Search results for: Attention Multiple Instance Learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4344

Search results for: Attention Multiple Instance Learning

3714 The Design and Development of Multimedia Pronunciation Learning Management System

Authors: Fei Ping Por, Soon Fook Fong

Abstract:

The proposed Multimedia Pronunciation Learning Management System (MPLMS) in this study is a technology with profound potential for inducing improvement in pronunciation learning. The MPLMS optimizes the digitised phonetic symbols with the integration of text, sound and mouth movement video. The components are designed and developed in an online management system which turns the web to a dynamic user-centric collection of consistent and timely information for quality sustainable learning. The aim of this study is to design and develop the MPLMS which serves as an innovative tool to improve English pronunciation. This paper discusses the iterative methodology and the three-phase Alessi and Trollip model in the development of MPLMS. To align with the flexibility of the development of educational software, the iterative approach comprises plan, design, develop, evaluate and implement is followed. To ensure the instructional appropriateness of MPLMS, the instructional system design (ISD) model of Alessi and Trollip serves as a platform to guide the important instructional factors and process. It is expected that the results of future empirical research will support the efficacy of MPLMS and its place as the premier pronunciation learning system.

Keywords: Design, development, multimedia, pronunciation, learning management system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2444
3713 Availability, Accessibility and Utilization of Information and Communication Technology in Teaching and Learning Islamic Studies in Colleges of Education, North-Eastern, Nigeria

Authors: Bello Ali

Abstract:

The use of Information and Communication Technology (ICT) in tertiary institutions by lecturers and students has become a necessity for the enhancement of quality teaching and learning. This study examined availability, accessibility and utilization of ICT in Teaching-Learning Islamic Studies in Colleges of Education, North-East, Nigeria. The study adopted multi-stage sampling technique, in which, five out of the eleven Colleges of Education (both Federal and State owned) were purposively selected for the study. Primary data was drawn from the respondents by the use of questionnaire, interviews and observations. The results of the study, generally, indicate that the availability and accessibility to ICT facilities in Colleges of Education in North-East, Nigeria, especially in teaching/learning delivery of Islamic studies were relatively inadequate and rare to lecturers and students. The study further reveals that the respondents’ level of utilization of ICT is low and only few computer packages and internet services were involved in the ICT utilization, which is yet to reach the real expected situation of the globalization and advancement in the application of ICT if compared to other parts of the world, as far as the teaching and learning of Islamic studies is concerned. Observations and conclusion were drawn from the findings and finally, recommendations on how to improve on ICT availability, accessibility and utilization in teaching/ learning were suggested.

Keywords: Accessibility, availability, college of education, ICT, Islamic Studies, learning, North-Eastern, teaching, utilization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1132
3712 Yawning and Cortisol as a Potential Biomarker for Early Detection of Multiple Sclerosis

Authors: Simon B. N. Thompson

Abstract:

Cortisol is essential to the regulation of the immune system and yawning is a pathological symptom of multiple sclerosis (MS). Electromyography activity (EMG) in the jaw muscles typically rises when the muscles are moved and with yawning is highly correlated with cortisol levels in healthy people. Saliva samples from 59 participants were collected at the start and after yawning, or at the end of the presentation of yawning-provoking stimuli, in the absence of a yawn, together with EMG data and questionnaire data: Hospital Anxiety and Depression Scale, Yawning Susceptibility Scale, General Health Questionnaire, demographic, health details. Exclusion criteria: chronic fatigue, diabetes, fibromyalgia, heart condition, high blood pressure, hormone replacement therapy, multiple sclerosis, stroke. Significant differences were found between the saliva cortisol samples for the yawners, t (23) = -4.263, p = 0.000, as compared with the non-yawners between rest and post-stimuli, which was nonsignificant. Significant evidence was found to support the Thompson Cortisol Hypothesis suggesting that rises in cortisol levels are associated with yawning. Further research is exploring the use of cortisol as an early diagnostic tool for MS. Ethics approval granted and professional code of conduct, confidentiality, and safety issues are approved therein.

Keywords: Cortisol, Multiple Sclerosis, Yawning, Thompson’s Cortisol Hypothesis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2371
3711 Relationship between Behavioral Inhibition/Approach System and Perceived Stress: With White Blood Cell in Multiple Sclerosis Patients

Authors: Amin Alvani

Abstract:

Multiple sclerosis (MS) is a chronic, often disabling disease in which the immune system attacks the myelin sheath of neurons in the central nervous system. The purpose of this study was to explore the correlation between the Behavioral Inhibition/Approach System (BIS-BAS) and Perceived Stress (PS), while controlling for White Blood Cell (WBC) count. 60 MS patients (36.7% male, 63.3% female; aged 15-65 years) participated in this study. They completed a demographic questionnaire, underwent a complete blood cell (CBC) test, filled out the Behavioral Activation and Behavioral Inhibition Scale (BIS-BAS), and responded to the Perceived Stress Questionnaire (PSS-14). The results indicated a significant relationship between the BAS-Reward Responsiveness (BAS-RR) subscale and PS, particularly in a subset of MS patients with increased WBC counts.

Keywords: Behavioral inhibition/approach system, multiple sclerosis, perceived stress, white blood cell.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 59
3710 Higher-Dimensional Quantum Cryptography

Authors: Bradley Christensen, Kevin T. McCusker, Daniel J. Gauthier, Daniel Kumor, Venkat Chandar, P. G. Kwiat

Abstract:

We report on a high-speed quantum cryptography system that utilizes simultaneous entanglement in polarization and in “time-bins". With multiple degrees of freedom contributing to the secret key, we can achieve over ten bits of random entropy per detected coincidence. In addition, we collect from multiple spots o the downconversion cone to further amplify the data rate, allowing usto achieve over 10 Mbits of secure key per second.

Keywords: Downconversion, Hyper-entanglement, Quantum Cryptography

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1694
3709 An Agent-Based Approach to Vehicle Routing Problem

Authors: Dariusz Barbucha, Piotr Jedrzejowicz

Abstract:

The paper proposes and validates a new method of solving instances of the vehicle routing problem (VRP). The approach is based on a multiple agent system paradigm. The paper contains the VRP formulation, an overview of the multiple agent environment used and a description of the proposed implementation. The approach is validated experimentally. The experiment plan and the discussion of experiment results follow.

Keywords: multi-agent systems, population-based methods, vehiclerouting problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2245
3708 Utilizing Virtual Worlds in Education: The Implications for Practice

Authors: Teresa Coffman, Mary Beth Klinger

Abstract:

Multi User Virtual Worlds are becoming a valuable educational tool. Learning experiences within these worlds focus on discovery and active experiences that both engage students and motivate them to explore new concepts. As educators, we need to explore these environments to determine how they can most effectively be used in our instructional practices. This paper explores the current application of virtual worlds to identify meaningful educational strategies that are being used to engage students and enhance teaching and learning.

Keywords: Virtual Environments, MUVEs, Constructivist, Distance Learning, Learner Centered.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1880
3707 Development of Active Learning Calculus Course for Biomedical Program

Authors: Mikhail Bouniaev

Abstract:

The paper reviews design and implementation of a Calculus Course required for the Biomedical Competency Based Program developed as a joint project between The University of Texas Rio Grande Valley, and the University of Texas’ Institute for Transformational Learning, from the theoretical perspective as presented in scholarly work on active learning, formative assessment, and on-line teaching. Following a four stage curriculum development process (objective, content, delivery, and assessment), and theoretical recommendations that guarantee effectiveness and efficiency of assessment in active learning, we discuss the practical recommendations on how to incorporate a strong formative assessment component to address disciplines’ needs, and students’ major needs. In design and implementation of this project, we used Constructivism and Stage-by-Stage Development of Mental Actions Theory recommendations.

Keywords: Active learning, assessment, Calculus, cognitive demand, constructivism, mathematics, Stage-by-Stage Development of Mental Action Theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1716
3706 Meta-Learning for Hierarchical Classification and Applications in Bioinformatics

Authors: Fabio Fabris, Alex A. Freitas

Abstract:

Hierarchical classification is a special type of classification task where the class labels are organised into a hierarchy, with more generic class labels being ancestors of more specific ones. Meta-learning for classification-algorithm recommendation consists of recommending to the user a classification algorithm, from a pool of candidate algorithms, for a dataset, based on the past performance of the candidate algorithms in other datasets. Meta-learning is normally used in conventional, non-hierarchical classification. By contrast, this paper proposes a meta-learning approach for more challenging task of hierarchical classification, and evaluates it in a large number of bioinformatics datasets. Hierarchical classification is especially relevant for bioinformatics problems, as protein and gene functions tend to be organised into a hierarchy of class labels. This work proposes meta-learning approach for recommending the best hierarchical classification algorithm to a hierarchical classification dataset. This work’s contributions are: 1) proposing an algorithm for splitting hierarchical datasets into new datasets to increase the number of meta-instances, 2) proposing meta-features for hierarchical classification, and 3) interpreting decision-tree meta-models for hierarchical classification algorithm recommendation.

Keywords: Algorithm recommendation, meta-learning, bioinformatics, hierarchical classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1370
3705 Students- uses of Wiki in Teacher Education: A Statistical Analysis

Authors: Said Hadjerrouit

Abstract:

Wikis are considered to be part of Web 2.0 technologies that potentially support collaborative learning and writing. Wikis provide opportunities for multiple users to work on the same document simultaneously. Most wikis have also a page for written group discussion. Nevertheless, wikis may be used in different ways depending on the pedagogy being used, and the constraints imposed by the course design. This work explores students- uses of wiki in teacher education. The analysis is based on a taxonomy for classifying students- activities and actions carried out on the wiki. The article also discusses the implications for using wikis as collaborative writing tools in teacher education.

Keywords: Behaviorism, collaborative writing, socioconstructivism, taxonomy, web 2.0 technology, wiki

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1928
3704 The Practice of Teaching Chemistry by the Application of Online Tests

Authors: Nikolina Ribarić

Abstract:

E-learning is most commonly defined as a set of applications and processes, such as Web-based learning, computer-based learning, virtual classrooms and digital collaboration, that enable access to instructional content through a variety of electronic media. The main goal of an e-learning system is learning, and the way to evaluate the impact of an e-learning system is by examining whether students learn effectively with the help of that system. Testmoz is a program for online preparation of knowledge evaluation assignments. The program provides teachers with computer support during the design of assignments and evaluating them. Students can review and solve assignments and also check the correctness of their solutions. Research into the increase of motivation by the practice of providing teaching content by applying online tests prepared in the Testmoz program, was carried out with students of the 8th grade of Ljubo Babić Primary School in Jastrebarsko. The students took the tests in their free time, from home, for an unlimited number of times. SPSS was used to process the data obtained by the research instruments. The results of the research showed that students preferred to practice teaching content, and achieved better educational results in chemistry, when they had access to online tests for repetition and practicing in relation to subject content which was checked after repetition and practicing in "the classical way" – i.e., solving assignments in a workbook or writing assignments in worksheets.

Keywords: Chemistry class, e-learning, online test, Testmoz.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 563
3703 Ensemble Learning with Decision Tree for Remote Sensing Classification

Authors: Mahesh Pal

Abstract:

In recent years, a number of works proposing the combination of multiple classifiers to produce a single classification have been reported in remote sensing literature. The resulting classifier, referred to as an ensemble classifier, is generally found to be more accurate than any of the individual classifiers making up the ensemble. As accuracy is the primary concern, much of the research in the field of land cover classification is focused on improving classification accuracy. This study compares the performance of four ensemble approaches (boosting, bagging, DECORATE and random subspace) with a univariate decision tree as base classifier. Two training datasets, one without ant noise and other with 20 percent noise was used to judge the performance of different ensemble approaches. Results with noise free data set suggest an improvement of about 4% in classification accuracy with all ensemble approaches in comparison to the results provided by univariate decision tree classifier. Highest classification accuracy of 87.43% was achieved by boosted decision tree. A comparison of results with noisy data set suggests that bagging, DECORATE and random subspace approaches works well with this data whereas the performance of boosted decision tree degrades and a classification accuracy of 79.7% is achieved which is even lower than that is achieved (i.e. 80.02%) by using unboosted decision tree classifier.

Keywords: Ensemble learning, decision tree, remote sensingclassification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2584
3702 An Interactive e-Learning Management System (e-LMS): A Solution to Tanzanian Secondary Schools' Education

Authors: A. Ellen Kalinga, R. B. Burchard Bagile, Lena Trojer

Abstract:

Information and Communications Technologies (ICT) has been integrated in education in many developing and developed countries alike, but the use of ICT in Tanzanian schools is dismal. Many Tanzanian secondary schools have no computers. The few schools with computers use them primarily for secretarial services and computer literacy training. The Tanzanian education system at other levels like secondary school level has to undergo substantial transformation, underscored by the growing application of new information and communication technology. This paper presents the e-readiness survey result from secondary schools in Tanzania. The paper also suggests how Tanzania can make use of the few present ICT resources to support and improve teaching and learning functions to improve performance and acquisition of knowledge by using e-Learning Management System (e-LMS).

Keywords: e-Learning, ICT, Object-Oriented, Participatorydesign.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2771
3701 Bilingual Gaming Kit to Teach English Language through Collaborative Learning

Authors: Sarayu Agarwal

Abstract:

This paper aims to teach English (secondary language) by bridging the understanding between the Regional language (primary language) and the English Language (secondary language). Here primary language is the one a person has learned from birth or within the critical period, while secondary language would be any other language one learns or speaks. The paper also focuses on evolving old teaching methods to a contemporary participatory model of learning and teaching. Pilot studies were conducted to gauge an understanding of student’s knowledge of the English language. Teachers and students were interviewed and their academic curriculum was assessed as a part of the initial study. Extensive literature study and design thinking principles were used to devise a solution to the problem. The objective is met using a holistic learning kit/card game to teach children word recognition, word pronunciation, word spelling and writing words. Implication of the paper is a noticeable improvement in the understanding and grasping of English language. With increasing usage and applicability of English as a second language (ESL) world over, the paper becomes relevant due to its easy replicability to any other primary or secondary language. Future scope of this paper would be transforming the idea of participatory learning into self-regulated learning methods. With the upcoming govt. learning centres in rural areas and provision of smart devices such as tablets, the development of the card games into digital applications seems very feasible.

Keywords: English as a second language, vocabulary-building, learning through gamification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1356
3700 Vague Multiple Criteria Decision Making Analysis Method for Fighter Aircraft Selection

Authors: C. Ardil

Abstract:

Fighter aircraft selection is one of the most critical strategies for defense multiple criteria decision-making analysis to increase the decisive power of air defense and its superior power in the defense strategy. Vague set theory is an adequate approach for modeling vagueness, uncertainty, and imprecision in decision-making problems. This study integrates vague set theory and the technique for order of preference by similarity to ideal solution (TOPSIS) to support fighter aircraft selection. The proposed method is applied in the selection of fighter aircraft for the Air Force. In the proposed approach, the ratings of alternatives and the importance weights of criteria for fighter aircraft selection are represented by the vague set theory. Finally, an illustrative example for fighter aircraft selection is given to demonstrate the applicability and effectiveness of the proposed approach. The fighter aircraft candidates were selected under six criteria including costability, payloadability, maneuverability, speedability, stealthility, and survivability. Analysis results show that the best fighter aircraft is selected with the highest closeness coefficient value. The proposed method can also be applied to solve other multiple criteria decision analysis problems. 

Keywords: fighter aircraft selection, vague set theory, fuzzy set theory, neutrosophic set theory, multiple criteria decision making analysis, MCDMA, TOPSIS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 541
3699 Power Efficient OFDM Signals with Reduced Symbol's Aperiodic Autocorrelation

Authors: Ibrahim M. Hussain

Abstract:

Three new algorithms based on minimization of autocorrelation of transmitted symbols and the SLM approach which are computationally less demanding have been proposed. In the first algorithm, autocorrelation of complex data sequence is minimized to a value of 1 that results in reduction of PAPR. Second algorithm generates multiple random sequences from the sequence generated in the first algorithm with same value of autocorrelation i.e. 1. Out of these, the sequence with minimum PAPR is transmitted. Third algorithm is an extension of the second algorithm and requires minimum side information to be transmitted. Multiple sequences are generated by modifying a fixed number of complex numbers in an OFDM data sequence using only one factor. The multiple sequences represent the same data sequence and the one giving minimum PAPR is transmitted. Simulation results for a 256 subcarrier OFDM system show that significant reduction in PAPR is achieved using the proposed algorithms.

Keywords: Aperiodic autocorrelation, OFDM, PAPR, SLM, wireless communication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1722
3698 A Comparison between Heuristic and Meta-Heuristic Methods for Solving the Multiple Traveling Salesman Problem

Authors: San Nah Sze, Wei King Tiong

Abstract:

The multiple traveling salesman problem (mTSP) can be used to model many practical problems. The mTSP is more complicated than the traveling salesman problem (TSP) because it requires determining which cities to assign to each salesman, as well as the optimal ordering of the cities within each salesman's tour. Previous studies proposed that Genetic Algorithm (GA), Integer Programming (IP) and several neural network (NN) approaches could be used to solve mTSP. This paper compared the results for mTSP, solved with Genetic Algorithm (GA) and Nearest Neighbor Algorithm (NNA). The number of cities is clustered into a few groups using k-means clustering technique. The number of groups depends on the number of salesman. Then, each group is solved with NNA and GA as an independent TSP. It is found that k-means clustering and NNA are superior to GA in terms of performance (evaluated by fitness function) and computing time.

Keywords: Multiple Traveling Salesman Problem, GeneticAlgorithm, Nearest Neighbor Algorithm, k-Means Clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3232
3697 The Impact of E-Learning on Medication Administration of Nursing Students: What Recent Studies Say?

Authors: Z. Karakus, Z. Ozer

Abstract:

Nurses are responsible for the care and treatment of individuals, as well as health maintenance and education. Medication administration is an important part of health promotion. The administration of a medicine is a common but important clinical procedure for nurses because of its complex structure. Therefore, medication errors are inevitable for nurses or nursing students. Medication errors can cause ineffective treatment, patient’s prolonged hospital stay, disablement or death. Additionally, medication errors affect the global economy adversely by increasing health costs. Hence, preventing or decreasing of medication errors is a critical and essential issue in nursing. Nurse educators are in pursuit of new teaching methods to teach students significance of medication application. In the light of technological developments of this age, e-learning has started to be accepted as an important teaching method. E-learning is the use of electronic media and information and communication technologies in education. It has advantages such as flexibility of time and place, lower costs, faster delivery and lower environmental impact. Students can make their own schedule and decide the learning method. This study is conducted to determine the impact of e-learning on medication administration of nursing students.

Keywords: E-Learning, Medication Administration, Nursing, Nursing Students.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2761
3696 Effects of Multimedia-based Instructional Designs for Arabic Language Learning among Pupils of Different Achievement Levels

Authors: Aldalalah, M. Osamah, Soon Fook Fong & Ababneh, W. Ziad

Abstract:

The purpose of this study is to investigate the effects of modality principles in instructional software among first grade pupils- achievements in the learning of Arabic Language. Two modes of instructional software were systematically designed and developed, audio with images (AI), and text with images (TI). The quasi-experimental design was used in the study. The sample consisted of 123 male and female pupils from IRBED Education Directorate, Jordan. The pupils were randomly assigned to any one of the two modes. The independent variable comprised the two modes of the instructional software, the students- achievement levels in the Arabic Language class and gender. The dependent variable was the achievements of the pupils in the Arabic Language test. The theoretical framework of this study was based on Mayer-s Cognitive Theory of Multimedia Learning. Four hypotheses were postulated and tested. Analyses of Variance (ANOVA) showed that pupils using the (AI) mode performed significantly better than those using (TI) mode. This study concluded that the audio with images mode was an important aid to learning as compared to text with images mode.

Keywords: Cognitive theory of Multimedia Learning, ModalityPrinciple, Multimedia, Arabic Language learning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2265
3695 A Hybrid System of Hidden Markov Models and Recurrent Neural Networks for Learning Deterministic Finite State Automata

Authors: Pavan K. Rallabandi, Kailash C. Patidar

Abstract:

In this paper, we present an optimization technique or a learning algorithm using the hybrid architecture by combining the most popular sequence recognition models such as Recurrent Neural Networks (RNNs) and Hidden Markov models (HMMs). In order to improve the sequence/pattern recognition/classification performance by applying a hybrid/neural symbolic approach, a gradient descent learning algorithm is developed using the Real Time Recurrent Learning of Recurrent Neural Network for processing the knowledge represented in trained Hidden Markov Models. The developed hybrid algorithm is implemented on automata theory as a sample test beds and the performance of the designed algorithm is demonstrated and evaluated on learning the deterministic finite state automata.

Keywords: Hybrid systems, Hidden Markov Models, Recurrent neural networks, Deterministic finite state automata.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2884
3694 Comparison of Deep Convolutional Neural Networks Models for Plant Disease Identification

Authors: Megha Gupta, Nupur Prakash

Abstract:

Identification of plant diseases has been performed using machine learning and deep learning models on the datasets containing images of healthy and diseased plant leaves. The current study carries out an evaluation of some of the deep learning models based on convolutional neural network architectures for identification of plant diseases. For this purpose, the publicly available New Plant Diseases Dataset, an augmented version of PlantVillage dataset, available on Kaggle platform, containing 87,900 images has been used. The dataset contained images of 26 diseases of 14 different plants and images of 12 healthy plants. The CNN models selected for the study presented in this paper are AlexNet, ZFNet, VGGNet (four models), GoogLeNet, and ResNet (three models). The selected models are trained using PyTorch, an open-source machine learning library, on Google Colaboratory. A comparative study has been carried out to analyze the high degree of accuracy achieved using these models. The highest test accuracy and F1-score of 99.59% and 0.996, respectively, were achieved by using GoogLeNet with Mini-batch momentum based gradient descent learning algorithm.

Keywords: comparative analysis, convolutional neural networks, deep learning, plant disease identification

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 638
3693 Computational Intelligence Hybrid Learning Approach to Time Series Forecasting

Authors: Chunshien Li, Jhao-Wun Hu, Tai-Wei Chiang, Tsunghan Wu

Abstract:

Time series forecasting is an important and widely popular topic in the research of system modeling. This paper describes how to use the hybrid PSO-RLSE neuro-fuzzy learning approach to the problem of time series forecasting. The PSO algorithm is used to update the premise parameters of the proposed prediction system, and the RLSE is used to update the consequence parameters. Thanks to the hybrid learning (HL) approach for the neuro-fuzzy system, the prediction performance is excellent and the speed of learning convergence is much faster than other compared approaches. In the experiments, we use the well-known Mackey-Glass chaos time series. According to the experimental results, the prediction performance and accuracy in time series forecasting by the proposed approach is much better than other compared approaches, as shown in Table IV. Excellent prediction performance by the proposed approach has been observed.

Keywords: forecasting, hybrid learning (HL), Neuro-FuzzySystem (NFS), particle swarm optimization (PSO), recursiveleast-squares estimator (RLSE), time series

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1559
3692 Determination of Skills Gap between School-Based Learning and Laboratory-Based Learning in Omar Al-Mukhtar University

Authors: Aisha Othman, Crinela Pislaru, Ahmed Impes

Abstract:

This paper provides an identification of the existing practical skills gap between school-based learning (SBL) and laboratory based learning (LBL) in the Computing Department within the Faculty of Science at Omar Al-Mukhtar University in Libya. A survey has been conducted and the first author has elicited the responses of two groups of stakeholders, namely the academic teachers and students.

The primary goal is to review the main strands of evidence available and argue that there is a gap between laboratory and school-based learning in terms of opportunities for experiment and application of skills. In addition, the nature of experimental work within the laboratory at Omar Al-Mukhtar University needs to be reconsidered. Another goal of our study was to identify the reasons for students’ poor performance in the laboratory and to determine how this poor performance can be eliminated by the modification of teaching methods. Bloom’s taxonomy of learning outcomes has been applied in order to classify questions and problems into categories, and the survey was formulated with reference to third year Computing Department students. Furthermore, to discover students’ opinions with respect to all the issues, an exercise was conducted. The survey provided questions related to what the students had learnt and how well they had learnt. We were also interested in feedback on how to improve the course and the final question provided an opportunity for such feedback.

Keywords: Bloom’s taxonomy, e-learning, Omar Al-Mukhtar University.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2426
3691 Continual Learning Using Data Generation for Hyperspectral Remote Sensing Scene Classification

Authors: Samiah Alammari, Nassim Ammour

Abstract:

When providing a massive number of tasks successively to a deep learning process, a good performance of the model requires preserving the previous tasks data to retrain the model for each upcoming classification. Otherwise, the model performs poorly due to the catastrophic forgetting phenomenon. To overcome this shortcoming, we developed a successful continual learning deep model for remote sensing hyperspectral image regions classification. The proposed neural network architecture encapsulates two trainable subnetworks. The first module adapts its weights by minimizing the discrimination error between the land-cover classes during the new task learning, and the second module tries to learn how to replicate the data of the previous tasks by discovering the latent data structure of the new task dataset. We conduct experiments on hyperspectral image (HSI) dataset on Indian Pines. The results confirm the capability of the proposed method.

Keywords: Continual learning, data reconstruction, remote sensing, hyperspectral image segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 233
3690 Combining ILP with Semi-supervised Learning for Web Page Categorization

Authors: Nuanwan Soonthornphisaj, Boonserm Kijsirikul

Abstract:

This paper presents a semi-supervised learning algorithm called Iterative-Cross Training (ICT) to solve the Web pages classification problems. We apply Inductive logic programming (ILP) as a strong learner in ICT. The objective of this research is to evaluate the potential of the strong learner in order to boost the performance of the weak learner of ICT. We compare the result with the supervised Naive Bayes, which is the well-known algorithm for the text classification problem. The performance of our learning algorithm is also compare with other semi-supervised learning algorithms which are Co-Training and EM. The experimental results show that ICT algorithm outperforms those algorithms and the performance of the weak learner can be enhanced by ILP system.

Keywords: Inductive Logic Programming, Semi-supervisedLearning, Web Page Categorization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1643
3689 A Novel Multiple Valued Logic OHRNS Modulo rn Adder Circuit

Authors: Mehdi Hosseinzadeh, Somayyeh Jafarali Jassbi, Keivan Navi

Abstract:

Residue Number System (RNS) is a modular representation and is proved to be an instrumental tool in many digital signal processing (DSP) applications which require high-speed computations. RNS is an integer and non weighted number system; it can support parallel, carry-free, high-speed and low power arithmetic. A very interesting correspondence exists between the concepts of Multiple Valued Logic (MVL) and Residue Number Arithmetic. If the number of levels used to represent MVL signals is chosen to be consistent with the moduli which create the finite rings in the RNS, MVL becomes a very natural representation for the RNS. There are two concerns related to the application of this Number System: reaching the most possible speed and the largest dynamic range. There is a conflict when one wants to resolve both these problem. That is augmenting the dynamic range results in reducing the speed in the same time. For achieving the most performance a method is considere named “One-Hot Residue Number System" in this implementation the propagation is only equal to one transistor delay. The problem with this method is the huge increase in the number of transistors they are increased in order m2 . In real application this is practically impossible. In this paper combining the Multiple Valued Logic and One-Hot Residue Number System we represent a new method to resolve both of these two problems. In this paper we represent a novel design of an OHRNS-based adder circuit. This circuit is useable for Multiple Valued Logic moduli, in comparison to other RNS design; this circuit has considerably improved the number of transistors and power consumption.

Keywords: Computer Arithmetic, Residue Number System, Multiple Valued Logic, One-Hot, VLSI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1843
3688 Applying Fuzzy Decision Making Approach to IT Outsourcing Supplier Selection

Authors: Gülcin Büyüközkan, Mehmet Sakir Ersoy

Abstract:

The decision of information technology (IT) outsourcing requires close attention to the evaluation of supplier selection process because the selection decision involves conflicting multiple criteria and is replete with complex decision making problems. Selecting the most appropriate suppliers is considered an important strategic decision that may impact the performance of outsourcing engagements. The objective of this paper is to aid decision makers to evaluate and assess possible IT outsourcing suppliers. An axiomatic design based fuzzy group decision making is adopted to evaluate supplier alternatives. Finally, a case study is given to demonstrate the potential of the methodology. KeywordsIT outsourcing, Supplier selection, Multi-criteria decision making, Axiomatic design, Fuzzy logic.

Keywords: IT outsourcing, Supplier selection, Multi-criteria decision making, Axiomatic design, Fuzzy logic

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1952
3687 A Survey of Sentiment Analysis Based on Deep Learning

Authors: Pingping Lin, Xudong Luo, Yifan Fan

Abstract:

Sentiment analysis is a very active research topic. Every day, Facebook, Twitter, Weibo, and other social media, as well as significant e-commerce websites, generate a massive amount of comments, which can be used to analyse peoples opinions or emotions. The existing methods for sentiment analysis are based mainly on sentiment dictionaries, machine learning, and deep learning. The first two kinds of methods rely on heavily sentiment dictionaries or large amounts of labelled data. The third one overcomes these two problems. So, in this paper, we focus on the third one. Specifically, we survey various sentiment analysis methods based on convolutional neural network, recurrent neural network, long short-term memory, deep neural network, deep belief network, and memory network. We compare their futures, advantages, and disadvantages. Also, we point out the main problems of these methods, which may be worthy of careful studies in the future. Finally, we also examine the application of deep learning in multimodal sentiment analysis and aspect-level sentiment analysis.

Keywords: Natural language processing, sentiment analysis, document analysis, multimodal sentiment analysis, deep learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2004
3686 Authentic Learning for Computer Network with Mobile Device-Based Hands-On Labware

Authors: Kai Qian, Ming Yang, Minzhe Guo, Prabir Bhattacharya, Lixin Tao

Abstract:

Computer network courses are essential parts of college computer science curriculum and hands-on networking experience is well recognized as an effective approach to help students understand better about the network concepts, the layered architecture of network protocols, and the dynamics of the networks. However, existing networking labs are usually server-based and relatively cumbersome, which require a certain level of specialty and resource to set up and maintain the lab environment. Many universities/colleges lack the resources and build-ups in this field and have difficulty to provide students with hands-on practice labs. A new affordable and easily-adoptable approach to networking labs is desirable to enhance network teaching and learning. In addition, current network labs are short on providing hands-on practice for modern wireless and mobile network learning. With the prevalence of smart mobile devices, wireless and mobile network are permeating into various aspects of our information society. The emerging and modern mobile technology provides computer science students with more authentic learning experience opportunities especially in network learning. A mobile device based hands-on labware can provide an excellent ‘real world’ authentic learning environment for computer network especially for wireless network study. In this paper, we present our mobile device-based hands-on labware (series of lab module) for computer network learning which is guided by authentic learning principles to immerse students in a real world relevant learning environment. We have been using this labware in teaching computer network, mobile security, and wireless network classes. The student feedback shows that students can learn more when they have hands-on authentic learning experience. 

Keywords: Mobile computing, android, network, labware.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2074
3685 Learning Factory for Changeability

Authors: Dennis Gossmann, Habil Peter Nyhuis

Abstract:

Amongst the consistently fluctuating conditions prevailing today, changeability represents a strategic key factor for a manufacturing company to achieve success on the international markets. In order to cope with turbulences and the increasing level of incalculability, not only the flexible design of production systems but in particular the employee as enabler of change provide the focus here. It is important to enable employees from manufacturing companies to participate actively in change events and in change decisions. To this end, the learning factory has been created, which is intended to serve the development of change-promoting competences and the sensitization of employees for the necessity of changes.

Keywords: Changeability, human resources, learning factory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1723