Search results for: Data Assimilation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7466

Search results for: Data Assimilation

1136 Medical Image Watermark and Tamper Detection Using Constant Correlation Spread Spectrum Watermarking

Authors: Peter U. Eze, P. Udaya, Robin J. Evans

Abstract:

Data hiding can be achieved by Steganography or invisible digital watermarking. For digital watermarking, both accurate retrieval of the embedded watermark and the integrity of the cover image are important. Medical image security in Teleradiology is one of the applications where the embedded patient record needs to be extracted with accuracy as well as the medical image integrity verified. In this research paper, the Constant Correlation Spread Spectrum digital watermarking for medical image tamper detection and accurate embedded watermark retrieval is introduced. In the proposed method, a watermark bit from a patient record is spread in a medical image sub-block such that the correlation of all watermarked sub-blocks with a spreading code, W, would have a constant value, p. The constant correlation p, spreading code, W and the size of the sub-blocks constitute the secret key. Tamper detection is achieved by flagging any sub-block whose correlation value deviates by more than a small value, ℇ, from p. The major features of our new scheme include: (1) Improving watermark detection accuracy for high-pixel depth medical images by reducing the Bit Error Rate (BER) to Zero and (2) block-level tamper detection in a single computational process with simultaneous watermark detection, thereby increasing utility with the same computational cost.

Keywords: Constant correlation, medical image, spread spectrum, tamper detection, watermarking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 976
1135 Evaluating Machine Learning Techniques for Activity Classification in Smart Home Environments

Authors: Talal Alshammari, Nasser Alshammari, Mohamed Sedky, Chris Howard

Abstract:

With the widespread adoption of the Internet-connected devices, and with the prevalence of the Internet of Things (IoT) applications, there is an increased interest in machine learning techniques that can provide useful and interesting services in the smart home domain. The areas that machine learning techniques can help advance are varied and ever-evolving. Classifying smart home inhabitants’ Activities of Daily Living (ADLs), is one prominent example. The ability of machine learning technique to find meaningful spatio-temporal relations of high-dimensional data is an important requirement as well. This paper presents a comparative evaluation of state-of-the-art machine learning techniques to classify ADLs in the smart home domain. Forty-two synthetic datasets and two real-world datasets with multiple inhabitants are used to evaluate and compare the performance of the identified machine learning techniques. Our results show significant performance differences between the evaluated techniques. Such as AdaBoost, Cortical Learning Algorithm (CLA), Decision Trees, Hidden Markov Model (HMM), Multi-layer Perceptron (MLP), Structured Perceptron and Support Vector Machines (SVM). Overall, neural network based techniques have shown superiority over the other tested techniques.

Keywords: Activities of daily living, classification, internet of things, machine learning, smart home.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1778
1134 Budget and the Performance of Public Enterprises: A Study of Selected Public Enterprises in Nasarawa State Nigeria (2009-2013)

Authors: Dalhatu, Musa Yusha’u, Shuaibu Sidi Safiyanu, Haliru Musa Hussaini

Abstract:

This study examined budget and performance of public enterprises in Nasarawa State, Nigeria in a period of 2009-2013. The study utilized secondary sources of data obtained from four selected parastatals’ budget allocation and revenue generation for the period under review. The simple correlation coefficient was used to analyze the extent of the relationship between budget allocation and revenue generation of the parastatals. Findings revealed varying results. There was positive (0.21) and weak correlation between expenditure and revenue of Nasarawa Investment and Property Development Company (NIPDC). However, the study further revealed that there was strong and weak negative relationship in the revenue and expenditure of the following parastatals over the period under review. Viz: Nasarawa State Water Board, -0.27 (weak), Nasarawa State Broadcasting Service, -0.52 (Strong) and Nasarawa State College of Agriculture, -0.36 (weak). The study therefore, recommends that government should increase its investments in NIPDC to enhance efficiency and profitability. It also recommends that government should strengthen its fiscal responsibility, accountability and transparency in public parastatals.

Keywords: Allocation, Budget, Public Enterprises, Parastatals, Performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 988
1133 Evaluating Urban Land Expansion Using Geographic Information System and Remote Sensing in Kabul City, Afghanistan

Authors: Ahmad Sharif Ahmadi, Yoshitaka Kajita

Abstract:

With massive population expansion and fast economic development in last decade, urban land has increasingly expanded and formed high informal development territory in Kabul city. This paper investigates integrated urbanization trends in Kabul city since the formation of the basic structure of the present city using GIS and remote sensing. This study explores the spatial and temporal difference of urban land expansion and land use categories among different time intervals, 1964-1978 and 1978-2008 from 1964 to 2008 in Kabul city. Furthermore, the goal of this paper is to understand the extent of urban land expansion and the factors driving urban land expansion in Kabul city. Many factors like population expansion, the return of refugees from neighboring countries and significant economic growth of the city affected urban land expansion. Across all the study area urban land expansion rate, population expansion rate and economic growth rate have been compared to analyze the relationship of driving forces with urban land expansion. Based on urban land change data detected by interpreting land use maps, it was found that in the entire study area the urban territory has been expanded by 14 times between 1964 and 2008.

Keywords: GIS, Kabul city, land use, urban land expansion, urbanization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1668
1132 A Deep Learning Framework for Polarimetric SAR Change Detection Using Capsule Network

Authors: Sanae Attioui, Said Najah

Abstract:

The Earth's surface is constantly changing through forces of nature and human activities. Reliable, accurate, and timely change detection is critical to environmental monitoring, resource management, and planning activities. Recently, interest in deep learning algorithms, especially convolutional neural networks, has increased in the field of image change detection due to their powerful ability to extract multi-level image features automatically. However, these networks are prone to drawbacks that limit their applications, which reside in their inability to capture spatial relationships between image instances, as this necessitates a large amount of training data. As an alternative, Capsule Network has been proposed to overcome these shortcomings. Although its effectiveness in remote sensing image analysis has been experimentally verified, its application in change detection tasks remains very sparse. Motivated by its greater robustness towards improved hierarchical object representation, this study aims to apply a capsule network for PolSAR image Change Detection. The experimental results demonstrate that the proposed change detection method can yield a significantly higher detection rate compared to methods based on convolutional neural networks.

Keywords: Change detection, capsule network, deep network, Convolutional Neural Networks, polarimetric synthetic aperture radar images, PolSAR images.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 508
1131 Availability, Accessibility and Utilization of Information and Communication Technology in Teaching and Learning Islamic Studies in Colleges of Education, North-Eastern, Nigeria

Authors: Bello Ali

Abstract:

The use of Information and Communication Technology (ICT) in tertiary institutions by lecturers and students has become a necessity for the enhancement of quality teaching and learning. This study examined availability, accessibility and utilization of ICT in Teaching-Learning Islamic Studies in Colleges of Education, North-East, Nigeria. The study adopted multi-stage sampling technique, in which, five out of the eleven Colleges of Education (both Federal and State owned) were purposively selected for the study. Primary data was drawn from the respondents by the use of questionnaire, interviews and observations. The results of the study, generally, indicate that the availability and accessibility to ICT facilities in Colleges of Education in North-East, Nigeria, especially in teaching/learning delivery of Islamic studies were relatively inadequate and rare to lecturers and students. The study further reveals that the respondents’ level of utilization of ICT is low and only few computer packages and internet services were involved in the ICT utilization, which is yet to reach the real expected situation of the globalization and advancement in the application of ICT if compared to other parts of the world, as far as the teaching and learning of Islamic studies is concerned. Observations and conclusion were drawn from the findings and finally, recommendations on how to improve on ICT availability, accessibility and utilization in teaching/ learning were suggested.

Keywords: Accessibility, availability, college of education, ICT, Islamic Studies, learning, North-Eastern, teaching, utilization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1140
1130 The Relation between the Organizational Trust Level and Organizational Justice Perceptions of Staff in Konya Municipality: A Theoretical and Empirical Study

Authors: Handan Ertaş

Abstract:

The aim of the study is to determine the relationship between organizational trust level and organizational justice of Municipality officials. Correlational method has been used via descriptive survey model and Organizational Justice Perception Scale, Organizational Trust Inventory and Interpersonal Trust Scale have been applied to 353 participants who work in Konya Metropolitan Municipality and central district municipalities in the study. Frequency as statistical method, Independent Samples t test for binary groups, One Way-ANOVA analyses for multi-groups and Pearson Correlation analysis have been used to determine the relation in the data analysis process.It has been determined in the outcomes of the study that participants have high level of organizational trust, “Interpersonal Trust” is in the first place and there is a significant difference in the favor of male officials in terms of Trust on the Organization Itself and Interpersonal Trust. It has also been understood that officials in district municipalities have higher perception level in all dimensions, there is a significant difference in Trust on the Organization sub-dimension and work status is an important factor on organizational trust perception. Moreover, the study has shown that organizational justice implementations are important in raising trust of official on the organization, administrator and colleagues, and there is a parallel relation between Organizational Trust components and Organizational Trust dimensions.

Keywords: Konya, Organizational Justice, Organizational.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1872
1129 Utilization Juice Wastes as Corn Replacement in the Broiler Diet

Authors: Yose Rizal, Maria Endo Mahata, Mira Andriani, Guoyao Wu

Abstract:

An experiment was conducted with 80 unsexed broilers of the Arbor Acress strain to determine the capability of a carrot and fruit juice wastes mixture (carrot, apple, manggo, avocado, orange, melon and Dutch egg plant) in the same proportion for replacing corn in broiler diet. This study involved a completely randomized design (CRD) with 5 treatments (0, 5, 10, 15, and 20% of juice wastes mixture in diets) and 4 replicates per treatment. Diets were isonitrogenous (22% crude protein) and isocaloric (3000 kcal/kg diet). Measured variables were feed consumption, average daily gain, feed conversion, as well as percentages of abdominal fat pad, carcass, digestive organs (liver, pancreas and gizzard), and heart. Data were analyzed by analysis of variance for CRD. Increasing juice wastes mixture levels in diets increased feed consumption (P<0.05) and average daily gain (P<0.01), while improving feed utilization efficiency (P<0.05). These treatments also affected (P<0.05) abdominal fat pad percentage but had no effect (P>0.05) on carcass, liver, pancreas, gizzard or heart percentages. In conclusion, up to 20% of juice wastes mixture could be included for the broiler diet to effectively replace up to 40% corn in the diet.

Keywords: average daily gain, feed consumption, feedconversion, juice waste mixture

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1816
1128 Solar Radiation Time Series Prediction

Authors: Cameron Hamilton, Walter Potter, Gerrit Hoogenboom, Ronald McClendon, Will Hobbs

Abstract:

A model was constructed to predict the amount of solar radiation that will make contact with the surface of the earth in a given location an hour into the future. This project was supported by the Southern Company to determine at what specific times during a given day of the year solar panels could be relied upon to produce energy in sufficient quantities. Due to their ability as universal function approximators, an artificial neural network was used to estimate the nonlinear pattern of solar radiation, which utilized measurements of weather conditions collected at the Griffin, Georgia weather station as inputs. A number of network configurations and training strategies were utilized, though a multilayer perceptron with a variety of hidden nodes trained with the resilient propagation algorithm consistently yielded the most accurate predictions. In addition, a modeled direct normal irradiance field and adjacent weather station data were used to bolster prediction accuracy. In later trials, the solar radiation field was preprocessed with a discrete wavelet transform with the aim of removing noise from the measurements. The current model provides predictions of solar radiation with a mean square error of 0.0042, though ongoing efforts are being made to further improve the model’s accuracy.

Keywords: Artificial Neural Networks, Resilient Propagation, Solar Radiation, Time Series Forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2767
1127 Optimization of Ethanol Fermentation from Pineapple Peel Extract Using Response Surface Methodology (RSM)

Authors: Nadya Hajar, Zainal, S., Atikah, O., Tengku Elida, T. Z. M.

Abstract:

Ethanol has been known for a long time, being perhaps the oldest product obtained through traditional biotechnology fermentation. Agriculture waste as substrate in fermentation is vastly discussed as alternative to replace edible food and utilization of organic material. Pineapple peel, highly potential source as substrate is a by-product of the pineapple processing industry. Bio-ethanol from pineapple (Ananas comosus) peel extract was carried out by controlling fermentation without any treatment. Saccharomyces ellipsoides was used as inoculum in this fermentation process as it is naturally found at the pineapple skin. In this study, the capability of Response Surface Methodology (RSM) for optimization of ethanol production from pineapple peel extract using Saccharomyces ellipsoideus in batch fermentation process was investigated. Effect of five test variables in a defined range of inoculum concentration 6- 14% (v/v), pH (4.0-6.0), sugar concentration (14-22°Brix), temperature (24-32°C) and time of incubation (30-54 hrs) on the ethanol production were evaluated. Data obtained from experiment were analyzed with RSM of MINITAB Software (Version 15) whereby optimum ethanol concentration of 8.637% (v/v) was determined. The optimum condition of 14% (v/v) inoculum concentration, pH 6, 22°Brix, 26°C and 30hours of incubation. The significant regression equation or model at the 5% level with correlation value of 99.96% was also obtained.

Keywords: Bio-ethanol, pineapple peel extract, Response Surface Methodology (RSM), Saccharomyces ellipsoideus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6104
1126 Religion and Sustainable Development: A Comparative Study of Buddhist and Christian Farmers’ Contribution to the Environmental Protection in Taiwan

Authors: Jijimon Alakkalam Joseph

Abstract:

The UN 2030 Agenda for Sustainable Development claims to be a comprehensive and integrated plan of action for prosperity for people and the planet, including almost all dimensions of human existence. Nevertheless, the religious dimension of human existence has been kept away from development discussions. Care for the earth is one of the vital aspects of sustainable development. Farmers all over the world contribute much to environmental protection. Most farmers are religious believers and religious ideologies influence their agricultural practices. This nexus between faith and agriculture has forced policymakers to include religion in development discussions. This paper delves deeper into this religion and sustainable development connection. Buddhism and Christianity have contributed much to environmental protection in Taiwan. However, interviews conducted among 40 Taiwanese farmers (10 male and female farmers from Buddhism and Christianity) show that their faith experiences make them relate to the natural environment differently. Most of the Buddhist farmers interviewed admitted that they chose their religious adherence, while most of the Christian farmers inherited their faith. The in-depth analysis of the interview data collected underlines the close relationship between religion and sustainable development. More importantly, concerning their intention to care for the earth, farmers whose religious adherence is ‘chosen’ are self-motivated and more robust compared to those whose religious adherence is ‘inherited’.

Keywords: Buddhism, Christianity, environmental protection, sustainable development.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 220
1125 Addressing Scalability Issues of Named Entity Recognition Using Multi-Class Support Vector Machines

Authors: Mona Soliman Habib

Abstract:

This paper explores the scalability issues associated with solving the Named Entity Recognition (NER) problem using Support Vector Machines (SVM) and high-dimensional features. The performance results of a set of experiments conducted using binary and multi-class SVM with increasing training data sizes are examined. The NER domain chosen for these experiments is the biomedical publications domain, especially selected due to its importance and inherent challenges. A simple machine learning approach is used that eliminates prior language knowledge such as part-of-speech or noun phrase tagging thereby allowing for its applicability across languages. No domain-specific knowledge is included. The accuracy measures achieved are comparable to those obtained using more complex approaches, which constitutes a motivation to investigate ways to improve the scalability of multiclass SVM in order to make the solution more practical and useable. Improving training time of multi-class SVM would make support vector machines a more viable and practical machine learning solution for real-world problems with large datasets. An initial prototype results in great improvement of the training time at the expense of memory requirements.

Keywords: Named entity recognition, support vector machines, language independence, bioinformatics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1692
1124 Real Time Acquisition and Analysis of Neural Response for Rehabilitative Control

Authors: Dipali Bansal, Rashima Mahajan, Shweta Singh, Dheeraj Rathee, Sujit Roy

Abstract:

Non-invasive Brain Computer Interface like Electroencephalography (EEG) which directly taps neurological signals, is being widely explored these days to connect paralytic patients/elderly with the external environment. However, in India the research is confined to laboratory settings and is not reaching the mass for rehabilitation purposes. An attempt has been made in this paper to analyze real time acquired EEG signal using cost effective and portable headset unit EMOTIV. Signal processing of real time acquired EEG is done using EEGLAB in MATLAB and EDF Browser application software platforms. Independent Component Analysis algorithm of EEGLAB is explored to identify deliberate eye blink in the attained neural signal. Time Frequency transforms and Data statistics obtained using EEGLAB along with component activation results of EDF browser clearly indicate voluntary eye blink in AF3 channel. The spectral analysis indicates dominant frequency component at 1.536000Hz representing the delta wave component of EEG during voluntary eye blink action. An algorithm is further designed to generate an active high signal based on thoughtful eye blink that can be used for plethora of control applications for rehabilitation.

Keywords: Brain Computer Interface, EDF Browser, EEG, EEGLab, EMOTIV, Real time Acquisition

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3240
1123 Continuous Fixed Bed Reactor Application for Decolourization of Textile Effluent by Adsorption on NaOH Treated Eggshell

Authors: M. Chafi, S. Akazdam, C. Asrir, L. Sebbahi, B. Gourich, N. Barka, M. Essahli

Abstract:

Fixed bed adsorption has become a frequently used industrial application in wastewater treatment processes. Various low cost adsorbents have been studied for their applicability in treatment of different types of effluents. In this work, the intention of the study was to explore the efficacy and feasibility for azo dye, Acid Orange 7 (AO7) adsorption onto fixed bed column of NaOH Treated eggshell (TES). The effect of various parameters like flow rate, initial dye concentration, and bed height were exploited in this study. The studies confirmed that the breakthrough curves were dependent on flow rate, initial dye concentration solution of AO7 and bed depth. The Thomas, Yoon–Nelson, and Adams and Bohart models were analysed to evaluate the column adsorption performance. The adsorption capacity, rate constant and correlation coefficient associated to each model for column adsorption was calculated and mentioned. The column experimental data were fitted well with Thomas model with coefficients of correlation R2 ≥0.93 at different conditions but the Yoon–Nelson, BDST and Bohart–Adams model (R2=0.911), predicted poor performance of fixed-bed column. The (TES) was shown to be suitable adsorbent for adsorption of AO7 using fixed-bed adsorption column.

Keywords: Adsorption models, acid orange 7, bed depth, breakthrough, dye adsorption, fixed-bed column, treated eggshell.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2272
1122 Time/Temperature-Dependent Finite Element Model of Laminated Glass Beams

Authors: Alena Zemanová, Jan Zeman, Michal Šejnoha

Abstract:

The polymer foil used for manufacturing of laminated glass members behaves in a viscoelastic manner with temperature dependance. This contribution aims at incorporating the time/temperature-dependent behavior of interlayer to our earlier elastic finite element model for laminated glass beams. The model is based on a refined beam theory: each layer behaves according to the finite-strain shear deformable formulation by Reissner and the adjacent layers are connected via the Lagrange multipliers ensuring the inter-layer compatibility of a laminated unit. The time/temperature-dependent behavior of the interlayer is accounted for by the generalized Maxwell model and by the time-temperature superposition principle due to the Williams, Landel, and Ferry. The resulting system is solved by the Newton method with consistent linearization and the viscoelastic response is determined incrementally by the exponential algorithm. By comparing the model predictions against available experimental data, we demonstrate that the proposed formulation is reliable and accurately reproduces the behavior of the laminated glass units.

Keywords: Laminated glass, finite element method, finite-strain Reissner model, Lagrange multipliers, generalized Maxwell model, Williams-Landel-Ferry equation, Newton method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1686
1121 Georgia Case: Tourism Expenses of International Visitors on the Basis of Growing Attractiveness

Authors: Nino Abesadze, Marine Mindorashvili, Nino Paresashvili

Abstract:

At present actual tourism indicators cannot be calculated in Georgia, making it impossible to perform their quantitative analysis. Therefore, the study conducted by us is highly important from a theoretical as well as practical standpoint. The main purpose of the article is to make complex statistical analysis of tourist expenses of foreign visitors and to calculate statistical attractiveness indices of the tourism potential of Georgia. During the research, the method involving random and proportional selection has been applied. Computer software SPSS was used to compute statistical data for corresponding analysis. Corresponding methodology of tourism statistics was implemented according to international standards. Important information was collected and grouped from major Georgian airports, and a representative population of foreign visitors and a rule of selection of respondents were determined. The results show a trend of growth in tourist numbers and the share of tourists from post-soviet countries are constantly increasing. The level of satisfaction with tourist facilities and quality of service has improved, but still we have a problem of disparity between the service quality and the prices. The design of tourist expenses of foreign visitors is diverse; competitiveness of tourist products of Georgian tourist companies is higher. Attractiveness of popular cities of Georgia has increased by 43%.

Keywords: Tourist, expenses, indexes, statistics, analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 920
1120 Design and Implementation of a Counting and Differentiation System for Vehicles through Video Processing

Authors: Derlis Gregor, Kevin Cikel, Mario Arzamendia, Raúl Gregor

Abstract:

This paper presents a self-sustaining mobile system for counting and classification of vehicles through processing video. It proposes a counting and classification algorithm divided in four steps that can be executed multiple times in parallel in a SBC (Single Board Computer), like the Raspberry Pi 2, in such a way that it can be implemented in real time. The first step of the proposed algorithm limits the zone of the image that it will be processed. The second step performs the detection of the mobile objects using a BGS (Background Subtraction) algorithm based on the GMM (Gaussian Mixture Model), as well as a shadow removal algorithm using physical-based features, followed by morphological operations. In the first step the vehicle detection will be performed by using edge detection algorithms and the vehicle following through Kalman filters. The last step of the proposed algorithm registers the vehicle passing and performs their classification according to their areas. An auto-sustainable system is proposed, powered by batteries and photovoltaic solar panels, and the data transmission is done through GPRS (General Packet Radio Service)eliminating the need of using external cable, which will facilitate it deployment and translation to any location where it could operate. The self-sustaining trailer will allow the counting and classification of vehicles in specific zones with difficult access.

Keywords: Intelligent transportation systems, object detection, video processing, road traffic, vehicle counting, vehicle classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1627
1119 Analysis of Attention to the Confucius Institute from Domestic and Foreign Mainstream Media

Authors: Wei Yang, Xiaohui Cui, Weiping Zhu, Liqun Liu

Abstract:

The rapid development of the Confucius Institute is attracting more and more attention from mainstream media around the world. Mainstream media plays a large role in public information dissemination and public opinion. This study presents efforts to analyze the correlation and functional relationship between domestic and foreign mainstream media by analyzing the amount of reports on the Confucius Institute. Three kinds of correlation calculation methods, the Pearson correlation coefficient (PCC), the Spearman correlation coefficient (SCC), and the Kendall rank correlation coefficient (KCC), were applied to analyze the correlations among mainstream media from three regions: mainland of China; Hong Kong and Macao (the two special administration regions of China denoted as SARs); and overseas countries excluding China, such as the United States, England, and Canada. Further, the paper measures the functional relationships among the regions using a regression model. The experimental analyses found high correlations among mainstream media from the different regions. Additionally, we found that there is a linear relationship between the mainstream media of overseas countries and those of the SARs by analyzing the amount of reports on the Confucius Institute based on a data set obtained by crawling the websites of 106 mainstream media during the years 2004 to 2014.

Keywords: Confucius Institute, correlation analysis, mainstream media, regression model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1370
1118 Meteorological Risk Assessment for Ships with Fuzzy Logic Designer

Authors: Ismail Karaca, Ridvan Saracoglu, Omer Soner

Abstract:

Fuzzy Logic, an advanced method to support decision-making, is used by various scientists in many disciplines. Fuzzy programming is a product of fuzzy logic, fuzzy rules, and implication. In marine science, fuzzy programming for ships is dramatically increasing together with autonomous ship studies. In this paper, a program to support the decision-making process for ship navigation has been designed. The program is produced in fuzzy logic and rules, by taking the marine accidents and expert opinions into account. After the program was designed, the program was tested by 46 ship accidents reported by the Transportation Safety Investigation Center of Turkey. Wind speed, sea condition, visibility, day/night ratio have been used as input data. They have been converted into a risk factor within the Fuzzy Logic Designer application and fuzzy rules set by marine experts. Finally, the expert's meteorological risk factor for each accident is compared with the program's risk factor, and the error rate was calculated. The main objective of this study is to improve the navigational safety of ships, by using the advance decision support model. According to the study result, fuzzy programming is a robust model that supports safe navigation.

Keywords: Calculation of risk factor, fuzzy logic, fuzzy programming for ship, safe navigation of ships.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 831
1117 Alternative Methods to Rank the Impact of Object Oriented Metrics in Fault Prediction Modeling using Neural Networks

Authors: Kamaldeep Kaur, Arvinder Kaur, Ruchika Malhotra

Abstract:

The aim of this paper is to rank the impact of Object Oriented(OO) metrics in fault prediction modeling using Artificial Neural Networks(ANNs). Past studies on empirical validation of object oriented metrics as fault predictors using ANNs have focused on the predictive quality of neural networks versus standard statistical techniques. In this empirical study we turn our attention to the capability of ANNs in ranking the impact of these explanatory metrics on fault proneness. In ANNs data analysis approach, there is no clear method of ranking the impact of individual metrics. Five ANN based techniques are studied which rank object oriented metrics in predicting fault proneness of classes. These techniques are i) overall connection weights method ii) Garson-s method iii) The partial derivatives methods iv) The Input Perturb method v) the classical stepwise methods. We develop and evaluate different prediction models based on the ranking of the metrics by the individual techniques. The models based on overall connection weights and partial derivatives methods have been found to be most accurate.

Keywords: Artificial Neural Networks (ANNS), Backpropagation, Fault Prediction Modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1761
1116 A Study of Two Disease Models: With and Without Incubation Period

Authors: H. C. Chinwenyi, H. D. Ibrahim, J. O. Adekunle

Abstract:

The incubation period is defined as the time from infection with a microorganism to development of symptoms. In this research, two disease models: one with incubation period and another without incubation period were studied. The study involves the use of a  mathematical model with a single incubation period. The test for the existence and stability of the disease free and the endemic equilibrium states for both models were carried out. The fourth order Runge-Kutta method was used to solve both models numerically. Finally, a computer program in MATLAB was developed to run the numerical experiments. From the results, we are able to show that the endemic equilibrium state of the model with incubation period is locally asymptotically stable whereas the endemic equilibrium state of the model without incubation period is unstable under certain conditions on the given model parameters. It was also established that the disease free equilibrium states of the model with and without incubation period are locally asymptotically stable. Furthermore, results from numerical experiments using empirical data obtained from Nigeria Centre for Disease Control (NCDC) showed that the overall population of the infected people for the model with incubation period is higher than that without incubation period. We also established from the results obtained that as the transmission rate from susceptible to infected population increases, the peak values of the infected population for the model with incubation period decrease and are always less than those for the model without incubation period.

Keywords: Asymptotic stability, incubation period, Routh-Hurwitz criterion, Runge Kutta method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 692
1115 An Archetype to Sustain Knowledge Management Systems through Intranet

Authors: B. T. Sayed, Nafaâ Jabeur, M. Aref

Abstract:

Creation and maintenance of knowledge management systems has been recognized as an important research area. Consecutively lack of accurate results from knowledge management systems limits the organization to apply their knowledge management processes. This leads to a failure in getting the right information to the right people at the right time thus followed by a deficiency in decision making processes. An Intranet offers a powerful tool for communication and collaboration, presenting data and information, and the means that creates and shares knowledge, all in one easily accessible place. This paper proposes an archetype describing how a knowledge management system, with the support of intranet capabilities, could very much increase the accuracy of capturing, storing and retrieving knowledge based processes thereby increasing the efficiency of the system. This system will expect a critical mass of usage, by the users, for intranet to function as knowledge management systems. This prototype would lead to a design of an application that would impose creation and maintenance of an effective knowledge management system through intranet. The aim of this paper is to introduce an effective system to handle capture, store and distribute knowledge management in a form that may not lead to any failure which exists in most of the systems. The methodology used in the system would require all the employees, in the organization, to contribute the maximum to deliver the system to a successful arena. The system is still in its initial mode and thereby the authors are under the process to practically implement the ideas, as mentioned in the system, to produce satisfactory results.

Keywords: Knowledge Management Systems, Intranet, Methodology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2002
1114 Development of Reliable Web-Based Laboratories for Developing Countries

Authors: Teyana S. Sapula, Damian D. Haule

Abstract:

In online context, the design and implementation of effective remote laboratories environment is highly challenging on account of hardware and software needs. This paper presents the remote laboratory software framework modified from ilab shared architecture (ISA). The ISA is a framework which enables students to remotely acccess and control experimental hardware using internet infrastructure. The need for remote laboratories came after experiencing problems imposed by traditional laboratories. Among them are: the high cost of laboratory equipment, scarcity of space, scarcity of technical personnel along with the restricted university budget creates a significant bottleneck on building required laboratory experiments. The solution to these problems is to build web-accessible laboratories. Remote laboratories allow students and educators to interact with real laboratory equipment located anywhere in the world at anytime. Recently, many universities and other educational institutions especially in third world countries rely on simulations because they do not afford the experimental equipment they require to their students. Remote laboratories enable users to get real data from real-time hand-on experiments. To implement many remote laboratories, the system architecture should be flexible, understandable and easy to implement, so that different laboratories with different hardware can be deployed easily. The modifications were made to enable developers to add more equipment in ISA framework and to attract the new developers to develop many online laboratories.

Keywords: Batched, ISA, labserver, servicebroker.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1431
1113 Effects of Various Wavelet Transforms in Dynamic Analysis of Structures

Authors: Seyed Sadegh Naseralavi, Sadegh Balaghi, Ehsan Khojastehfar

Abstract:

Time history dynamic analysis of structures is considered as an exact method while being computationally intensive. Filtration of earthquake strong ground motions applying wavelet transform is an approach towards reduction of computational efforts, particularly in optimization of structures against seismic effects. Wavelet transforms are categorized into continuum and discrete transforms. Since earthquake strong ground motion is a discrete function, the discrete wavelet transform is applied in the present paper. Wavelet transform reduces analysis time by filtration of non-effective frequencies of strong ground motion. Filtration process may be repeated several times while the approximation induces more errors. In this paper, strong ground motion of earthquake has been filtered once applying each wavelet. Strong ground motion of Northridge earthquake is filtered applying various wavelets and dynamic analysis of sampled shear and moment frames is implemented. The error, regarding application of each wavelet, is computed based on comparison of dynamic response of sampled structures with exact responses. Exact responses are computed by dynamic analysis of structures applying non-filtered strong ground motion.

Keywords: Wavelet transform, computational error, computational duration, strong ground motion data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1377
1112 Assessment of Health and Safety Item on Construction Sites in Ondo State

Authors: Ikumapayi Catherine Mayowa

Abstract:

The well been of human beings on construction site is very important, many man power had been lost through accidents which kills or make workers physically unfit to carry out construction activities, these in turn have multiple effects on the whole economy. Thus it is necessary to put all safety items and regulations in place before construction activities can commence. This study was carried out in Ondo state of Nigeria to known and analyse the state of health and safety of construction workers in the state. The study was done using first hand observation method, 50 construction project sites were visited in 10 major towns of Ondo state, questionnaires were distributed and the results were analysed. The result show that construction workers are being exposed to a lot of construction site hazards due to lack of inadequate safety programmes and nonprovision of appropriate safety materials for workers on site. From the data gotten for each site visited and the statistical analysis, it can be concluded that occurrence of accident on construction sites depends significantly on the available safety facilities on the sites. The result of the regression statistics show that the level of significant of the dependence of occurrence of accident on the availability of safety items on site is 0.0362 which is less than 0.05 maximum significant level required. Therefore a vital way of sustaining our building strategy is by given a detail attention to provision of adequate health and safety items on construction sites which will reduce the occurrence of accident, loss of man power and death of skilled workers among others.

Keywords: Construction sites, health, safety, welfare.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1703
1111 Design and Fabrication of a Programmable Stiffness-Sensitive Gripper for Object Handling

Authors: Mehdi Modabberifar, Sanaz Jabary, Mojtaba Ghodsi

Abstract:

Stiffness sensing is an important issue in medical diagnostic, robotics surgery, safe handling, and safe grasping of objects in production lines. Detecting and obtaining the characteristics in dwelling lumps embedded in a soft tissue and safe removing and handling of detected lumps is needed in surgery. Also in industry, grasping and handling an object without damaging in a place where it is not possible to access a human operator is very important. In this paper, a method for object handling is presented. It is based on the use of an intelligent gripper to detect the object stiffness and then setting a programmable force for grasping the object to move it. The main components of this system includes sensors (sensors for measuring force and displacement), electrical (electrical and electronic circuits, tactile data processing and force control system), mechanical (gripper mechanism and driving system for the gripper) and the display unit. The system uses a rotary potentiometer for measuring gripper displacement. A microcontroller using the feedback received by the load cell, mounted on the finger of the gripper, calculates the amount of stiffness, and then commands the gripper motor to apply a certain force on the object. Results of Experiments on some samples with different stiffness show that the gripper works successfully. The gripper can be used in haptic interfaces or robotic systems used for object handling.

Keywords: Gripper, haptic, stiffness, robotic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1157
1110 The Practice of Teaching Chemistry by the Application of Online Tests

Authors: Nikolina Ribarić

Abstract:

E-learning is most commonly defined as a set of applications and processes, such as Web-based learning, computer-based learning, virtual classrooms and digital collaboration, that enable access to instructional content through a variety of electronic media. The main goal of an e-learning system is learning, and the way to evaluate the impact of an e-learning system is by examining whether students learn effectively with the help of that system. Testmoz is a program for online preparation of knowledge evaluation assignments. The program provides teachers with computer support during the design of assignments and evaluating them. Students can review and solve assignments and also check the correctness of their solutions. Research into the increase of motivation by the practice of providing teaching content by applying online tests prepared in the Testmoz program, was carried out with students of the 8th grade of Ljubo Babić Primary School in Jastrebarsko. The students took the tests in their free time, from home, for an unlimited number of times. SPSS was used to process the data obtained by the research instruments. The results of the research showed that students preferred to practice teaching content, and achieved better educational results in chemistry, when they had access to online tests for repetition and practicing in relation to subject content which was checked after repetition and practicing in "the classical way" – i.e., solving assignments in a workbook or writing assignments in worksheets.

Keywords: Chemistry class, e-learning, online test, Testmoz.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 579
1109 Using Satellite Images Datasets for Road Intersection Detection in Route Planning

Authors: Fatma El-zahraa El-taher, Ayman Taha, Jane Courtney, Susan Mckeever

Abstract:

Understanding road networks plays an important role in navigation applications such as self-driving vehicles and route planning for individual journeys. Intersections of roads are essential components of road networks. Understanding the features of an intersection, from a simple T-junction to larger multi-road junctions is critical to decisions such as crossing roads or selecting safest routes. The identification and profiling of intersections from satellite images is a challenging task. While deep learning approaches offer state-of-the-art in image classification and detection, the availability of training datasets is a bottleneck in this approach. In this paper, a labelled satellite image dataset for the intersection recognition  problem is presented. It consists of 14,692 satellite images of Washington DC, USA. To support other users of the dataset, an automated download and labelling script is provided for dataset replication. The challenges of construction and fine-grained feature labelling of a satellite image dataset are examined, including the issue of how to address features that are spread across multiple images. Finally, the accuracy of detection of intersections in satellite images is evaluated.

Keywords: Satellite images, remote sensing images, data acquisition, autonomous vehicles, robot navigation, route planning, road intersections.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 773
1108 Modelling Dengue Fever (DF) and Dengue Haemorrhagic Fever (DHF) Outbreak Using Poisson and Negative Binomial Model

Authors: W. Y. Wan Fairos, W. H. Wan Azaki, L. Mohamad Alias, Y. Bee Wah

Abstract:

Dengue fever has become a major concern for health authorities all over the world particularly in the tropical countries. These countries, in particular are experiencing the most worrying outbreak of dengue fever (DF) and dengue haemorrhagic fever (DHF). The DF and DHF epidemics, thus, have become the main causes of hospital admissions and deaths in Malaysia. This paper, therefore, attempts to examine the environmental factors that may influence the recent dengue outbreak. The aim of this study is twofold, firstly is to establish a statistical model to describe the relationship between the number of dengue cases and a range of explanatory variables and secondly, to identify the lag operator for explanatory variables which affect the dengue incidence the most. The explanatory variables involved include the level of cloud cover, percentage of relative humidity, amount of rainfall, maximum temperature, minimum temperature and wind speed. The Poisson and Negative Binomial regression analyses were used in this study. The results of the analyses on the 915 observations (daily data taken from July 2006 to Dec 2008), reveal that the climatic factors comprising of daily temperature and wind speed were found to significantly influence the incidence of dengue fever after 2 and 3 weeks of their occurrences. The effect of humidity, on the other hand, appears to be significant only after 2 weeks.

Keywords: Dengue Fever, Dengue Hemorrhagic Fever, Negative Binomial Regression model, Poisson Regression model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2819
1107 Jeffrey's Prior for Unknown Sinusoidal Noise Model via Cramer-Rao Lower Bound

Authors: Samuel A. Phillips, Emmanuel A. Ayanlowo, Rasaki O. Olanrewaju, Olayode Fatoki

Abstract:

This paper employs the Jeffrey's prior technique in the process of estimating the periodograms and frequency of sinusoidal model for unknown noisy time variants or oscillating events (data) in a Bayesian setting. The non-informative Jeffrey's prior was adopted for the posterior trigonometric function of the sinusoidal model such that Cramer-Rao Lower Bound (CRLB) inference was used in carving-out the minimum variance needed to curb the invariance structure effect for unknown noisy time observational and repeated circular patterns. An average monthly oscillating temperature series measured in degree Celsius (0C) from 1901 to 2014 was subjected to the posterior solution of the unknown noisy events of the sinusoidal model via Markov Chain Monte Carlo (MCMC). It was not only deduced that two minutes period is required before completing a cycle of changing temperature from one particular degree Celsius to another but also that the sinusoidal model via the CRLB-Jeffrey's prior for unknown noisy events produced a miniature posterior Maximum A Posteriori (MAP) compare to a known noisy events.

Keywords: Cramer-Rao Lower Bound (CRLB), Jeffrey's prior, Sinusoidal, Maximum A Posteriori (MAP), Markov Chain Monte Carlo (MCMC), Periodograms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 661