Search results for: uncertainty decision analysis
9284 Gender Based Variability Time Series Complexity Analysis
Authors: Ramesh K. Sunkaria, Puneeta Marwaha
Abstract:
Non linear methods of heart rate variability (HRV) analysis are becoming more popular. It has been observed that complexity measures quantify the regularity and uncertainty of cardiovascular RR-interval time series. In the present work, SampEn has been evaluated in healthy normal sinus rhythm (NSR) male and female subjects for different data lengths and tolerance level r. It is demonstrated that SampEn is small for higher values of tolerance r. Also SampEn value of healthy female group is higher than that of healthy male group for short data length and with increase in data length both groups overlap each other and it is difficult to distinguish them. The SampEn gives inaccurate results by assigning higher value to female group, because male subject have more complex HRV pattern than that of female subjects. Therefore, this traditional algorithm exhibits higher complexity for healthy female subjects than for healthy male subjects, which is misleading observation. This may be due to the fact that SampEn do not account for multiple time scales inherent in the physiologic time series and the hidden spatial and temporal fluctuations remains unexplored.
Keywords: Heart rate variability, normal sinus rhythm group, RR interval time series, sample entropy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17669283 Optimal Feature Extraction Dimension in Finger Vein Recognition Using Kernel Principal Component Analysis
Authors: Amir Hajian, Sepehr Damavandinejadmonfared
Abstract:
In this paper the issue of dimensionality reduction is investigated in finger vein recognition systems using kernel Principal Component Analysis (KPCA). One aspect of KPCA is to find the most appropriate kernel function on finger vein recognition as there are several kernel functions which can be used within PCA-based algorithms. In this paper, however, another side of PCA-based algorithms -particularly KPCA- is investigated. The aspect of dimension of feature vector in PCA-based algorithms is of importance especially when it comes to the real-world applications and usage of such algorithms. It means that a fixed dimension of feature vector has to be set to reduce the dimension of the input and output data and extract the features from them. Then a classifier is performed to classify the data and make the final decision. We analyze KPCA (Polynomial, Gaussian, and Laplacian) in details in this paper and investigate the optimal feature extraction dimension in finger vein recognition using KPCA.
Keywords: Biometrics, finger vein recognition, Principal Component Analysis (PCA), Kernel Principal Component Analysis (KPCA).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19629282 Solving Fuzzy Multi-Objective Linear Programming Problems with Fuzzy Decision Variables
Authors: Mahnaz Hosseinzadeh, Aliyeh Kazemi
Abstract:
In this paper, a method is proposed for solving Fuzzy Multi-Objective Linear Programming problems (FMOLPP) with fuzzy right hand side and fuzzy decision variables. To illustrate the proposed method, it is applied to the problem of selecting suppliers for an automotive parts producer company in Iran in order to find the number of optimal orders allocated to each supplier considering the conflicting objectives. Finally, the obtained results are discussed.Keywords: Fuzzy multi-objective linear programming problems, triangular fuzzy numbers, fuzzy ranking, supplier selection problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14159281 A General Mandatory Access Control Framework in Distributed Environments
Authors: Feng Yang, Xuehai Zhou, Dalei Hu
Abstract:
In this paper, we propose a general mandatory access framework for distributed systems. The framework can be applied into multiple operating systems and can handle multiple stakeholders. Despite considerable advancements in the area of mandatory access control, a certain approach to enforcing mandatory access control can only be applied in a specific operating system. Other than PC market in which windows captures the overwhelming shares, there are a number of popular operating systems in the emerging smart phone environment, i.e. Android, Windows mobile, Symbian, RIM. It should be noted that more and more stakeholders are involved in smartphone software, such as devices owners, service providers and application providers. Our framework includes three parts—local decision layer, the middle layer and the remote decision layer. The middle layer takes charge of managing security contexts, OS API, operations and policy combination. The design of the remote decision layer doesn’t depend on certain operating systems because of the middle layer’s existence. We implement the framework in windows, linux and other popular embedded systems.
Keywords: Mandatory Access Control, Distributed System, General Platform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22329280 An Intelligent Approach of Rough Set in Knowledge Discovery Databases
Authors: Hrudaya Ku. Tripathy, B. K. Tripathy, Pradip K. Das
Abstract:
Knowledge Discovery in Databases (KDD) has evolved into an important and active area of research because of theoretical challenges and practical applications associated with the problem of discovering (or extracting) interesting and previously unknown knowledge from very large real-world databases. Rough Set Theory (RST) is a mathematical formalism for representing uncertainty that can be considered an extension of the classical set theory. It has been used in many different research areas, including those related to inductive machine learning and reduction of knowledge in knowledge-based systems. One important concept related to RST is that of a rough relation. In this paper we presented the current status of research on applying rough set theory to KDD, which will be helpful for handle the characteristics of real-world databases. The main aim is to show how rough set and rough set analysis can be effectively used to extract knowledge from large databases.Keywords: Data mining, Data tables, Knowledge discovery in database (KDD), Rough sets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23369279 Rule Based Architecture for Collaborative Multidisciplinary Aircraft Design Optimisation
Authors: Nickolay Jelev, Andy Keane, Carren Holden, András Sóbester
Abstract:
In aircraft design, the jump from the conceptual to preliminary design stage introduces a level of complexity which cannot be realistically handled by a single optimiser, be that a human (chief engineer) or an algorithm. The design process is often partitioned along disciplinary lines, with each discipline given a level of autonomy. This introduces a number of challenges including, but not limited to: coupling of design variables; coordinating disciplinary teams; handling of large amounts of analysis data; reaching an acceptable design within time constraints. A number of classical Multidisciplinary Design Optimisation (MDO) architectures exist in academia specifically designed to address these challenges. Their limited use in the industrial aircraft design process has inspired the authors of this paper to develop an alternative strategy based on well established ideas from Decision Support Systems. The proposed rule based architecture sacrifices possibly elusive guarantees of convergence for an attractive return in simplicity. The method is demonstrated on analytical and aircraft design test cases and its performance is compared to a number of classical distributed MDO architectures.Keywords: Multidisciplinary design optimisation, rule based architecture, aircraft design, decision support system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10719278 A New Measurable Definition of Knowledge in New Growth Theory
Authors: Mohammad Ali Molaei
Abstract:
New Growth Theory helps us make sense of the ongoing shift from a resource-based economy to a knowledge-based economy. It underscores the point that the economic processes which create and diffuse new knowledge are critical to shaping the growth of nations, communities and individual firms. In all too many contributions to New (Endogenous) Growth Theory – though not in all – central reference is made to 'a stock of knowledge', a 'stock of ideas', etc., this variable featuring centre-stage in the analysis. Yet it is immediately apparent that this is far from being a crystal clear concept. The difficulty and uncertainty of being able to capture the value associated with knowledge is a real problem. The intent of this paper is introducing new thinking and theorizing about the knowledge and its measurability in new growth theory. Moreover the study aims to synthesize various strain of the literature with a practical bearing on knowledge concept. By contribution of institution framework which is found within NGT, we can indirectly measure the knowledge concept. Institutions matter because they shape the environment for production and employment of new knowledgeKeywords: Institution Framework, Knowledge, New GrowthTheory (NGT)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15449277 Design Considerations of Scheduling Systems Suitable for PCB Manufacturing
Authors: Oscar Fernandez-Flores, Tony Speer, Rodney Day
Abstract:
This paper identifies five key design characteristics of production scheduling software systems in printed circuit board (PCB) manufacturing. The authors consider that, in addition to an effective scheduling engine, a scheduling system should be able to process a preventative maintenance calendar, to give the user the flexibility to handle data using a variety of electronic sources, to run simulations to support decision-making, and to have simple and customisable graphical user interfaces. These design considerations were the result of a review of academic literature, the evaluation of commercial applications and a compilation of requirements of a PCB manufacturer. It was found that, from those systems that were evaluated, those that effectively addressed all five characteristics outlined in this paper were the most robust of all and could be used in PCB manufacturing.Keywords: Decision-making, ERP, PCB, scheduling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18049276 Evidence Theory Enabled Quickest Change Detection Using Big Time-Series Data from Internet of Things
Authors: Hossein Jafari, Xiangfang Li, Lijun Qian, Alexander Aved, Timothy Kroecker
Abstract:
Traditionally in sensor networks and recently in the Internet of Things, numerous heterogeneous sensors are deployed in distributed manner to monitor a phenomenon that often can be model by an underlying stochastic process. The big time-series data collected by the sensors must be analyzed to detect change in the stochastic process as quickly as possible with tolerable false alarm rate. However, sensors may have different accuracy and sensitivity range, and they decay along time. As a result, the big time-series data collected by the sensors will contain uncertainties and sometimes they are conflicting. In this study, we present a framework to take advantage of Evidence Theory (a.k.a. Dempster-Shafer and Dezert-Smarandache Theories) capabilities of representing and managing uncertainty and conflict to fast change detection and effectively deal with complementary hypotheses. Specifically, Kullback-Leibler divergence is used as the similarity metric to calculate the distances between the estimated current distribution with the pre- and post-change distributions. Then mass functions are calculated and related combination rules are applied to combine the mass values among all sensors. Furthermore, we applied the method to estimate the minimum number of sensors needed to combine, so computational efficiency could be improved. Cumulative sum test is then applied on the ratio of pignistic probability to detect and declare the change for decision making purpose. Simulation results using both synthetic data and real data from experimental setup demonstrate the effectiveness of the presented schemes.Keywords: CUSUM, evidence theory, KL divergence, quickest change detection, time series data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9949275 On the Robust Stability of Homogeneous Perturbed Large-Scale Bilinear Systems with Time Delays and Constrained Inputs
Authors: Chien-Hua Lee, Cheng-Yi Chen
Abstract:
The stability test problem for homogeneous large-scale perturbed bilinear time-delay systems subjected to constrained inputs is considered in this paper. Both nonlinear uncertainties and interval systems are discussed. By utilizing the Lyapunove equation approach associated with linear algebraic techniques, several delay-independent criteria are presented to guarantee the robust stability of the overall systems. The main feature of the presented results is that although the Lyapunov stability theorem is used, they do not involve any Lyapunov equation which may be unsolvable. Furthermore, it is seen the proposed schemes can be applied to solve the stability analysis problem of large-scale time-delay systems.
Keywords: homogeneous bilinear system, constrained input, time-delay, uncertainty, transient response, decay rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16099274 A Decision Support System for Predicting Hospitalization of Hemodialysis Patients
Authors: Jinn-Yi Yeh, Tai-Hsi Wu
Abstract:
Hemodialysis patients might suffer from unhealthy care behaviors or long-term dialysis treatments. Ultimately they need to be hospitalized. If the hospitalization rate of a hemodialysis center is high, its quality of service would be low. Therefore, how to decrease hospitalization rate is a crucial problem for health care. In this study we combined temporal abstraction with data mining techniques for analyzing the dialysis patients' biochemical data to develop a decision support system. The mined temporal patterns are helpful for clinicians to predict hospitalization of hemodialysis patients and to suggest them some treatments immediately to avoid hospitalization.Keywords: Hemodialysis, Temporal abstract, Data mining, Healthcare quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17309273 Geometric Operators in the Selection of Human Resources
Authors: José M. Merigó, Anna M. Gil-Lafuente
Abstract:
We study the possibility of using geometric operators in the selection of human resources. We develop three new methods that use the ordered weighted geometric (OWG) operator in different indexes used for the selection of human resources. The objective of these models is to manipulate the neutrality of the old methods so the decision maker is able to select human resources according to his particular attitude. In order to develop these models, first a short revision of the OWG operator is developed. Second, we briefly explain the general process for the selection of human resources. Then, we develop the three new indexes. They will use the OWG operator in the Hamming distance, in the adequacy coefficient and in the index of maximum and minimum level. Finally, an illustrative example about the new approach is given.Keywords: OWG operator, decision making, human resources, Hamming distance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14029272 Fuzzy Sequential Algorithm for Discrimination and Decision Maker in Sporting Events
Authors: Mourad Moussa, Ali Douik, Hassani Messaoud
Abstract:
Events discrimination and decision maker in sport field are the subject of many interesting studies in computer vision and artificial intelligence. A large volume of research has been conducted for automatic semantic event detection and summarization of sports videos. Indeed the results of these researches have a very significant contribution, as well to television broadcasts as to the football teams, since the result of sporting event can be reflected on the economic field. In this paper, we propose a novel fuzzy sequential technique which lead to discriminate events and specify the technico-tactics on going the game, nor the fuzzy system or the sequential one, may be able to respond to the asked question, in fact fuzzy process is not sufficient, it does not respect the chronological order according the time of various events, similarly the sequential process needs flexibility about the parameters used in this study, it may affect a membership degree of each parameter on the one hand and respect the sequencing of events for each frame on the other hand. Indeed this technique describes special events such as dribbling, headings, short sprints, rapid acceleration or deceleration, turning, jumping, kicking, ball occupation, and tackling according velocity vectors of the two players and the ball direction.
Keywords: Sequential process, Event detection, Soccer videos analysis, Fuzzy process, Spatio-temporal parameters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18819271 Algorithmic Method for Efficient Cruise Program
Authors: Pelaez Verdet, Antonio, Loscertales Sanchez, Pilar
Abstract:
One of the mayor problems of programming a cruise circuit is to decide which destinations to include and which don-t. Thus a decision problem emerges, that might be solved using a linear and goal programming approach. The problem becomes more complex if several boats in the fleet must be programmed in a limited schedule, trying their capacity matches best a seasonal demand and also attempting to minimize the operation costs. Moreover, the programmer of the company should consider the time of the passenger as a limited asset, and would like to maximize its usage. The aim of this work is to design a method in which, using linear and goal programming techniques, a model to design circuits for the cruise company decision maker can achieve an optimal solution within the fleet schedule.Keywords: Itinerary design, cruise programming, goalprogramming, linear programming
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16519270 Mitigating the Cost of Empty Container Repositioning through the Virtual Container Yard: An Appraisal of Carriers’ Perceptions
Authors: L. Edirisinghe, Z. Jin, A. W. Wijeratne, R. Mudunkotuwa
Abstract:
Empty container repositioning is a fundamental problem faced by the shipping industry. The virtual container yard is a novel strategy underpinning the container interchange between carriers that could substantially reduce this ever-increasing shipping cost. This paper evaluates the shipping industry perception of the virtual container yard using chi-square tests. It examines if the carriers perceive that the selected independent variables, namely culture, organization, decision, marketing, attitudes, legal, independent, complexity, and stakeholders of carriers, impact the efficiency and benefits of the virtual container yard. There are two major findings of the research. Firstly, carriers view that complexity, attitudes, and stakeholders may impact the effectiveness of container interchange and may influence the perceived benefits of the virtual container yard. Secondly, the three factors of legal, organization, and decision influence only the perceived benefits of the virtual container yard. Accordingly, the implementation of the virtual container yard will be influenced by six key factors, namely complexity, attitudes, stakeholders, legal, organization and decision. Since the virtual container yard could reduce overall shipping costs, it is vital to examine the carriers’ perception of this concept.
Keywords: Virtual container yard, imbalance, management, inventory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6939269 Reliability Analysis of Press Unit using Vague Set
Authors: S. P. Sharma, Monica Rani
Abstract:
In conventional reliability assessment, the reliability data of system components are treated as crisp values. The collected data have some uncertainties due to errors by human beings/machines or any other sources. These uncertainty factors will limit the understanding of system component failure due to the reason of incomplete data. In these situations, we need to generalize classical methods to fuzzy environment for studying and analyzing the systems of interest. Fuzzy set theory has been proposed to handle such vagueness by generalizing the notion of membership in a set. Essentially, in a Fuzzy Set (FS) each element is associated with a point-value selected from the unit interval [0, 1], which is termed as the grade of membership in the set. A Vague Set (VS), as well as an Intuitionistic Fuzzy Set (IFS), is a further generalization of an FS. Instead of using point-based membership as in FS, interval-based membership is used in VS. The interval-based membership in VS is more expressive in capturing vagueness of data. In the present paper, vague set theory coupled with conventional Lambda-Tau method is presented for reliability analysis of repairable systems. The methodology uses Petri nets (PN) to model the system instead of fault tree because it allows efficient simultaneous generation of minimal cuts and path sets. The presented method is illustrated with the press unit of the paper mill.
Keywords: Lambda -Tau methodology, Petri nets, repairable system, vague fuzzy set.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15279268 Churn Prediction: Does Technology Matter?
Authors: John Hadden, Ashutosh Tiwari, Rajkumar Roy, Dymitr Ruta
Abstract:
The aim of this paper is to identify the most suitable model for churn prediction based on three different techniques. The paper identifies the variables that affect churn in reverence of customer complaints data and provides a comparative analysis of neural networks, regression trees and regression in their capabilities of predicting customer churn.Keywords: Churn, Decision Trees, Neural Networks, Regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33019267 Performance Improvement of Information System of a Banking System Based on Integrated Resilience Engineering Design
Authors: S. H. Iranmanesh, L. Aliabadi, A. Mollajan
Abstract:
Integrated resilience engineering (IRE) is capable of returning banking systems to the normal state in extensive economic circumstances. In this study, information system of a large bank (with several branches) is assessed and optimized under severe economic conditions. Data envelopment analysis (DEA) models are employed to achieve the objective of this study. Nine IRE factors are considered to be the outputs, and a dummy variable is defined as the input of the DEA models. A standard questionnaire is designed and distributed among executive managers to be considered as the decision-making units (DMUs). Reliability and validity of the questionnaire is examined based on Cronbach's alpha and t-test. The most appropriate DEA model is determined based on average efficiency and normality test. It is shown that the proposed integrated design provides higher efficiency than the conventional RE design. Results of sensitivity and perturbation analysis indicate that self-organization, fault tolerance, and reporting culture respectively compose about 50 percent of total weight.
Keywords: Banking system, data envelopment analysis, DEA, integrated resilience engineering, IRE, performance evaluation, perturbation analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8429266 Evaluating Contractors in Construction Projects by Multi-Criteria Decision Making and Supply Chain Approach
Authors: Sara Najiazarpour, Mahsa Najiazarpour
Abstract:
There are many problems in contracting projects and their performance. At each project stage and due to different reasons, these problems affect cost, time, and quality. Hence, in order to increase the efficiency and performance in all levels of the chain and with supply chain management approach, there will be a coordination from the beginning of a project to the end of project (handover of project). Contractor selection is the foremost part of construction projects which in this multi-criteria decision-making, the best contractor is determined by expert judgment, different variables, and their priorities. In this paper for selecting the best contractor, numerous criteria were collected by asking from adept experts and then among them, 16 criteria with highest frequency were considered for questionnaire. This questionnaire was distributed between experts. Cronbach's alpha coefficient was used and then based on Borda function important criteria were selected which was categorized in four main criteria as follows: Environmental factors and physical equipment, past performance and technical expertise, affordability and standards. Then with PROMTHEE method, the criteria were normalized and monitored, finally the best alternative was selected. A case study had been done, and the best contractor was selected based on all criteria and their priorities.
Keywords: Evaluation and selecting contractors, project development, supply chain management, multi-criteria decision-making.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 849265 Improving the Quality of Transport Management Services with Fuzzy Signatures
Authors: Csaba I. Hencz, István Á. Harmati
Abstract:
Nowadays the significance of road transport is gradually increasing. All transport companies are working in the same external environment where the speed of transport is defined by traffic rules. The main objective is to accelerate the speed of service and it is only dependent on the individual abilities of the managing members. These operational control units make decisions quickly (in a typically experiential and/or intuitive way). For this reason, support for these decisions is an important task. Our goal is to create a decision support model based on fuzzy signatures that can assist the work of operational management automatically. If the model sets parameters properly, the management of transport could be more economical and efficient.
Keywords: Freight transport, decision support, information handling, fuzzy methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8169264 Biologically Inspired Controller for the Autonomous Navigation of a Mobile Robot in an Evasion Task
Authors: Dejanira Araiza-Illan, Tony J. Dodd
Abstract:
A novel biologically inspired controller for the autonomous navigation of a mobile robot in an evasion task is proposed. The controller takes advantage of the environment by calculating a measure of danger and subsequently choosing the parameters of a reinforcement learning based decision process. Two different reinforcement learning algorithms were used: Qlearning and Sarsa (λ). Simulations show that selecting dynamic parameters reduce the time while executing the decision making process, so the robot can obtain a policy to succeed in an escaping task in a realistic time.Keywords: Autonomous navigation, mobile robots, reinforcement learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14819263 Selective Intra Prediction Mode Decision for H.264/AVC Encoders
Authors: Jun Sung Park, Hyo Jung Song
Abstract:
H.264/AVC offers a considerably higher improvement in coding efficiency compared to other compression standards such as MPEG-2, but computational complexity is increased significantly. In this paper, we propose selective mode decision schemes for fast intra prediction mode selection. The objective is to reduce the computational complexity of the H.264/AVC encoder without significant rate-distortion performance degradation. In our proposed schemes, the intra prediction complexity is reduced by limiting the luma and chroma prediction modes using the directional information of the 16×16 prediction mode. Experimental results are presented to show that the proposed schemes reduce the complexity by up to 78% maintaining the similar PSNR quality with about 1.46% bit rate increase in average.Keywords: Video encoding, H.264, Intra prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34689262 Post Pandemic Mobility Analysis through Indexing and Sharding in MongoDB: Performance Optimization and Insights
Authors: Karan Vishavjit, Aakash Lakra, Shafaq Khan
Abstract:
The COVID-19 pandemic has pushed healthcare professionals to use big data analytics as a vital tool for tracking and evaluating the effects of contagious viruses. To effectively analyse huge datasets, efficient NoSQL databases are needed. The analysis of post-COVID-19 health and well-being outcomes and the evaluation of the effectiveness of government efforts during the pandemic is made possible by this research’s integration of several datasets, which cuts down on query processing time and creates predictive visual artifacts. We recommend applying sharding and indexing technologies to improve query effectiveness and scalability as the dataset expands. Effective data retrieval and analysis are made possible by spreading the datasets into a sharded database and doing indexing on individual shards. Analysis of connections between governmental activities, poverty levels, and post-pandemic wellbeing is the key goal. We want to evaluate the effectiveness of governmental initiatives to improve health and lower poverty levels. We will do this by utilising advanced data analysis and visualisations. The findings provide relevant data that support the advancement of UN sustainable objectives, future pandemic preparation, and evidence-based decision-making. This study shows how Big Data and NoSQL databases may be used to address problems with global health.
Keywords: COVID-19, big data, data analysis, indexing, NoSQL, sharding, scalability, poverty.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 679261 A New Fuzzy DSS/ES for Stock Portfolio Selection using Technical and Fundamental Approaches in Parallel
Authors: H. Zarei, M. H. Fazel Zarandi, M. Karbasian
Abstract:
A Decision Support System/Expert System for stock portfolio selection presented where at first step, both technical and fundamental data used to estimate technical and fundamental return and risk (1st phase); Then, the estimated values are aggregated with the investor preferences (2nd phase) to produce convenient stock portfolio. In the 1st phase, there are two expert systems, each of which is responsible for technical or fundamental estimation. In the technical expert system, for each stock, twenty seven candidates are identified and with using rough sets-based clustering method (RC) the effective variables have been selected. Next, for each stock two fuzzy rulebases are developed with fuzzy C-Mean method and Takai-Sugeno- Kang (TSK) approach; one for return estimation and the other for risk. Thereafter, the parameters of the rule-bases are tuned with backpropagation method. In parallel, for fundamental expert systems, fuzzy rule-bases have been identified in the form of “IF-THEN" rules through brainstorming with the stock market experts and the input data have been derived from financial statements; as a result two fuzzy rule-bases have been generated for all the stocks, one for return and the other for risk. In the 2nd phase, user preferences represented by four criteria and are obtained by questionnaire. Using an expert system, four estimated values of return and risk have been aggregated with the respective values of user preference. At last, a fuzzy rule base having four rules, treats these values and produce a ranking score for each stock which will lead to a satisfactory portfolio for the user. The stocks of six manufacturing companies and the period of 2003-2006 selected for data gathering.Keywords: Stock Portfolio Selection, Fuzzy Rule-Base ExpertSystems, Financial Decision Support Systems, Technical Analysis, Fundamental Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18419260 Verification and Proposal of Information Processing Model Using EEG-Based Brain Activity Monitoring
Authors: Toshitaka Higashino, Naoki Wakamiya
Abstract:
Human beings perform a task by perceiving information from outside, recognizing them, and responding them. There have been various attempts to analyze and understand internal processes behind the reaction to a given stimulus by conducting psychological experiments and analysis from multiple perspectives. Among these, we focused on Model Human Processor (MHP). However, it was built based on psychological experiments and thus the relation with brain activity was unclear so far. To verify the validity of the MHP and propose our model from a viewpoint of neuroscience, EEG (Electroencephalography) measurements are performed during experiments in this study. More specifically, first, experiments were conducted where Latin alphabet characters were used as visual stimuli. In addition to response time, ERPs (event-related potentials) such as N100 and P300 were measured by using EEG. By comparing cycle time predicted by the MHP and latency of ERPs, it was found that N100, related to perception of stimuli, appeared at the end of the perceptual processor. Furthermore, by conducting an additional experiment, it was revealed that P300, related to decision making, appeared during the response decision process, not at the end. Second, by experiments using Japanese Hiragana characters, i.e. Japan's own phonetic symbols, those findings were confirmed. Finally, Japanese Kanji characters were used as more complicated visual stimuli. A Kanji character usually has several readings and several meanings. Despite the difference, a reading-related task and a meaning-related task exhibited similar results, meaning that they involved similar information processing processes of the brain. Based on those results, our model was proposed which reflects response time and ERP latency. It consists of three processors: the perception processor from an input of a stimulus to appearance of N100, the cognitive processor from N100 to P300, and the decision-action processor from P300 to response. Using our model, an application system which reflects brain activity can be established.
Keywords: Brain activity, EEG, information processing model, model human processor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6919259 Modeling Methodologies for Optimization and Decision Support on Coastal Transport Information System (Co.Tr.I.S.)
Authors: Vassilios Moussas, Dimos N. Pantazis, Panagiotis Stratakis
Abstract:
The aim of this paper is to present the optimization methodology developed in the frame of a Coastal Transport Information System. The system will be used for the effective design of coastal transportation lines and incorporates subsystems that implement models, tools and techniques that may support the design of improved networks. The role of the optimization and decision subsystem is to provide the user with better and optimal scenarios that will best fulfill any constrains, goals or requirements posed. The complexity of the problem and the large number of parameters and objectives involved led to the adoption of an evolutionary method (Genetic Algorithms). The problem model and the subsystem structure are presented in detail, and, its support for simulation is also discussed.
Keywords: Coastal transport, modeling, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20049258 International Tourists’ Travel Motivation by Push-Pull Factors and the Decision Making for Selecting Thailand as Destination Choice
Authors: Siripen Yiamjanya, Kevin Wongleedee
Abstract:
This research paper aims to identify travel motivation by push and pull factors that affected decision making of international tourists in selecting Thailand as their destination choice. A total of 200 international tourists who traveled to Thailand during January and February, 2014 were used as the sample in this study. A questionnaire was employed as a tool in collecting the data, conducted in Bangkok. The list consisted of 30 attributes representing both psychological factors as “push- based factors” and destination factors as “pull-based factors”. Mean and standard deviation were used in order to find the top ten travel motives that were important determinants in the respondents’ decision making process to select Thailand as their destination choice. The finding revealed the top ten travel motivations influencing international tourists to select Thailand as their destination choice included [i] getting experience in foreign land; [ii] Thai food; [iii] learning new culture; [iv] relaxing in foreign land; [v] wanting to learn new things; [vi] being interested in Thai culture, and traditional markets; [vii] escaping from same daily life; [viii] enjoying activities; [ix] adventure; and [x] good weather. Classification of push- based and pull- based motives suggested that getting experience in foreign land was the most important push motive for international tourists to travel, while Thai food portrayed its highest significance as pull motive. Discussion and suggestions were also made for tourism industry of Thailand.
Keywords: Decision Making, Destination Choice, International Tourist, Pull Factor, Push Factor, Thailand, Travel Motivation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 163859257 A Predictive Rehabilitation Software for Cerebral Palsy Patients
Authors: J. Bouchard, B. Prosperi, G. Bavre, M. Daudé, E. Jeandupeux
Abstract:
Young patients suffering from Cerebral Palsy are facing difficult choices concerning heavy surgeries. Diagnosis settled by surgeons can be complex and on the other hand decision for patient about getting or not such a surgery involves important reflection effort. Proposed software combining prediction for surgeries and post surgery kinematic values, and from 3D model representing the patient is an innovative tool helpful for both patients and medicine professionals. Beginning with analysis and classification of kinematics values from Data Base extracted from gait analysis in 3 separated clusters, it is possible to determine close similarity between patients. Prediction surgery best adapted to improve a patient gait is then determined by operating a suitable preconditioned neural network. Finally, patient 3D modeling based on kinematic values analysis, is animated thanks to post surgery kinematic vectors characterizing the closest patient selected from patients clustering.
Keywords: Cerebral Palsy, Clustering, Crouch Gait, 3-D Modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20079256 Design of Multiple Clouds Based Global Performance Evaluation Service Broker System
Authors: Dong-Jae Kang, Nam-Woo Kim, Duk-Joo Son, Sung-In Jung
Abstract:
According to dramatic growth of internet services, an easy and prompt service deployment has been important for internet service providers to successfully maintain time-to-market. Before global service deployment, they have to pay the big cost for service evaluation to make a decision of the proper system location, system scale, service delay and so on. But, intra-Lab evaluation tends to have big gaps in the measured data compared with the realistic situation, because it is very difficult to accurately expect the local service environment, network congestion, service delay, network bandwidth and other factors. Therefore, to resolve or ease the upper problems, we propose multiple cloud based GPES Broker system and use case that helps internet service providers to alleviate the above problems in beta release phase and to make a prompt decision for their service launching. By supporting more realistic and reliable evaluation information, the proposed GPES Broker system saves the service release cost and enables internet service provider to make a prompt decision about their service launching to various remote regions.
Keywords: GPES Broker system, Cloud Service Broker, Multiple Cloud, Global performance evaluation service (GPES), Service provisioning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20479255 Predicting the Success of Bank Telemarketing Using Artificial Neural Network
Authors: Mokrane Selma
Abstract:
The shift towards decision making (DM) based on artificial intelligence (AI) techniques will change the way in which consumer markets and our societies function. Through AI, predictive analytics is being used by businesses to identify these patterns and major trends with the objective to improve the DM and influence future business outcomes. This paper proposes an Artificial Neural Network (ANN) approach to predict the success of telemarketing calls for selling bank long-term deposits. To validate the proposed model, we uses the bank marketing data of 41188 phone calls. The ANN attains 98.93% of accuracy which outperforms other conventional classifiers and confirms that it is credible and valuable approach for telemarketing campaign managers.
Keywords: Bank telemarketing, prediction, decision making, artificial intelligence, artificial neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3150