Search results for: Ethyl acetate extract
98 Analysis of Precipitation Time Series of Urban Centers of Northeastern Brazil using Wavelet Transform
Authors: Celso A. G. Santos, Paula K. M. M. Freire
Abstract:
The urban centers within northeastern Brazil are mainly influenced by the intense rainfalls, which can occur after long periods of drought, when flood events can be observed during such events. Thus, this paper aims to study the rainfall frequencies in such region through the wavelet transform. An application of wavelet analysis is done with long time series of the total monthly rainfall amount at the capital cities of northeastern Brazil. The main frequency components in the time series are studied by the global wavelet spectrum and the modulation in separated periodicity bands were done in order to extract additional information, e.g., the 8 and 16 months band was examined by an average of all scales, giving a measure of the average annual variance versus time, where the periods with low or high variance could be identified. The important increases were identified in the average variance for some periods, e.g. 1947 to 1952 at Teresina city, which can be considered as high wet periods. Although, the precipitation in those sites showed similar global wavelet spectra, the wavelet spectra revealed particular features. This study can be considered an important tool for time series analysis, which can help the studies concerning flood control, mainly when they are applied together with rainfall-runoff simulations.Keywords: rainfall data, urban center, wavelet transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 244897 A Deep Learning Framework for Polarimetric SAR Change Detection Using Capsule Network
Authors: Sanae Attioui, Said Najah
Abstract:
The Earth's surface is constantly changing through forces of nature and human activities. Reliable, accurate, and timely change detection is critical to environmental monitoring, resource management, and planning activities. Recently, interest in deep learning algorithms, especially convolutional neural networks, has increased in the field of image change detection due to their powerful ability to extract multi-level image features automatically. However, these networks are prone to drawbacks that limit their applications, which reside in their inability to capture spatial relationships between image instances, as this necessitates a large amount of training data. As an alternative, Capsule Network has been proposed to overcome these shortcomings. Although its effectiveness in remote sensing image analysis has been experimentally verified, its application in change detection tasks remains very sparse. Motivated by its greater robustness towards improved hierarchical object representation, this study aims to apply a capsule network for PolSAR image Change Detection. The experimental results demonstrate that the proposed change detection method can yield a significantly higher detection rate compared to methods based on convolutional neural networks.
Keywords: Change detection, capsule network, deep network, Convolutional Neural Networks, polarimetric synthetic aperture radar images, PolSAR images.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 49996 Application of the Total Least Squares Estimation Method for an Aircraft Aerodynamic Model Identification
Authors: Zaouche Mohamed, Amini Mohamed, Foughali Khaled, Aitkaid Souhila, Bouchiha Nihad Sarah
Abstract:
The aerodynamic coefficients are important in the evaluation of an aircraft performance and stability-control characteristics. These coefficients also can be used in the automatic flight control systems and mathematical model of flight simulator. The study of the aerodynamic aspect of flying systems is a reserved domain and inaccessible for the developers. Doing tests in a wind tunnel to extract aerodynamic forces and moments requires a specific and expensive means. Besides, the glaring lack of published documentation in this field of study makes the aerodynamic coefficients determination complicated. This work is devoted to the identification of an aerodynamic model, by using an aircraft in virtual simulated environment. We deal with the identification of the system, we present an environment framework based on Software In the Loop (SIL) methodology and we use MicrosoftTM Flight Simulator (FS-2004) as the environment for plane simulation. We propose The Total Least Squares Estimation technique (TLSE) to identify the aerodynamic parameters, which are unknown, variable, classified and used in the expression of the piloting law. In this paper, we define each aerodynamic coefficient as the mean of its numerical values. All other variations are considered as modeling uncertainties that will be compensated by the robustness of the piloting control.
Keywords: Aircraft aerodynamic model, Microsoft flight simulator, MQ-1 Predator, total least squares estimation, piloting the aircraft.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 166995 Variation of Streamwise and Vertical Turbulence Intensity in a Smooth and Rough Bed Open Channel Flow
Authors: Md Abdullah Al Faruque, Ram Balachandar
Abstract:
An experimental study with four different types of bed conditions was carried out to understand the effect of roughness in open channel flow at two different Reynolds numbers. The bed conditions include a smooth surface and three different roughness conditions, which were generated using sand grains with a median diameter of 2.46 mm. The three rough conditions include a surface with distributed roughness, a surface with continuously distributed roughness and a sand bed with a permeable interface. A commercial two-component fibre-optic LDA system was used to conduct the velocity measurements. The variables of interest include the mean velocity, turbulence intensity, correlation between the streamwise and the wall normal turbulence, Reynolds shear stress and velocity triple products. Quadrant decomposition was used to extract the magnitude of the Reynolds shear stress of the turbulent bursting events. The effect of roughness was evident throughout the flow depth. The results show that distributed roughness has the greatest roughness effect followed by the sand bed and the continuous roughness. Compared to the smooth bed, the streamwise turbulence intensity reduces but the vertical turbulence intensity increases at a location very close to the bed due to the introduction of roughness. Although the same sand grain is used to create the three different rough bed conditions, the difference in the turbulence intensity is an indication that the specific geometry of the roughness has an influence on turbulence structure.Keywords: Open channel flow, smooth bed, rough bed, Reynolds number, turbulence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 224494 Chemical and Sensory Properties of Chardonnay Wines Produced in Different Oak Barrels
Authors: Valentina Obradović, Josip Mesić, Maja Ergović Ravančić, Kamila Mijowska, Brankica Svitlica
Abstract:
French oak and American oak barrels are most famous all over the world, but barrels of different origin can also be used for obtaining high quality wines. The aim of this research was to compare the influence of different Slovenian (Croatian) and French oak barrels on the quality of Chardonnay wine. Grapes were grown in the Croatian wine growing region of Kutjevo in 2015. Chardonnay wines were tested for basic oenological parameters (alcohol, extract, reducing sugar, SO2, acidity), total polyphenols content (Folin-Ciocalteu method), antioxidant activity (ABTS and DPPH method) and colour density. Sensory evaluation was performed by students of viticulture/oenology. Samples produced by classical fermentation and ageing in French oak barrels had better results for polyphenols and sensory evaluation (especially low toasting level) than samples in Slovenian barrels. All tested samples were scored as a “quality” or “premium quality” wines. Sur lie method of fermentation and ageing in Slovenian oak barrel had very good extraction of polyphenols and high antioxidant activity with the usage of authentic yeasts, while commercial yeast strain resulted in worse chemical and sensory parameters.
Keywords: Chardonnay, French oak, Slovenian oak, sur lie.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 94693 SVM-based Multiview Face Recognition by Generalization of Discriminant Analysis
Authors: Dakshina Ranjan Kisku, Hunny Mehrotra, Jamuna Kanta Sing, Phalguni Gupta
Abstract:
Identity verification of authentic persons by their multiview faces is a real valued problem in machine vision. Multiview faces are having difficulties due to non-linear representation in the feature space. This paper illustrates the usability of the generalization of LDA in the form of canonical covariate for face recognition to multiview faces. In the proposed work, the Gabor filter bank is used to extract facial features that characterized by spatial frequency, spatial locality and orientation. Gabor face representation captures substantial amount of variations of the face instances that often occurs due to illumination, pose and facial expression changes. Convolution of Gabor filter bank to face images of rotated profile views produce Gabor faces with high dimensional features vectors. Canonical covariate is then used to Gabor faces to reduce the high dimensional feature spaces into low dimensional subspaces. Finally, support vector machines are trained with canonical sub-spaces that contain reduced set of features and perform recognition task. The proposed system is evaluated with UMIST face database. The experiment results demonstrate the efficiency and robustness of the proposed system with high recognition rates.
Keywords: Biometrics, Multiview face Recognition, Gaborwavelets, LDA, SVM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 150392 Formulation and Technology of the Composition of Essential Oils as a Feed Additive in Poultry with Antibacterial Action
Authors: S. Barbaqadze, M. Goderdzishvili, E. Mosidze, L. Lomtadze, V. Mshvildadze, L. Bakuridze, D. Berashvili, A. Bakuridze
Abstract:
This paper focuses on the formulation of phytobiotic designated for further implantation in poultry farming. Composition was meant to be water-soluble powder containing antibacterial essential oils. The development process involved Thyme, Monarda and Clary sage essential oils. The antimicrobial activity of essential oils composite was meant to be tested against gram-negative and gram-positive bacterial strains. The results are processed using the statistical program Sigma STAT. To make essential oils composition water soluble surfactants were added to them. At the first stage of the study, nine options for the optimal composition of essential oils and surfactants were developed. The effect of the amount of surfactants on the essential oils composition solubility in water has been investigated. On the basis of biopharmaceutical studies, the formulation of phytobiotic has been determined: Thyme, monarda and clary sage essential oils 2:1:1 - 100 parts; Licorice extract 5.25 parts and inhalation lactose 300 parts. A technology for the preparation of phytobiotic has been developed and a technological scheme for the preparation of phytobiotic has been made up. The research was performed within the framework of the grant project CARYS-19-363 funded be the Shota Rustaveli National Science Foundation of Georgia.
Keywords: Clary, essential oils, monarda, phytobiotics, poultry, thyme.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 49991 Recommender Systems Using Ensemble Techniques
Authors: Yeonjeong Lee, Kyoung-jae Kim, Youngtae Kim
Abstract:
This study proposes a novel recommender system that uses data mining and multi-model ensemble techniques to enhance the recommendation performance through reflecting the precise user’s preference. The proposed model consists of two steps. In the first step, this study uses logistic regression, decision trees, and artificial neural networks to predict customers who have high likelihood to purchase products in each product group. Then, this study combines the results of each predictor using the multi-model ensemble techniques such as bagging and bumping. In the second step, this study uses the market basket analysis to extract association rules for co-purchased products. Finally, the system selects customers who have high likelihood to purchase products in each product group and recommends proper products from same or different product groups to them through above two steps. We test the usability of the proposed system by using prototype and real-world transaction and profile data. In addition, we survey about user satisfaction for the recommended product list from the proposed system and the randomly selected product lists. The results also show that the proposed system may be useful in real-world online shopping store.
Keywords: Product recommender system, Ensemble technique, Association rules, Decision tree, Artificial neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 422290 Agile Methodology for Modeling and Design of Data Warehouses -AM4DW-
Authors: Nieto Bernal Wilson, Carmona Suarez Edgar
Abstract:
The organizations have structured and unstructured information in different formats, sources, and systems. Part of these come from ERP under OLTP processing that support the information system, however these organizations in OLAP processing level, presented some deficiencies, part of this problematic lies in that does not exist interesting into extract knowledge from their data sources, as also the absence of operational capabilities to tackle with these kind of projects. Data Warehouse and its applications are considered as non-proprietary tools, which are of great interest to business intelligence, since they are repositories basis for creating models or patterns (behavior of customers, suppliers, products, social networks and genomics) and facilitate corporate decision making and research. The following paper present a structured methodology, simple, inspired from the agile development models as Scrum, XP and AUP. Also the models object relational, spatial data models, and the base line of data modeling under UML and Big data, from this way sought to deliver an agile methodology for the developing of data warehouses, simple and of easy application. The methodology naturally take into account the application of process for the respectively information analysis, visualization and data mining, particularly for patterns generation and derived models from the objects facts structured.
Keywords: Data warehouse, model data, big data, object fact, object relational fact, process developed data warehouse.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 147889 Practical Method for Digital Music Matching Robust to Various Sound Qualities
Authors: Bokyung Sung, Jungsoo Kim, Jinman Kwun, Junhyung Park, Jihye Ryeo, Ilju Ko
Abstract:
In this paper, we propose a practical digital music matching system that is robust to variation in sound qualities. The proposed system is subdivided into two parts: client and server. The client part consists of the input, preprocessing and feature extraction modules. The preprocessing module, including the music onset module, revises the value gap occurring on the time axis between identical songs of different formats. The proposed method uses delta-grouped Mel frequency cepstral coefficients (MFCCs) to extract music features that are robust to changes in sound quality. According to the number of sound quality formats (SQFs) used, a music server is constructed with a feature database (FD) that contains different sub feature databases (SFDs). When the proposed system receives a music file, the selection module selects an appropriate SFD from a feature database; the selected SFD is subsequently used by the matching module. In this study, we used 3,000 queries for matching experiments in three cases with different FDs. In each case, we used 1,000 queries constructed by mixing 8 SQFs and 125 songs. The success rate of music matching improved from 88.6% when using single a single SFD to 93.2% when using quadruple SFDs. By this experiment, we proved that the proposed method is robust to various sound qualities.
Keywords: Digital Music, Music Matching, Variation in Sound Qualities, Robust Matching method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 137088 Quantitative Determination of Free Radical Scavenging Activity and Anti-tumor Activity of Some Myanmar Herbal Plants
Authors: M. M. Mon, S. S. Maw, Z. K. Oo
Abstract:
Antioxidant activities of ethanolic extracts of Ardisia japonica Blume., Ageartum conyzoides Linn., and Cocculus hirsutus Linn Diels. leaves was determined qualitatively and quantitatively in this research. 1, 1-diphenyl-2-picrylhydrazyl (DPPH) free radical solution was used to investigate free radical scavenging activity of these leaves extracts. Ascorbic acid (Vitamin C) was used as the standard. In the present investigation, it is found that all of these extracts have remarkable antioxidant activities. The EC50 values of these ethanolic extracts were 12.72 μg/ml for A. japonica, 15.19 μg/ml for A. conyzoides, 10.68 μg/ml for C. hirsutus respectively. Among these Myanmar medicinal plants, C. hirsutus showed higher antioxidant activities as well as free radical scavenging activity than black tea (Camellia sinensis), the famous antioxidant, and A. japonica and A. conyzoides showed a rather lower antioxidant activity than tea extracts. According to results from bioassay with carrot discs infected with Agrobacterium tumefaciens, all extracts showed anti-tumor activity after 3 weeks of incubation. No gall was detected in carrot disks treated with C. hirsutus and A. japonica extracts in the dose of 100ppm and in carrot discs treated with A. conyzoides extract in the dose of 1000 ppm. Therefore, the research clearly indicates that these weedy plants of dry farm land are exceptionally advantageous for human health.Keywords: Antioxidant, Anti-tumor activity, Carrot-discbioassay, DPPH
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 272287 Laser Data Based Automatic Generation of Lane-Level Road Map for Intelligent Vehicles
Authors: Zehai Yu, Hui Zhu, Linglong Lin, Huawei Liang, Biao Yu, Weixin Huang
Abstract:
With the development of intelligent vehicle systems, a high-precision road map is increasingly needed in many aspects. The automatic lane lines extraction and modeling are the most essential steps for the generation of a precise lane-level road map. In this paper, an automatic lane-level road map generation system is proposed. To extract the road markings on the ground, the multi-region Otsu thresholding method is applied, which calculates the intensity value of laser data that maximizes the variance between background and road markings. The extracted road marking points are then projected to the raster image and clustered using a two-stage clustering algorithm. Lane lines are subsequently recognized from these clusters by the shape features of their minimum bounding rectangle. To ensure the storage efficiency of the map, the lane lines are approximated to cubic polynomial curves using a Bayesian estimation approach. The proposed lane-level road map generation system has been tested on urban and expressway conditions in Hefei, China. The experimental results on the datasets show that our method can achieve excellent extraction and clustering effect, and the fitted lines can reach a high position accuracy with an error of less than 10 cm.
Keywords: Curve fitting, lane-level road map, line recognition, multi-thresholding, two-stage clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 51286 The Household-Based Socio-Economic Index for Every District in Peninsular Malaysia
Authors: Nuzlinda Abdul Rahman, Syerrina Zakaria
Abstract:
Deprivation indices are widely used in public health study. These indices are also referred as the index of inequalities or disadvantage. Even though, there are many indices that have been built before, it is believed to be less appropriate to use the existing indices to be applied in other countries or areas which had different socio-economic conditions and different geographical characteristics. The objective of this study is to construct the index based on the geographical and socio-economic factors in Peninsular Malaysia which is defined as the weighted household-based deprivation index. This study has employed the variables based on household items, household facilities, school attendance and education level obtained from Malaysia 2000 census report. The factor analysis is used to extract the latent variables from indicators, or reducing the observable variable into smaller amount of components or factor. Based on the factor analysis, two extracted factors were selected, known as Basic Household Amenities and Middle-Class Household Item factor. It is observed that the district with a lower index values are located in the less developed states like Kelantan, Terengganu and Kedah. Meanwhile, the areas with high index values are located in developed states such as Pulau Pinang, W.P. Kuala Lumpur and Selangor.Keywords: Factor Analysis, Basic Household Amenities, Middle-Class Household Item, Socio-economic Index
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 301185 Assisted Prediction of Hypertension Based on Heart Rate Variability and Improved Residual Networks
Authors: Yong Zhao, Jian He, Cheng Zhang
Abstract:
Cardiovascular disease resulting from hypertension poses a significant threat to human health, and early detection of hypertension can potentially save numerous lives. Traditional methods for detecting hypertension require specialized equipment and are often incapable of capturing continuous blood pressure fluctuations. To address this issue, this study starts by analyzing the principle of heart rate variability (HRV) and introduces the utilization of sliding window and power spectral density (PSD) techniques to analyze both temporal and frequency domain features of HRV. Subsequently, a hypertension prediction network that relies on HRV is proposed, combining Resnet, attention mechanisms, and a multi-layer perceptron. The network leverages a modified ResNet18 to extract frequency domain features, while employing an attention mechanism to integrate temporal domain features, thus enabling auxiliary hypertension prediction through the multi-layer perceptron. The proposed network is trained and tested using the publicly available SHAREE dataset from PhysioNet. The results demonstrate that the network achieves a high prediction accuracy of 92.06% for hypertension, surpassing traditional models such as K Near Neighbor (KNN), Bayes, Logistic regression, and traditional Convolutional Neural Network (CNN).
Keywords: Feature extraction, heart rate variability, hypertension, residual networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19584 Automatic Sleep Stage Scoring with Wavelet Packets Based on Single EEG Recording
Authors: Luay A. Fraiwan, Natheer Y. Khaswaneh, Khaldon Y. Lweesy
Abstract:
Sleep stage scoring is the process of classifying the stage of the sleep in which the subject is in. Sleep is classified into two states based on the constellation of physiological parameters. The two states are the non-rapid eye movement (NREM) and the rapid eye movement (REM). The NREM sleep is also classified into four stages (1-4). These states and the state wakefulness are distinguished from each other based on the brain activity. In this work, a classification method for automated sleep stage scoring based on a single EEG recording using wavelet packet decomposition was implemented. Thirty two ploysomnographic recording from the MIT-BIH database were used for training and validation of the proposed method. A single EEG recording was extracted and smoothed using Savitzky-Golay filter. Wavelet packets decomposition up to the fourth level based on 20th order Daubechies filter was used to extract features from the EEG signal. A features vector of 54 features was formed. It was reduced to a size of 25 using the gain ratio method and fed into a classifier of regression trees. The regression trees were trained using 67% of the records available. The records for training were selected based on cross validation of the records. The remaining of the records was used for testing the classifier. The overall correct rate of the proposed method was found to be around 75%, which is acceptable compared to the techniques in the literature.Keywords: Features selection, regression trees, sleep stagescoring, wavelet packets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 232983 Isolation and Classification of Red Blood Cells in Anemic Microscopic Images
Authors: Jameela Ali Alkrimi, Loay E. George, Azizah Suliman, Abdul Rahim Ahmad, Karim Al-Jashamy
Abstract:
Red blood cells (RBCs) are among the most commonly and intensively studied type of blood cells in cell biology. Anemia is a lack of RBCs is characterized by its level compared to the normal hemoglobin level. In this study, a system based image processing methodology was developed to localize and extract RBCs from microscopic images. Also, the machine learning approach is adopted to classify the localized anemic RBCs images. Several textural and geometrical features are calculated for each extracted RBCs. The training set of features was analyzed using principal component analysis (PCA). With the proposed method, RBCs were isolated in 4.3secondsfrom an image containing 18 to 27 cells. The reasons behind using PCA are its low computation complexity and suitability to find the most discriminating features which can lead to accurate classification decisions. Our classifier algorithm yielded accuracy rates of 100%, 99.99%, and 96.50% for K-nearest neighbor (K-NN) algorithm, support vector machine (SVM), and neural network RBFNN, respectively. Classification was evaluated in highly sensitivity, specificity, and kappa statistical parameters. In conclusion, the classification results were obtained within short time period, and the results became better when PCA was used.
Keywords: Red blood cells, pre-processing image algorithms, classification algorithms, principal component analysis PCA, confusion matrix, kappa statistical parameters, ROC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 319982 On Combining Support Vector Machines and Fuzzy K-Means in Vision-based Precision Agriculture
Authors: A. Tellaeche, X. P. Burgos-Artizzu, G. Pajares, A. Ribeiro
Abstract:
One important objective in Precision Agriculture is to minimize the volume of herbicides that are applied to the fields through the use of site-specific weed management systems. In order to reach this goal, two major factors need to be considered: 1) the similar spectral signature, shape and texture between weeds and crops; 2) the irregular distribution of the weeds within the crop's field. This paper outlines an automatic computer vision system for the detection and differential spraying of Avena sterilis, a noxious weed growing in cereal crops. The proposed system involves two processes: image segmentation and decision making. Image segmentation combines basic suitable image processing techniques in order to extract cells from the image as the low level units. Each cell is described by two area-based attributes measuring the relations among the crops and the weeds. From these attributes, a hybrid decision making approach determines if a cell must be or not sprayed. The hybrid approach uses the Support Vector Machines and the Fuzzy k-Means methods, combined through the fuzzy aggregation theory. This makes the main finding of this paper. The method performance is compared against other available strategies.Keywords: Fuzzy k-Means, Precision agriculture, SupportVectors Machines, Weed detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 177981 The Phenolic Substances and Antioxidant Activity of White Saffron (Curcuma mangga Val.) as Affected by Blanching Methods
Authors: D. Pujimulyani, S. Raharjo, Y. Marsono, U. Santoso
Abstract:
Background and objectives: Most of the agricultural products are processed by blanching. Blanching can increase antioxidant activity in white saffron products. The objective of this research were to determine antioxidant activity, to identify, and to measure changes in phenolic substances of fresh and blanched white saffron rhizomes (Curcuma mangga Val.). Methods: White saffron rhizomes were peeled, washed and blanched in boiling water containing 0% or 0.05% citric acid solution for 5 and 10 minutes. Samples were extracted using methanol, rotaevaporated, and freezedried. Dried extract was determined antioxidant activity by DPPH method, identified and quantified for the phenolic substances by High Performance Liquid Chromatography (HPLC) equipped with coloumn C18 and Photodiode-array detector (PAD). Result: This research showed that the quantity of the 6 phenolic substances identified in blanched white saffron in citric acid solution increased significantly compared to that of the non-blanched. Blanching white saffron in 0.05% citric acid media for 5 minutes increased its antioxidant activity, and total phenolic content. Conclusions: The identified phenolic substances of white saffron were Gallic Acid (GA), Catechin (C), Epicatechin (EC), Epigallocatechin (EGC), Epigallocatechingallat (EGCG) and Gallocatechingallat (GCG). The blanched white saffron contained C and EGCG significantly higher than that of fresh rhizomes.
Keywords: White saffron, antioxidant activity, blanching, phenolic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 315780 Application of Statistical Approach for Optimizing CMCase Production by Bacillus tequilensis S28 Strain via Submerged Fermentation Using Wheat Bran as Carbon Source
Authors: A. Sharma, R. Tewari, S. K. Soni
Abstract:
Biofuels production has come forth as a future technology to combat the problem of depleting fossil fuels. Bio-based ethanol production from enzymatic lignocellulosic biomass degradation serves an efficient method and catching the eye of scientific community. High cost of the enzyme is the major obstacle in preventing the commercialization of this process. Thus main objective of the present study was to optimize composition of medium components for enhancing cellulase production by newly isolated strain of Bacillus tequilensis. Nineteen factors were taken into account using statistical Plackett-Burman Design. The significant variables influencing the cellulose production were further employed in statistical Response Surface Methodology using Central Composite Design for maximizing cellulase production. The optimum medium composition for cellulase production was: peptone (4.94 g/L), ammonium chloride (4.99 g/L), yeast extract (2.00 g/L), Tween-20 (0.53 g/L), calcium chloride (0.20 g/L) and cobalt chloride (0.60 g/L) with pH 7, agitation speed 150 rpm and 72 h incubation at 37oC. Analysis of variance (ANOVA) revealed high coefficient of determination (R2) of 0.99. Maximum cellulase productivity of 11.5 IU/ml was observed against the model predicted value of 13 IU/ml. This was found to be optimally active at 60oC and pH 5.5.
Keywords: Bacillus tequilensis, CMCase, Submerged Fermentation, Optimization, Plackett-Burman Design, Response Surface Methodology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 306379 Hypoglycemic Activity of Water Soluble Polysaccharides of Yam (Dioscorea hispida Dents) Prepared by Aqueous, Papain, and Tempeh Inoculum Assisted Extractions
Authors: Teti Estiasih, Harijono, Weny Bekti Sunarharum, Atina Rahmawati
Abstract:
This research studied the hypoglycemic effect of water soluble polysaccharide (WSP) extracted from yam (Dioscorea hispida) tuber by three different methods: aqueous extraction, papain assisted extraction, and tempeh inoculums assisted extraction. The two later extraction methods were aimed to remove WSP binding protein to have more pure WSP. The hypoglycemic activities were evaluated by means in vivo test on alloxan induced hyperglycemic rats, glucose response test (GRT), in situ glucose absorption test using everted sac, and short chain fatty acids (SCFAs) analysis. All yam WSP extracts exhibited ability to decrease blood glucose level in hyperglycemia condition as well as inhibited glucose absorption and SCFA formation. The order of hypoglycemic activity was tempeh inoculums assisted- >papain assisted- >aqueous WSP extracts. GRT and in situ glucose absorption test showed that order of inhibition was papain assisted- >tempeh inoculums assisted- >aqueous WSP extracts. Digesta of caecum of yam WSP extracts oral fed rats had more SCFA than control. Tempeh inoculums assisted WSP extract exhibited the most significant hypoglycemic activity.Keywords: hypoglycemic activity, papain, tempeh inoculums, water soluble polysaccharides, yam (Discorea hispida)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 305478 Extraction of Data from Web Pages: A Vision Based Approach
Authors: P. S. Hiremath, Siddu P. Algur
Abstract:
With the explosive growth of information sources available on the World Wide Web, it has become increasingly difficult to identify the relevant pieces of information, since web pages are often cluttered with irrelevant content like advertisements, navigation-panels, copyright notices etc., surrounding the main content of the web page. Hence, tools for the mining of data regions, data records and data items need to be developed in order to provide value-added services. Currently available automatic techniques to mine data regions from web pages are still unsatisfactory because of their poor performance and tag-dependence. In this paper a novel method to extract data items from the web pages automatically is proposed. It comprises of two steps: (1) Identification and Extraction of the data regions based on visual clues information. (2) Identification of data records and extraction of data items from a data region. For step1, a novel and more effective method is proposed based on visual clues, which finds the data regions formed by all types of tags using visual clues. For step2 a more effective method namely, Extraction of Data Items from web Pages (EDIP), is adopted to mine data items. The EDIP technique is a list-based approach in which the list is a linear data structure. The proposed technique is able to mine the non-contiguous data records and can correctly identify data regions, irrespective of the type of tag in which it is bound. Our experimental results show that the proposed technique performs better than the existing techniques.
Keywords: Web data records, web data regions, web mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 190177 Effect of Different Media and Mannitol Concentrations on Growth and Development of Vandopsis lissochiloides (Gaudich.) Pfitz. under Slow Growth Conditions
Authors: J. Linjikao, P. Inthima, A. Kongbangkerd
Abstract:
In vitro conservation of orchid germplasm provides an effective technique for ex situ conservation of orchid diversity. In this study, an efficient protocol for in vitro conservation of Vandopsis lissochiloides (Gaudich.) Pfitz. plantlet under slow growth conditions was investigated. Plantlets were cultured on different strength of Vacin and Went medium (½VW and ¼VW) supplemented with different concentrations of mannitol (0, 2, 4, 6 and 8%), sucrose (0 and 3%) and 50 g/L potato extract, 150 mL/L coconut water. The cultures were incubated at 25±2 °C and maintained under 20 µmol/m2s light intensity for 24 weeks without subculture. At the end of preservation period, the plantlets were subcultured to fresh medium for growth recovery. The results found that the highest leaf number per plantlet could be observed on ¼VW medium without adding sucrose and mannitol while the highest root number per plantlet was found on ½VW added with 3% sucrose without adding mannitol after 24 weeks of in vitro storage. The results showed that the maximum number of leaves (5.8 leaves) and roots (5.0 roots) of preserved plantlets were produced on ¼VW medium without adding sucrose and mannitol. Therefore, ¼VW medium without adding sucrose and mannitol was the best minimum growth conditions for medium-term storage of V. lissochiloides plantlets.
Keywords: Preservation, Vandopsis, germplasm, in vitro.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 70676 Deep Learning Application for Object Image Recognition and Robot Automatic Grasping
Authors: Shiuh-Jer Huang, Chen-Zon Yan, C. K. Huang, Chun-Chien Ting
Abstract:
Since the vision system application in industrial environment for autonomous purposes is required intensely, the image recognition technique becomes an important research topic. Here, deep learning algorithm is employed in image system to recognize the industrial object and integrate with a 7A6 Series Manipulator for object automatic gripping task. PC and Graphic Processing Unit (GPU) are chosen to construct the 3D Vision Recognition System. Depth Camera (Intel RealSense SR300) is employed to extract the image for object recognition and coordinate derivation. The YOLOv2 scheme is adopted in Convolution neural network (CNN) structure for object classification and center point prediction. Additionally, image processing strategy is used to find the object contour for calculating the object orientation angle. Then, the specified object location and orientation information are sent to robotic controller. Finally, a six-axis manipulator can grasp the specific object in a random environment based on the user command and the extracted image information. The experimental results show that YOLOv2 has been successfully employed to detect the object location and category with confidence near 0.9 and 3D position error less than 0.4 mm. It is useful for future intelligent robotic application in industrial 4.0 environment.
Keywords: Deep learning, image processing, convolution neural network, YOLOv2, 7A6 series manipulator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 109575 Computable Difference Matrix for Synonyms in the Holy Quran
Authors: Mohamed Ali AlShaari, Khalid M. ElFitori
Abstract:
In the field of Quran Studies known as GHAREEB AL QURAN (The study of the meanings of strange words and structures in Holy Quran), it is difficult to distinguish some pragmatic meanings from conceptual meanings. One who wants to study this subject may need to look for a common usage between any two words or more; to understand general meaning, and sometimes may need to look for common differences between them, even if there are synonyms (word sisters).
Some of the distinguished scholars of Arabic linguistics believe that there are no synonym words, they believe in varieties of meaning and multi-context usage. Based on this viewpoint, our method was designedto look for synonyms of a word, then the differences that distinct the word and their synonyms.
There are many available books that use such a method e.g. synonyms books, dictionaries, glossaries, and some books on the interpretations of strange vocabulary of the Holy Quran, but it is difficult to look up words in these written works.
For that reason, we proposed a logical entity, which we called Differences Matrix (DM).
DM groups the synonyms words to extract the relations between them and to know the general meaning, which defines the skeleton of all word synonyms; this meaning is expressed by a word of its sisters.
In Differences Matrix, we used the sisters(words) as titles for rows and columns, and in the obtained cells we tried to define the row title (word) by using column title (her sister), so the relations between sisters appear, the expected result is well defined groups of sisters for each word. We represented the obtained results formally, and used the defined groups as a base for building the ontology of the Holy Quran synonyms.
Keywords: Quran, synonyms, Differences Matrix, ontology
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 211374 Burnout Recognition for Call Center Agents by Using Skin Color Detection with Hand Poses
Authors: El Sayed A. Sharara, A. Tsuji, K. Terada
Abstract:
Call centers have been expanding and they have influence on activation in various markets increasingly. A call center’s work is known as one of the most demanding and stressful jobs. In this paper, we propose the fatigue detection system in order to detect burnout of call center agents in the case of a neck pain and upper back pain. Our proposed system is based on the computer vision technique combined skin color detection with the Viola-Jones object detector. To recognize the gesture of hand poses caused by stress sign, the YCbCr color space is used to detect the skin color region including face and hand poses around the area related to neck ache and upper back pain. A cascade of clarifiers by Viola-Jones is used for face recognition to extract from the skin color region. The detection of hand poses is given by the evaluation of neck pain and upper back pain by using skin color detection and face recognition method. The system performance is evaluated using two groups of dataset created in the laboratory to simulate call center environment. Our call center agent burnout detection system has been implemented by using a web camera and has been processed by MATLAB. From the experimental results, our system achieved 96.3% for upper back pain detection and 94.2% for neck pain detection.
Keywords: Call center agents, fatigue, skin color detection, face recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 104573 Inferring User Preference Using Distance Dependent Chinese Restaurant Process and Weighted Distribution for a Content Based Recommender System
Authors: Bagher Rahimpour Cami, Hamid Hassanpour, Hoda Mashayekhi
Abstract:
Nowadays websites provide a vast number of resources for users. Recommender systems have been developed as an essential element of these websites to provide a personalized environment for users. They help users to retrieve interested resources from large sets of available resources. Due to the dynamic feature of user preference, constructing an appropriate model to estimate the user preference is the major task of recommender systems. Profile matching and latent factors are two main approaches to identify user preference. In this paper, we employed the latent factor and profile matching to cluster the user profile and identify user preference, respectively. The method uses the Distance Dependent Chines Restaurant Process as a Bayesian nonparametric framework to extract the latent factors from the user profile. These latent factors are mapped to user interests and a weighted distribution is used to identify user preferences. We evaluate the proposed method using a real-world data-set that contains news tweets of a news agency (BBC). The experimental results and comparisons show the superior recommendation accuracy of the proposed approach related to existing methods, and its ability to effectively evolve over time.Keywords: Content-based recommender systems, dynamic user modeling, extracting user interests, predicting user preference.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 81572 The Effects of Soil Parameters on Efficiency of Essential Oil from Zingiber zerumbet (L.) Smith in Thailand
Authors: Worakrit Worananthakij, Kamonchanok Doungtadum, Nattagan Mingkwan, Supatsorn Chupong
Abstract:
Natural products from herb have been used in different aspects of life as a result of their various biological activities. Generally, plant growth and production of secondary compounds largely depend on environmental conditions. To better understand this correlation, study on biological activity and soil parameter is necessary. This research aims to study the soil parameters which affect the efficiency of the antioxidant activity of essential oils extracted from the Zingiber zerumbet in three areas of Thailand, including Min Buri district, Bangkok province; Muang district, Chiang Mai province and Kaeng Sanam Nang district, Nakhon Ratchasima province. The soil samples in each area were collected and analyzed in the laboratory. The essential oil of Z. zerumbet in each province was extracted and tested for antioxidant activity by hydrodistillation method and DPPH (2,2-diphenyl-1-picrylhydrazyl radical) assay, respectively. The results showed that, the soil parameters such as pH, nitrogen, potassium and phosphorus elements and exchange of cations of soil specimen from Nakhon Ratchasima province were the highest (P<0.05) (6.10 ±0.03, 0.15 ± 0.04 percent of total nitrogen, 16.67 ± 0.46 mg/L, 3.35 ± 0.65 mg/kg and 12.87 ± 0.11 cmol/kg, respectively). In addition, IC50 (Inhibition Concentrtion of antioxidant at 50%) of Z. zerumbet essential oil collected from Nakhon Ratchasima showed the highest value (P<0.05) (1,400 µg/mL). In conclusion, the soil parameters are once important factor for the efficiency of essential oils extract from Z. zerumbet.Keywords: Antioxidant, essential oil, herb, soil parameter, Zingiber zerumbet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 131971 Use of Data of the Remote Sensing for Spatiotemporal Analysis Land Use Changes in the Eastern Aurès (Algeria)
Authors: A. Bouzekri, H. Benmassaud
Abstract:
Aurèsregion is one of the arid and semi-arid areas that have suffered climate crises and overexploitation of natural resources they have led to significant land degradation. The use of remote sensing data allowed us to analyze the land and its spatiotemporal changes in the Aurès between 1987 and 2013, for this work, we adopted a method of analysis based on the exploitation of the images satellite Landsat TM 1987 and Landsat OLI 2013, from the supervised classification likelihood coupled with field surveys of the mission of May and September of 2013. Using ENVI EX software by the superposition of the ground cover maps from 1987 and 2013, one can extract a spatial map change of different land cover units. The results show that between 1987 and 2013 vegetation has suffered negative changes are the significant degradation of forests and steppe rangelands, and sandy soils and bare land recorded a considerable increase. The spatial change map land cover units between 1987 and 2013 allows us to understand the extensive or regressive orientation of vegetation and soil, this map shows that dense forests give his place to clear forests and steppe vegetation develops from a degraded forest vegetation and bare, sandy soils earn big steppe surfaces that explain its remarkable extension. The analysis of remote sensing data highlights the profound changes in our environment over time and quantitative monitoring of the risk of desertification.Keywords: Aurès, Land use, remote sensing, spatiotemporal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 503270 Ranking Genes from DNA Microarray Data of Cervical Cancer by a local Tree Comparison
Authors: Frank Emmert-Streib, Matthias Dehmer, Jing Liu, Max Muhlhauser
Abstract:
The major objective of this paper is to introduce a new method to select genes from DNA microarray data. As criterion to select genes we suggest to measure the local changes in the correlation graph of each gene and to select those genes whose local changes are largest. More precisely, we calculate the correlation networks from DNA microarray data of cervical cancer whereas each network represents a tissue of a certain tumor stage and each node in the network represents a gene. From these networks we extract one tree for each gene by a local decomposition of the correlation network. The interpretation of a tree is that it represents the n-nearest neighbor genes on the n-th level of a tree, measured by the Dijkstra distance, and, hence, gives the local embedding of a gene within the correlation network. For the obtained trees we measure the pairwise similarity between trees rooted by the same gene from normal to cancerous tissues. This evaluates the modification of the tree topology due to tumor progression. Finally, we rank the obtained similarity values from all tissue comparisons and select the top ranked genes. For these genes the local neighborhood in the correlation networks changes most between normal and cancerous tissues. As a result we find that the top ranked genes are candidates suspected to be involved in tumor growth. This indicates that our method captures essential information from the underlying DNA microarray data of cervical cancer.
Keywords: Graph similarity, generalized trees, graph alignment, DNA microarray data, cervical cancer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 175369 Info-participation of the Disabled Using the Mixed Preference Data in Improving Their Travel Quality
Authors: Y. Duvarci, S. Mizokami
Abstract:
Today, the preferences and participation of the TD groups such as the elderly and disabled is still lacking in decision-making of transportation planning, and their reactions to certain type of policies are not well known. Thus, a clear methodology is needed. This study aimed to develop a method to extract the preferences of the disabled to be used in the policy-making stage that can also guide to future estimations. The method utilizes the combination of cluster analysis and data filtering using the data of the Arao city (Japan). The method is a process that follows: defining the TD group by the cluster analysis tool, their travel preferences in tabular form from the household surveys by policy variableimpact pairs, zones, and by trip purposes, and the final outcome is the preference probabilities of the disabled. The preferences vary by trip purpose; for the work trips, accessibility and transit system quality policies with the accompanying impacts of modal shifts towards public mode use as well as the decreasing travel costs, and the trip rate increase; for the social trips, the same accessibility and transit system policies leading to the same mode shift impact, together with the travel quality policy area leading to trip rate increase. These results explain the policies to focus and can be used in scenario generation in models, or any other planning purpose as decision support tool.
Keywords: Transportation Disadvantaged, Disabled, Mixed Preference, Stated Preference Data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1079