architecture for Multi-Core Systems
Authors: Yahia Salah, Med Lassaad Kaddachi, Rached Tourki
Abstract:
This paper presents the design, implementation and evaluation of a micro-network, or Network-on-Chip (NoC), based on a generic pipeline router architecture. The router is designed to efficiently support traffic generated by multimedia applications on embedded multi-core systems. It employs a simplest routing mechanism and implements the round-robin scheduling strategy to resolve output port contentions and minimize latency. A virtual channel flow control is applied to avoid the head-of-line blocking problem and enhance performance in the NoC. The hardware design of the router architecture has been implemented at the register transfer level; its functionality is evaluated in the case of the two dimensional Mesh/Torus topology, and performance results are derived from ModelSim simulator and Xilinx ISE 9.2i synthesis tool. An example of a multi-core image processing system utilizing the NoC structure has been implemented and validated to demonstrate the capability of the proposed micro-network architecture. To reduce complexity of the image compression and decompression architecture, the system use image processing algorithm based on classical discrete cosine transform with an efficient zonal processing approach. The experimental results have confirmed that both the proposed image compression scheme and NoC architecture can achieve a reasonable image quality with lower processing time.
Keywords: Generic Pipeline Network-on-Chip Router Architecture, JPEG Image Compression, FPGA Hardware Implementation, Performance Evaluation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3097995 Quantitative Quality Assessment of Microscopic Image Mosaicing
Authors: Alessandro Bevilacqua, Alessandro Gherardi, Filippo Piccinini
Abstract:
The mosaicing technique has been employed in more and more application fields, from entertainment to scientific ones. In the latter case, often the final evaluation is still left to human beings, that assess visually the quality of the mosaic. Many times, a lack of objective measurements in microscopic mosaicing may prevent the mosaic from being used as a starting image for further analysis. In this work we analyze three different metrics and indexes, in the domain of signal analysis, image analysis and visual quality, to measure the quality of different aspects of the mosaicing procedure, such as registration errors and visual quality. As the case study we consider the mosaicing algorithm we developed. The experiments have been carried out by considering mosaics with very different features: histological samples, that are made of detailed and contrasted images, and live stem cells, that show a very low contrast and low detail levels.
Keywords: Mosaicing, quality assessment, microscopy, stem cells.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2249994 Opponent Color and Curvelet Transform Based Image Retrieval System Using Genetic Algorithm
Authors: Yesubai Rubavathi Charles, Ravi Ramraj
Abstract:
In order to retrieve images efficiently from a large database, a unique method integrating color and texture features using genetic programming has been proposed. Opponent color histogram which gives shadow, shade, and light intensity invariant property is employed in the proposed framework for extracting color features. For texture feature extraction, fast discrete curvelet transform which captures more orientation information at different scales is incorporated to represent curved like edges. The recent scenario in the issues of image retrieval is to reduce the semantic gap between user’s preference and low level features. To address this concern, genetic algorithm combined with relevance feedback is embedded to reduce semantic gap and retrieve user’s preference images. Extensive and comparative experiments have been conducted to evaluate proposed framework for content based image retrieval on two databases, i.e., COIL-100 and Corel-1000. Experimental results clearly show that the proposed system surpassed other existing systems in terms of precision and recall. The proposed work achieves highest performance with average precision of 88.2% on COIL-100 and 76.3% on Corel, the average recall of 69.9% on COIL and 76.3% on Corel. Thus, the experimental results confirm that the proposed content based image retrieval system architecture attains better solution for image retrieval.Keywords: Content based image retrieval, Curvelet transform, Genetic algorithm, Opponent color histogram, Relevance feedback.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1822993 Haptics Enabled Offline AFM Image Analysis
Authors: Bhatti A., Nahavandi S., Hossny M.
Abstract:
Current advancements in nanotechnology are dependent on the capabilities that can enable nano-scientists to extend their eyes and hands into the nano-world. For this purpose, a haptics (devices capable of recreating tactile or force sensations) based system for AFM (Atomic Force Microscope) is proposed. The system enables the nano-scientists to touch and feel the sample surfaces, viewed through AFM, in order to provide them with better understanding of the physical properties of the surface, such as roughness, stiffness and shape of molecular architecture. At this stage, the proposed work uses of ine images produced using AFM and perform image analysis to create virtual surfaces suitable for haptics force analysis. The research work is in the process of extension from of ine to online process where interaction will be done directly on the material surface for realistic analysis.Keywords: Haptics, AFM, force feedback, image analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1507992 Content-Based Color Image Retrieval Based On 2-D Histogram and Statistical Moments
Authors: Khalid Elasnaoui, Brahim Aksasse, Mohammed Ouanan
Abstract:
In this paper, we are interested in the problem of finding similar images in a large database. For this purpose we propose a new algorithm based on a combination of the 2-D histogram intersection in the HSV space and statistical moments. The proposed histogram is based on a 3x3 window and not only on the intensity of the pixel. This approach overcome the drawback of the conventional 1-D histogram which is ignoring the spatial distribution of pixels in the image, while the statistical moments are used to escape the effects of the discretisation of the color space which is intrinsic to the use of histograms. We compare the performance of our new algorithm to various methods of the state of the art and we show that it has several advantages. It is fast, consumes little memory and requires no learning. To validate our results, we apply this algorithm to search for similar images in different image databases.Keywords: 2-D histogram, Statistical moments, Indexing, Similarity distance, Histograms intersection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1931