Search results for: classification of big data actors
7523 The Benefits of End-To-End Integrated Planning from the Mine to Client Supply for Minimizing Penalties
Authors: G. Martino, F. Silva, E. Marchal
Abstract:
The control over delivered iron ore blend characteristics is one of the most important aspects of the mining business. The iron ore price is a function of its composition, which is the outcome of the beneficiation process. So, end-to-end integrated planning of mine operations can reduce risks of penalties on the iron ore price. In a standard iron mining company, the production chain is composed of mining, ore beneficiation, and client supply. When mine planning and client supply decisions are made uncoordinated, the beneficiation plant struggles to deliver the best blend possible. Technological improvements in several fields allowed bridging the gap between departments and boosting integrated decision-making processes. Clusterization and classification algorithms over historical production data generate reasonable previsions for quality and volume of iron ore produced for each pile of run-of-mine (ROM) processed. Mathematical modeling can use those deterministic relations to propose iron ore blends that better-fit specifications within a delivery schedule. Additionally, a model capable of representing the whole production chain can clearly compare the overall impact of different decisions in the process. This study shows how flexibilization combined with a planning optimization model between the mine and the ore beneficiation processes can reduce risks of out of specification deliveries. The model capabilities are illustrated on a hypothetical iron ore mine with magnetic separation process. Finally, this study shows ways of cost reduction or profit increase by optimizing process indicators across the production chain and integrating the different plannings with the sales decisions.Keywords: Clusterization and classification algorithms, integrated planning, optimization, mathematical modeling, penalty minimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6447522 Aliveness Detection of Fingerprints using Multiple Static Features
Authors: Heeseung Choi, Raechoong Kang, Kyungtaek Choi, Jaihie Kim
Abstract:
Fake finger submission attack is a major problem in fingerprint recognition systems. In this paper, we introduce an aliveness detection method based on multiple static features, which derived from a single fingerprint image. The static features are comprised of individual pore spacing, residual noise and several first order statistics. Specifically, correlation filter is adopted to address individual pore spacing. The multiple static features are useful to reflect the physiological and statistical characteristics of live and fake fingerprint. The classification can be made by calculating the liveness scores from each feature and fusing the scores through a classifier. In our dataset, we compare nine classifiers and the best classification rate at 85% is attained by using a Reduced Multivariate Polynomial classifier. Our approach is faster and more convenient for aliveness check for field applications.Keywords: Aliveness detection, Fingerprint recognition, individual pore spacing, multiple static features, residual noise.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19247521 Profit and Nonprofit Sports Clubs: Financial and Organizational Comparison in Poland
Authors: Wojciech B. Cieśliński, Igor Perechuda
Abstract:
The paper identifies the features of Polish sports clubs in the particular organizational forms: profit and nonprofit. Identification and description of these features is carried out in terms of financial efficiency of the given organizational form. Under the terms of the efficiency the research allows you to specify the advantages of particular organizational sports club form and the following limitations. Paper considers features of sports clubs in range of Polish conditions as legal regulations. The sources of the functioning efficiency of sports clubs may lie in the organizational forms in which they operate. Each of the available forms can be considered either a for-profit or nonprofit enterprise. Depending on this classification there are different capabilities of increasing organizational and financial efficiency of a given sports club. Authors start with general classification and difference between for-profit and non-profit sport clubs. Next identifies specific financial and organizational conditions of both organizational form and then show examples of mixed activity forms and their efficiency effect.Keywords: Financial efficiency, for-profit, non-profit, sports club.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20387520 Data Preprocessing for Supervised Leaning
Authors: S. B. Kotsiantis, D. Kanellopoulos, P. E. Pintelas
Abstract:
Many factors affect the success of Machine Learning (ML) on a given task. The representation and quality of the instance data is first and foremost. If there is much irrelevant and redundant information present or noisy and unreliable data, then knowledge discovery during the training phase is more difficult. It is well known that data preparation and filtering steps take considerable amount of processing time in ML problems. Data pre-processing includes data cleaning, normalization, transformation, feature extraction and selection, etc. The product of data pre-processing is the final training set. It would be nice if a single sequence of data pre-processing algorithms had the best performance for each data set but this is not happened. Thus, we present the most well know algorithms for each step of data pre-processing so that one achieves the best performance for their data set.Keywords: Data mining, feature selection, data cleaning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 60877519 Unified Method to Block Pornographic Images in Websites
Authors: Sakthi Priya Balaji R., Vijayendar G.
Abstract:
This paper proposes a technique to block adult images displayed in websites. The filter is designed so as to perform even in exceptional cases such as, where face detection is not possible or improper face visibility. This is achieved by using an alternative phase to extract the MFC (Most Frequent Color) from the Human Body regions estimated using a biometric of anthropometric distances between fixed rigidly connected body locations. The logical results generated can be protected from overriding by a firewall or intrusion, by encrypting the result in a SSH data packet.
Keywords: Face detection, characteristics extraction andclassification, Component based shape analysis and classification, open source SSH V2 protocol
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13957518 Real-Time Specific Weed Recognition System Using Histogram Analysis
Authors: Irshad Ahmad, Abdul Muhamin Naeem, Muhammad Islam
Abstract:
Information on weed distribution within the field is necessary to implement spatially variable herbicide application. Since hand labor is costly, an automated weed control system could be feasible. This paper deals with the development of an algorithm for real time specific weed recognition system based on Histogram Analysis of an image that is used for the weed classification. This algorithm is specifically developed to classify images into broad and narrow class for real-time selective herbicide application. The developed system has been tested on weeds in the lab, which have shown that the system to be very effectiveness in weed identification. Further the results show a very reliable performance on images of weeds taken under varying field conditions. The analysis of the results shows over 95 percent classification accuracy over 140 sample images (broad and narrow) with 70 samples from each category of weeds.Keywords: Image Processing, real-time recognition, Weeddetection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17717517 Establishment of Air Quality Zones in Italy
Authors: M. G. Dirodi, G. Gugliotta, C. Leonardi
Abstract:
Member States shall establish zones and agglomerations throughout their territory to assess and manage air quality in order to comply with European directives. In Italy decree 155/2010, transposing Directive 2008/50/EC on ambient air quality and cleaner air for Europe, merged into a single act the previous provisions on ambient air quality assessment and management, including those resulting from the implementation of Directive 2004/107/EC relating to arsenic, cadmium, nickel, mercury and polycyclic aromatic hydrocarbons in ambient air. Decree 155/2010 introduced stricter rules for identifying zones on the basis of the characteristics of the territory in spite of considering pollution levels, as it was in the past. The implementation of such new criteria has reduced the great variability of the previous zoning, leading to a significant reduction of the total number of zones and to a complete and uniform ambient air quality assessment and management throughout the Country. The present document is related to the new zones definition in Italy according to Decree 155/2010. In particular the paper contains the description and the analysis of the outcome of zoning and classification.
Keywords: Zones, agglomerations, air quality assessment, classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21287516 Comparison of Machine Learning Techniques for Single Imputation on Audiograms
Authors: Sarah Beaver, Renee Bryce
Abstract:
Audiograms detect hearing impairment, but missing values pose problems. This work explores imputations in an attempt to improve accuracy. This work implements Linear Regression, Lasso, Linear Support Vector Regression, Bayesian Ridge, K Nearest Neighbors (KNN), and Random Forest machine learning techniques to impute audiogram frequencies ranging from 125 Hz to 8000 Hz. The data contain patients who had or were candidates for cochlear implants. Accuracy is compared across two different Nested Cross-Validation k values. Over 4000 audiograms were used from 800 unique patients. Additionally, training on data combines and compares left and right ear audiograms versus single ear side audiograms. The accuracy achieved using Root Mean Square Error (RMSE) values for the best models for Random Forest ranges from 4.74 to 6.37. The R2 values for the best models for Random Forest ranges from .91 to .96. The accuracy achieved using RMSE values for the best models for KNN ranges from 5.00 to 7.72. The R2 values for the best models for KNN ranges from .89 to .95. The best imputation models received R2 between .89 to .96 and RMSE values less than 8dB. We also show that the accuracy of classification predictive models performed better with our imputation models versus constant imputations by a two percent increase.
Keywords: Machine Learning, audiograms, data imputations, single imputations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1567515 Justification and Classification of Issues for the Selection and Implementation of Advanced Manufacturing Technologies
Authors: Zahra Banakar, Farzad Tahriri
Abstract:
It has often been said that the strength of any country resides in the strength of its industrial sector, and Progress in industrial society has been accomplished by the creation of new technologies. Developments have been facilitated by the increasing availability of advanced manufacturing technology (AMT), in addition the implementation of advanced manufacturing technology (AMT) requires careful planning at all levels of the organization to ensure that the implementation will achieve the intended goals. Justification and implementation of advanced manufacturing technology (AMT) involves decisions that are crucial for the practitioners regarding the survival of business in the present days of uncertain manufacturing world. This paper assists the industrial managers to consider all the important criteria for success AMT implementation, when purchasing new technology. Concurrently, this paper classifies the tangible benefits of a technology that are evaluated by addressing both cost and time dimensions, and the intangible benefits are evaluated by addressing technological, strategic, social and human issues to identify and create awareness of the essential elements in the AMT implementation process and identify the necessary actions before implementing AMT.Keywords: Advanced Manufacturing Technology (AMT), Justification and Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25287514 The Integrated Management of Health Care Strategies and Differential Diagnosis by Expert System Technology: A Single-Dimensional Approach
Authors: A. B. Adehor, P. R. Burrell
Abstract:
The Integrated Management of Child illnesses (IMCI) and the surveillance Health Information Systems (HIS) are related strategies that are designed to manage child illnesses and community practices of diseases. However, both strategies do not function well together because of classification incompatibilities and, as such, are difficult to use by health care personnel in rural areas where a majority of people lack the basic knowledge of interpreting disease classification from these methods. This paper discusses a single approach on how a stand-alone expert system can be used as a prompt diagnostic tool for all cases of illnesses presented. The system combines the action-oriented IMCI and the disease-oriented HIS approaches to diagnose malaria and typhoid fever in the rural areas of the Niger-delta region.
Keywords: Differential diagnosis, Health Information System(HIS), Integrated Management of Child Illnesses (IMCI), Malaria andTyphoid fever.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18677513 Multi-Sensor Target Tracking Using Ensemble Learning
Authors: Bhekisipho Twala, Mantepu Masetshaba, Ramapulana Nkoana
Abstract:
Multiple classifier systems combine several individual classifiers to deliver a final classification decision. However, an increasingly controversial question is whether such systems can outperform the single best classifier, and if so, what form of multiple classifiers system yields the most significant benefit. Also, multi-target tracking detection using multiple sensors is an important research field in mobile techniques and military applications. In this paper, several multiple classifiers systems are evaluated in terms of their ability to predict a system’s failure or success for multi-sensor target tracking tasks. The Bristol Eden project dataset is utilised for this task. Experimental and simulation results show that the human activity identification system can fulfil requirements of target tracking due to improved sensors classification performances with multiple classifier systems constructed using boosting achieving higher accuracy rates.
Keywords: Single classifier, machine learning, ensemble learning, multi-sensor target tracking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5977512 Preparing Data for Calibration of Mechanistic-Empirical Pavement Design Guide in Central Saudi Arabia
Authors: Abdulraaof H. Alqaili, Hamad A. Alsoliman
Abstract:
Through progress in pavement design developments, a pavement design method was developed, which is titled the Mechanistic Empirical Pavement Design Guide (MEPDG). Nowadays, the evolution in roads network and highways is observed in Saudi Arabia as a result of increasing in traffic volume. Therefore, the MEPDG currently is implemented for flexible pavement design by the Saudi Ministry of Transportation. Implementation of MEPDG for local pavement design requires the calibration of distress models under the local conditions (traffic, climate, and materials). This paper aims to prepare data for calibration of MEPDG in Central Saudi Arabia. Thus, the first goal is data collection for the design of flexible pavement from the local conditions of the Riyadh region. Since, the modifying of collected data to input data is needed; the main goal of this paper is the analysis of collected data. The data analysis in this paper includes processing each: Trucks Classification, Traffic Growth Factor, Annual Average Daily Truck Traffic (AADTT), Monthly Adjustment Factors (MAFi), Vehicle Class Distribution (VCD), Truck Hourly Distribution Factors, Axle Load Distribution Factors (ALDF), Number of axle types (single, tandem, and tridem) per truck class, cloud cover percent, and road sections selected for the local calibration. Detailed descriptions of input parameters are explained in this paper, which leads to providing of an approach for successful implementation of MEPDG. Local calibration of MEPDG to the conditions of Riyadh region can be performed based on the findings in this paper.
Keywords: Mechanistic-empirical pavement design guide, traffic characteristics, materials properties, climate, Riyadh.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12197511 Designing a Framework for Network Security Protection
Authors: Eric P. Jiang
Abstract:
As the Internet continues to grow at a rapid pace as the primary medium for communications and commerce and as telecommunication networks and systems continue to expand their global reach, digital information has become the most popular and important information resource and our dependence upon the underlying cyber infrastructure has been increasing significantly. Unfortunately, as our dependency has grown, so has the threat to the cyber infrastructure from spammers, attackers and criminal enterprises. In this paper, we propose a new machine learning based network intrusion detection framework for cyber security. The detection process of the framework consists of two stages: model construction and intrusion detection. In the model construction stage, a semi-supervised machine learning algorithm is applied to a collected set of network audit data to generate a profile of normal network behavior and in the intrusion detection stage, input network events are analyzed and compared with the patterns gathered in the profile, and some of them are then flagged as anomalies should these events are sufficiently far from the expected normal behavior. The proposed framework is particularly applicable to the situations where there is only a small amount of labeled network training data available, which is very typical in real world network environments.Keywords: classification, data analysis and mining, network intrusion detection, semi-supervised learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17947510 Applications of Big Data in Education
Authors: Faisal Kalota
Abstract:
Big Data and analytics have gained a huge momentum in recent years. Big Data feeds into the field of Learning Analytics (LA) that may allow academic institutions to better understand the learners’ needs and proactively address them. Hence, it is important to have an understanding of Big Data and its applications. The purpose of this descriptive paper is to provide an overview of Big Data, the technologies used in Big Data, and some of the applications of Big Data in education. Additionally, it discusses some of the concerns related to Big Data and current research trends. While Big Data can provide big benefits, it is important that institutions understand their own needs, infrastructure, resources, and limitation before jumping on the Big Data bandwagon.Keywords: Analytics, Big Data in Education, Hadoop, Learning Analytics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 48727509 Research of Data Cleaning Methods Based on Dependency Rules
Authors: Yang Bao, Shi Wei Deng, Wang Qun Lin
Abstract:
This paper introduces the concept and principle of data cleaning, analyzes the types and causes of dirty data, and proposes several key steps of typical cleaning process, puts forward a well scalability and versatility data cleaning framework, in view of data with attribute dependency relation, designs several of violation data discovery algorithms by formal formula, which can obtain inconsistent data to all target columns with condition attribute dependent no matter data is structured (SQL) or unstructured (NoSql), and gives 6 data cleaning methods based on these algorithms.Keywords: Data cleaning, dependency rules, violation data discovery, data repair.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26107508 Unit Selection Algorithm Using Bi-grams Model For Corpus-Based Speech Synthesis
Authors: Mohamed Ali KAMMOUN, Ahmed Ben HAMIDA
Abstract:
In this paper, we present a novel statistical approach to corpus-based speech synthesis. Classically, phonetic information is defined and considered as acoustic reference to be respected. In this way, many studies were elaborated for acoustical unit classification. This type of classification allows separating units according to their symbolic characteristics. Indeed, target cost and concatenation cost were classically defined for unit selection. In Corpus-Based Speech Synthesis System, when using large text corpora, cost functions were limited to a juxtaposition of symbolic criteria and the acoustic information of units is not exploited in the definition of the target cost. In this manuscript, we token in our consideration the unit phonetic information corresponding to acoustic information. This would be realized by defining a probabilistic linguistic Bi-grams model basically used for unit selection. The selected units would be extracted from the English TIMIT corpora.Keywords: Unit selection, Corpus-based Speech Synthesis, Bigram model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14407507 Functional Near Infrared Spectroscope for Cognition Brain Tasks by Wavelets Analysis and Neural Networks
Authors: Truong Quang Dang Khoa, Masahiro Nakagawa
Abstract:
Brain Computer Interface (BCI) has been recently increased in research. Functional Near Infrared Spectroscope (fNIRs) is one the latest technologies which utilize light in the near-infrared range to determine brain activities. Because near infrared technology allows design of safe, portable, wearable, non-invasive and wireless qualities monitoring systems, fNIRs monitoring of brain hemodynamics can be value in helping to understand brain tasks. In this paper, we present results of fNIRs signal analysis indicating that there exist distinct patterns of hemodynamic responses which recognize brain tasks toward developing a BCI. We applied two different mathematics tools separately, Wavelets analysis for preprocessing as signal filters and feature extractions and Neural networks for cognition brain tasks as a classification module. We also discuss and compare with other methods while our proposals perform better with an average accuracy of 99.9% for classification.Keywords: functional near infrared spectroscope (fNIRs), braincomputer interface (BCI), wavelets, neural networks, brain activity, neuroimaging.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20367506 Image Spam Detection Using Color Features and K-Nearest Neighbor Classification
Authors: T. Kumaresan, S. Sanjushree, C. Palanisamy
Abstract:
Image spam is a kind of email spam where the spam text is embedded with an image. It is a new spamming technique being used by spammers to send their messages to bulk of internet users. Spam email has become a big problem in the lives of internet users, causing time consumption and economic losses. The main objective of this paper is to detect the image spam by using histogram properties of an image. Though there are many techniques to automatically detect and avoid this problem, spammers employing new tricks to bypass those techniques, as a result those techniques are inefficient to detect the spam mails. In this paper we have proposed a new method to detect the image spam. Here the image features are extracted by using RGB histogram, HSV histogram and combination of both RGB and HSV histogram. Based on the optimized image feature set classification is done by using k- Nearest Neighbor(k-NN) algorithm. Experimental result shows that our method has achieved better accuracy. From the result it is known that combination of RGB and HSV histogram with k-NN algorithm gives the best accuracy in spam detection.
Keywords: File Type, HSV Histogram, k-NN, RGB Histogram, Spam Detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21407505 Towards Real-Time Classification of Finger Movement Direction Using Encephalography Independent Components
Authors: Mohamed Mounir Tellache, Hiroyuki Kambara, Yasuharu Koike, Makoto Miyakoshi, Natsue Yoshimura
Abstract:
This study explores the practicality of using electroencephalographic (EEG) independent components to predict eight-direction finger movements in pseudo-real-time. Six healthy participants with individual-head MRI images performed finger movements in eight directions with two different arm configurations. The analysis was performed in two stages. The first stage consisted of using independent component analysis (ICA) to separate the signals representing brain activity from non-brain activity signals and to obtain the unmixing matrix. The resulting independent components (ICs) were checked, and those reflecting brain-activity were selected. Finally, the time series of the selected ICs were used to predict eight finger-movement directions using Sparse Logistic Regression (SLR). The second stage consisted of using the previously obtained unmixing matrix, the selected ICs, and the model obtained by applying SLR to classify a different EEG dataset. This method was applied to two different settings, namely the single-participant level and the group-level. For the single-participant level, the EEG dataset used in the first stage and the EEG dataset used in the second stage originated from the same participant. For the group-level, the EEG datasets used in the first stage were constructed by temporally concatenating each combination without repetition of the EEG datasets of five participants out of six, whereas the EEG dataset used in the second stage originated from the remaining participants. The average test classification results across datasets (mean ± S.D.) were 38.62 ± 8.36% for the single-participant, which was significantly higher than the chance level (12.50 ± 0.01%), and 27.26 ± 4.39% for the group-level which was also significantly higher than the chance level (12.49% ± 0.01%). The classification accuracy within [–45°, 45°] of the true direction is 70.03 ± 8.14% for single-participant and 62.63 ± 6.07% for group-level which may be promising for some real-life applications. Clustering and contribution analyses further revealed the brain regions involved in finger movement and the temporal aspect of their contribution to the classification. These results showed the possibility of using the ICA-based method in combination with other methods to build a real-time system to control prostheses.Keywords: Brain-computer interface, BCI, electroencephalography, EEG, finger motion decoding, independent component analysis, pseudo-real-time motion decoding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5987504 Training Radial Basis Function Networks with Differential Evolution
Authors: Bing Yu , Xingshi He
Abstract:
In this paper, Differential Evolution (DE) algorithm, a new promising evolutionary algorithm, is proposed to train Radial Basis Function (RBF) network related to automatic configuration of network architecture. Classification tasks on data sets: Iris, Wine, New-thyroid, and Glass are conducted to measure the performance of neural networks. Compared with a standard RBF training algorithm in Matlab neural network toolbox, DE achieves more rational architecture for RBF networks. The resulting networks hence obtain strong generalization abilities.
Keywords: differential evolution, neural network, Rbf function
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20497503 Machine Learning Methods for Flood Hazard Mapping
Authors: S. Zappacosta, C. Bove, M. Carmela Marinelli, P. di Lauro, K. Spasenovic, L. Ostano, G. Aiello, M. Pietrosanto
Abstract:
This paper proposes a neural network approach for assessing flood hazard mapping. The core of the model is a machine learning component fed by frequency ratios, namely statistical correlations between flood event occurrences and a selected number of topographic properties. The classification capability was compared with the flood hazard mapping River Basin Plans (Piani Assetto Idrogeologico, acronimed as PAI) designed by the Italian Institute for Environmental Research and Defence, ISPRA (Istituto Superiore per la Protezione e la Ricerca Ambientale), encoding four different increasing flood hazard levels. The study area of Piemonte, an Italian region, has been considered without loss of generality. The frequency ratios may be used as a standalone block to model the flood hazard mapping. Nevertheless, the mixture with a neural network improves the classification power of several percentage points, and may be proposed as a basic tool to model the flood hazard map in a wider scope.
Keywords: flood modeling, hazard map, neural networks, hydrogeological risk, flood risk assessment
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7237502 An Application for Risk of Crime Prediction Using Machine Learning
Authors: Luis Fonseca, Filipe Cabral Pinto, Susana Sargento
Abstract:
The increase of the world population, especially in large urban centers, has resulted in new challenges particularly with the control and optimization of public safety. Thus, in the present work, a solution is proposed for the prediction of criminal occurrences in a city based on historical data of incidents and demographic information. The entire research and implementation will be presented start with the data collection from its original source, the treatment and transformations applied to them, choice and the evaluation and implementation of the Machine Learning model up to the application layer. Classification models will be implemented to predict criminal risk for a given time interval and location. Machine Learning algorithms such as Random Forest, Neural Networks, K-Nearest Neighbors and Logistic Regression will be used to predict occurrences, and their performance will be compared according to the data processing and transformation used. The results show that the use of Machine Learning techniques helps to anticipate criminal occurrences, which contributed to the reinforcement of public security. Finally, the models were implemented on a platform that will provide an API to enable other entities to make requests for predictions in real-time. An application will also be presented where it is possible to show criminal predictions visually.Keywords: Crime prediction, machine learning, public safety, smart city.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13237501 Coalescing Data Marts
Authors: N. Parimala, P. Pahwa
Abstract:
OLAP uses multidimensional structures, to provide access to data for analysis. Traditionally, OLAP operations are more focused on retrieving data from a single data mart. An exception is the drill across operator. This, however, is restricted to retrieving facts on common dimensions of the multiple data marts. Our concern is to define further operations while retrieving data from multiple data marts. Towards this, we have defined six operations which coalesce data marts. While doing so we consider the common as well as the non-common dimensions of the data marts.Keywords: Data warehouse, Dimension, OLAP, Star Schema.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15587500 Competitors’ Influence Analysis of a Retailer by Using Customer Value and Huff’s Gravity Model
Authors: Yepeng Cheng, Yasuhiko Morimoto
Abstract:
Customer relationship analysis is vital for retail stores, especially for supermarkets. The point of sale (POS) systems make it possible to record the daily purchasing behaviors of customers as an identification point of sale (ID-POS) database, which can be used to analyze customer behaviors of a supermarket. The customer value is an indicator based on ID-POS database for detecting the customer loyalty of a store. In general, there are many supermarkets in a city, and other nearby competitor supermarkets significantly affect the customer value of customers of a supermarket. However, it is impossible to get detailed ID-POS databases of competitor supermarkets. This study firstly focused on the customer value and distance between a customer's home and supermarkets in a city, and then constructed the models based on logistic regression analysis to analyze correlations between distance and purchasing behaviors only from a POS database of a supermarket chain. During the modeling process, there are three primary problems existed, including the incomparable problem of customer values, the multicollinearity problem among customer value and distance data, and the number of valid partial regression coefficients. The improved customer value, Huff’s gravity model, and inverse attractiveness frequency are considered to solve these problems. This paper presents three types of models based on these three methods for loyal customer classification and competitors’ influence analysis. In numerical experiments, all types of models are useful for loyal customer classification. The type of model, including all three methods, is the most superior one for evaluating the influence of the other nearby supermarkets on customers' purchasing of a supermarket chain from the viewpoint of valid partial regression coefficients and accuracy.Keywords: Customer value, Huff's Gravity Model, POS, retailer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6117499 Artificial Neural Network Model for a Low Cost Failure Sensor: Performance Assessment in Pipeline Distribution
Authors: Asar Khan, Peter D. Widdop, Andrew J. Day, Aliaster S. Wood, Steve, R. Mounce, John Machell
Abstract:
This paper describes an automated event detection and location system for water distribution pipelines which is based upon low-cost sensor technology and signature analysis by an Artificial Neural Network (ANN). The development of a low cost failure sensor which measures the opacity or cloudiness of the local water flow has been designed, developed and validated, and an ANN based system is then described which uses time series data produced by sensors to construct an empirical model for time series prediction and classification of events. These two components have been installed, tested and verified in an experimental site in a UK water distribution system. Verification of the system has been achieved from a series of simulated burst trials which have provided real data sets. It is concluded that the system has potential in water distribution network management.Keywords: Detection, leakage, neural networks, sensors, water distribution networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17447498 Service Business Model Canvas: A Boundary Object Operating as a Business Development Tool
Authors: Taru Hakanen, Mervi Murtonen
Abstract:
This study aims to increase understanding of the transition of business models in servitization. The significance of service in all business has increased dramatically during the past decades. Service-dominant logic (SDL) describes this change in the economy and questions the goods-dominant logic on which business has primarily been based in the past. A business model canvas is one of the most cited and used tools in defining end developing business models. The starting point of this paper lies in the notion that the traditional business model canvas is inherently goods-oriented and best suits for product-based business. However, the basic differences between goods and services necessitate changes in business model representations when proceeding in servitization. Therefore, new knowledge is needed on how the conception of business model and the business model canvas as its representation should be altered in servitized firms in order to better serve business developers and interfirm co-creation. That is to say, compared to products, services are intangible and they are co-produced between the supplier and the customer. Value is always co-created in interaction between a supplier and a customer, and customer experience primarily depends on how well the interaction succeeds between the actors. The role of service experience is even stronger in service business compared to product business, as services are co-produced with the customer. This paper provides business model developers with a service business model canvas, which takes into account the intangible, interactive, and relational nature of service. The study employs a design science approach that contributes to theory development via design artifacts. This study utilizes qualitative data gathered in workshops with ten companies from various industries. In particular, key differences between Goods-dominant logic (GDL) and SDLbased business models are identified when an industrial firm proceeds in servitization. As the result of the study, an updated version of the business model canvas is provided based on service-dominant logic. The service business model canvas ensures a stronger customer focus and includes aspects salient for services, such as interaction between companies, service co-production, and customer experience. It can be used for the analysis and development of a current service business model of a company or for designing a new business model. It facilitates customer-focused new service design and service development. It aids in the identification of development needs, and facilitates the creation of a common view of the business model. Therefore, the service business model canvas can be regarded as a boundary object, which facilitates the creation of a common understanding of the business model between several actors involved. The study contributes to the business model and service business development disciplines by providing a managerial tool for practitioners in service development. It also provides research insight into how servitization challenges companies’ business models.Keywords: Boundary object, business model canvas, managerial tool, service-dominant logic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33507497 3D Human Reconstruction over Cloud Based Image Data via AI and Machine Learning
Authors: Kaushik Sathupadi, Sandesh Achar
Abstract:
Human action recognition (HAR) modeling is a critical task in machine learning. These systems require better techniques for recognizing body parts and selecting optimal features based on vision sensors to identify complex action patterns efficiently. Still, there is a considerable gap and challenges between images and videos, such as brightness, motion variation, and random clutters. This paper proposes a robust approach for classifying human actions over cloud-based image data. First, we apply pre-processing and detection, human and outer shape detection techniques. Next, we extract valuable information in terms of cues. We extract two distinct features: fuzzy local binary patterns and sequence representation. Then, we applied a greedy, randomized adaptive search procedure for data optimization and dimension reduction, and for classification, we used a random forest. We tested our model on two benchmark datasets, AAMAZ and the KTH Multi-view Football datasets. Our HAR framework significantly outperforms the other state-of-the-art approaches and achieves a better recognition rate of 91% and 89.6% over the AAMAZ and KTH Multi-view Football datasets, respectively.
Keywords: Computer vision, human motion analysis, random forest, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 317496 Multimodal Database of Emotional Speech, Video and Gestures
Authors: Tomasz Sapiński, Dorota Kamińska, Adam Pelikant, Egils Avots, Cagri Ozcinar, Gholamreza Anbarjafari
Abstract:
People express emotions through different modalities. Integration of verbal and non-verbal communication channels creates a system in which the message is easier to understand. Expanding the focus to several expression forms can facilitate research on emotion recognition as well as human-machine interaction. In this article, the authors present a Polish emotional database composed of three modalities: facial expressions, body movement and gestures, and speech. The corpora contains recordings registered in studio conditions, acted out by 16 professional actors (8 male and 8 female). The data is labeled with six basic emotions categories, according to Ekman’s emotion categories. To check the quality of performance, all recordings are evaluated by experts and volunteers. The database is available to academic community and might be useful in the study on audio-visual emotion recognition.Keywords: Body movement, emotion recognition, emotional corpus, facial expressions, gestures, multimodal database, speech.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11237495 Detecting and Tracking Vehicles in Airborne Videos
Authors: Hsu-Yung Cheng, Chih-Chang Yu
Abstract:
In this work, we present an automatic vehicle detection system for airborne videos using combined features. We propose a pixel-wise classification method for vehicle detection using Dynamic Bayesian Networks. In spite of performing pixel-wise classification, relations among neighboring pixels in a region are preserved in the feature extraction process. The main novelty of the detection scheme is that the extracted combined features comprise not only pixel-level information but also region-level information. Afterwards, tracking is performed on the detected vehicles. Tracking is performed using efficient Kalman filter with dynamic particle sampling. Experiments were conducted on a wide variety of airborne videos. We do not assume prior information of camera heights, orientation, and target object sizes in the proposed framework. The results demonstrate flexibility and good generalization abilities of the proposed method on a challenging dataset.Keywords: Vehicle Detection, Airborne Video, Tracking, Dynamic Bayesian Networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15867494 Mining Big Data in Telecommunications Industry: Challenges, Techniques, and Revenue Opportunity
Authors: Hoda A. Abdel Hafez
Abstract:
Mining big data represents a big challenge nowadays. Many types of research are concerned with mining massive amounts of data and big data streams. Mining big data faces a lot of challenges including scalability, speed, heterogeneity, accuracy, provenance and privacy. In telecommunication industry, mining big data is like a mining for gold; it represents a big opportunity and maximizing the revenue streams in this industry. This paper discusses the characteristics of big data (volume, variety, velocity and veracity), data mining techniques and tools for handling very large data sets, mining big data in telecommunication and the benefits and opportunities gained from them.Keywords: Mining Big Data, Big Data, Machine learning, Data Streams, Telecommunication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2479