Search results for: international production networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4452

Search results for: international production networks

3852 Cultural Production and Urban Regeneration: The Case Study of Amphawa District, Thailand

Authors: P. Techaratpong

Abstract:

This research aims to study the role of cultural production in urban regeneration and argue that cultural production, if properly used, can play a vital role in reviving cities and create substantial positive impacts to the cities. The argument can be elucidated by the case study of Amphawa, a district in Samutsongkram province, Thailand, as an example of successful use of cultural productions. The conceptual framework is based on the model of culture contributions in regeneration to examine the impacts.

The research methodology is qualitative. This study found that cultural productions can revive cities into vibrant ones and exert considerable impacts: physical, social and economic.

It is suggested that, despite that there is not one-fit-all model, cultural production can be an important initiative for any city transformation if it is appropriately implemented. The city planners and authorities ought to consider the conditions and factors and design a specific plan to fit the city context and integrated with other planning.

Keywords: Cultural production, culture, cultural planning, impact, urban regeneration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2786
3851 Alternative Methods to Rank the Impact of Object Oriented Metrics in Fault Prediction Modeling using Neural Networks

Authors: Kamaldeep Kaur, Arvinder Kaur, Ruchika Malhotra

Abstract:

The aim of this paper is to rank the impact of Object Oriented(OO) metrics in fault prediction modeling using Artificial Neural Networks(ANNs). Past studies on empirical validation of object oriented metrics as fault predictors using ANNs have focused on the predictive quality of neural networks versus standard statistical techniques. In this empirical study we turn our attention to the capability of ANNs in ranking the impact of these explanatory metrics on fault proneness. In ANNs data analysis approach, there is no clear method of ranking the impact of individual metrics. Five ANN based techniques are studied which rank object oriented metrics in predicting fault proneness of classes. These techniques are i) overall connection weights method ii) Garson-s method iii) The partial derivatives methods iv) The Input Perturb method v) the classical stepwise methods. We develop and evaluate different prediction models based on the ranking of the metrics by the individual techniques. The models based on overall connection weights and partial derivatives methods have been found to be most accurate.

Keywords: Artificial Neural Networks (ANNS), Backpropagation, Fault Prediction Modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1758
3850 On The Analysis of a Compound Neural Network for Detecting Atrio Ventricular Heart Block (AVB) in an ECG Signal

Authors: Salama Meghriche, Amer Draa, Mohammed Boulemden

Abstract:

Heart failure is the most common reason of death nowadays, but if the medical help is given directly, the patient-s life may be saved in many cases. Numerous heart diseases can be detected by means of analyzing electrocardiograms (ECG). Artificial Neural Networks (ANN) are computer-based expert systems that have proved to be useful in pattern recognition tasks. ANN can be used in different phases of the decision-making process, from classification to diagnostic procedures. This work concentrates on a review followed by a novel method. The purpose of the review is to assess the evidence of healthcare benefits involving the application of artificial neural networks to the clinical functions of diagnosis, prognosis and survival analysis, in ECG signals. The developed method is based on a compound neural network (CNN), to classify ECGs as normal or carrying an AtrioVentricular heart Block (AVB). This method uses three different feed forward multilayer neural networks. A single output unit encodes the probability of AVB occurrences. A value between 0 and 0.1 is the desired output for a normal ECG; a value between 0.1 and 1 would infer an occurrence of an AVB. The results show that this compound network has a good performance in detecting AVBs, with a sensitivity of 90.7% and a specificity of 86.05%. The accuracy value is 87.9%.

Keywords: Artificial neural networks, Electrocardiogram(ECG), Feed forward multilayer neural network, Medical diagnosis, Pattern recognitionm, Signal processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2472
3849 Estimation of Attenuation and Phase Delay in Driving Voltage Waveform of an Ultra-High-Speed Image Sensor by Dimensional Analysis

Authors: V. T. S. Dao, T. G. Etoh, C. Vo Le, H. D. Nguyen, K. Takehara, T. Akino, K. Nishi

Abstract:

We present an explicit expression to estimate driving voltage attenuation through RC networks representation of an ultrahigh- speed image sensor. Elmore delay metric for a fundamental RC chain is employed as the first-order approximation. By application of dimensional analysis to SPICE simulation data, we found a simple expression that significantly improves the accuracy of the approximation. Estimation error of the resultant expression for uniform RC networks is less than 2%. Similarly, another simple closed-form model to estimate 50 % delay through fundamental RC networks is also derived with sufficient accuracy. The framework of this analysis can be extended to address delay or attenuation issues of other VLSI structures.

Keywords: Dimensional Analysis, Elmore model, RC network, Signal Attenuation, Ultra-High-Speed Image Sensor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1425
3848 Computation of Natural Logarithm Using Abstract Chemical Reaction Networks

Authors: Iuliia Zarubiieva, Joyun Tseng, Vishwesh Kulkarni

Abstract:

Recent researches has focused on nucleic acids as a substrate for designing biomolecular circuits for in situ monitoring and control. A common approach is to express them by a set of idealised abstract chemical reaction networks (ACRNs). Here, we present new results on how abstract chemical reactions, viz., catalysis, annihilation and degradation, can be used to implement circuit that accurately computes logarithm function using the method of Arithmetic-Geometric Mean (AGM), which has not been previously used in conjunction with ACRNs.

Keywords: Abstract chemical reaction network, DNA strand displacement, natural logarithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1028
3847 The Characteristics of Thai Movies and Factors Contributing to Becoming Widely Known in International Markets

Authors: Tanyatorn Panyasopon

Abstract:

Many Thai movies have been very popular domestically and internationally. Some movies were box office hits and receiving awards. However, there has not yet been research about how Thai movies can sell in international markets The objectives of the research were 1) To analyze the characteristics of Thai movies that can sell to world audiences; 2) To investigate the factors making Thai movies into foreign markets. Thai film professionals were interviewed. Their ideas were analyzed to find out what factors contributing to Thai movies widely seen in worldwide markets. Nine foreign audiences were also interviewed to reveal what characteristics of Thai movies would be well accepted by the markets. The results showed that major characteristics of Thai movies proving successful worldwide were cultural and exotic Thai movies, outstanding genres, well-known actors, music and songs. Factors contributing to global market were marketing, qualities of Thai movies, and financial support from the government.

Keywords: Characteristics, factors, international markets, Thai movies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5026
3846 Investigation on Novel Based Naturally-Inspired Swarm Intelligence Algorithms for Optimization Problems in Mobile Ad Hoc Networks

Authors: C. Rajan, K. Geetha, C. Rasi Priya, S. Geetha

Abstract:

Nature is the immense gifted source for solving complex problems. It always helps to find the optimal solution to solve the problem. Mobile Ad Hoc NETwork (MANET) is a wide research area of networks which has set of independent nodes. The characteristics involved in MANET’s are Dynamic, does not depend on any fixed infrastructure or centralized networks, High mobility. The Bio-Inspired algorithms are mimics the nature for solving optimization problems opening a new era in MANET. The typical Swarm Intelligence (SI) algorithms are Ant Colony Optimization (ACO), Artificial Bee Colony (ABC), Particle Swarm Optimization (PSO), Modified Termite Algorithm, Bat Algorithm (BA), Wolf Search Algorithm (WSA) and so on. This work mainly concentrated on nature of MANET and behavior of nodes. Also it analyses various performance metrics such as throughput, QoS and End-to-End delay etc.

Keywords: Ant Colony Algorithm, Artificial Bee Colony algorithm, Bio-Inspired algorithm, Modified Termite Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2471
3845 Transformer Top-Oil Temperature Modeling and Simulation

Authors: T. C. B. N. Assunção, J. L. Silvino, P. Resende

Abstract:

The winding hot-spot temperature is one of the most critical parameters that affect the useful life of the power transformers. The winding hot-spot temperature can be calculated as function of the top-oil temperature that can estimated by using the ambient temperature and transformer loading measured data. This paper proposes the estimation of the top-oil temperature by using a method based on Least Squares Support Vector Machines approach. The estimated top-oil temperature is compared with measured data of a power transformer in operation. The results are also compared with methods based on the IEEE Standard C57.91-1995/2000 and Artificial Neural Networks. It is shown that the Least Squares Support Vector Machines approach presents better performance than the methods based in the IEEE Standard C57.91-1995/2000 and artificial neural networks.

Keywords: Artificial Neural Networks, Hot-spot Temperature, Least Squares Support Vector, Top-oil Temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2492
3844 Enhancing Landfill Gas Production by Methanogenic Sand Layer

Authors: N. Sapari, S. Mustapha, H. Jusoh

Abstract:

Landfill gas, particularly methane is one of the greenhouse gases which contributes to global warming. This paper presents the findings of a study on methane gas production from simulated landfill reactor under saturated conditions. A reactor was constructed to represent a landfill cell of 2.5 m thickness on sandy soil. The reactor was 0.2 m in diameter and 4 m in height. One meter of sand and pebble layer was packed at the bottom of the reactor followed by 2.5 m of solid waste layer and 0.4 m of sand layer as the cover soil. Degradation of waste in the solid waste layer was at acidification stage as indicated by the leachate quality with COD as high as 55,511 mg/L and pH as low as 5.1. However, methanogenic environment was established at the bottom sand layer after one year of operation indicated by pH of 7.2 and methane gas generation. Leachate degradation took place as the leachate moved through the sand layer at an infiltration of rate 0.7 cm/day. This resulted in landfill gas production of 77 mL/day/kg containing 55 to 65% methane. The application of sand layer contributed to the gas production from landfill by an in-situ degradation of leachate in the sand at the bottom of the landfill.

Keywords: Gas production, methane, methanogenic sand layer, municipal solid waste, saturated landfill

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1650
3843 Evolutionary Training of Hybrid Systems of Recurrent Neural Networks and Hidden Markov Models

Authors: Rohitash Chandra, Christian W. Omlin

Abstract:

We present a hybrid architecture of recurrent neural networks (RNNs) inspired by hidden Markov models (HMMs). We train the hybrid architecture using genetic algorithms to learn and represent dynamical systems. We train the hybrid architecture on a set of deterministic finite-state automata strings and observe the generalization performance of the hybrid architecture when presented with a new set of strings which were not present in the training data set. In this way, we show that the hybrid system of HMM and RNN can learn and represent deterministic finite-state automata. We ran experiments with different sets of population sizes in the genetic algorithm; we also ran experiments to find out which weight initializations were best for training the hybrid architecture. The results show that the hybrid architecture of recurrent neural networks inspired by hidden Markov models can train and represent dynamical systems. The best training and generalization performance is achieved when the hybrid architecture is initialized with random real weight values of range -15 to 15.

Keywords: Deterministic finite-state automata, genetic algorithm, hidden Markov models, hybrid systems and recurrent neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1890
3842 A Neuro-Automata Decision Support System for the Control of Late Blight in Tomato Crops

Authors: Gizelle K. Vianna, Gustavo S. Oliveira, Gabriel V. Cunha

Abstract:

The use of decision support systems in agriculture may help monitoring large fields of crops by automatically detecting the symptoms of foliage diseases. In our work, we designed and implemented a decision support system for small tomatoes producers. This work investigates ways to recognize the late blight disease from the analysis of digital images of tomatoes, using a pair of multilayer perceptron neural networks. The networks outputs are used to generate repainted tomato images in which the injuries on the plant are highlighted, and to calculate the damage level of each plant. Those levels are then used to construct a situation map of a farm where a cellular automata simulates the outbreak evolution over the fields. The simulator can test different pesticides actions, helping in the decision on when to start the spraying and in the analysis of losses and gains of each choice of action.

Keywords: Artificial neural networks, cellular automata, decision support system, pattern recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1057
3841 Neuro-Hybrid Models for Automotive System Identification

Authors: Ventura Assuncao

Abstract:

In automotive systems almost all steps concerning the calibration of several control systems, e.g., low idle governor or boost pressure governor, are made with the vehicle because the timeto- production and cost requirements on the projects do not allow for the vehicle analysis necessary to build reliable models. Here is presented a procedure using parametric and NN (neural network) models that enables the generation of vehicle system models based on normal ECU engine control unit) vehicle measurements. These models are locally valid and permit pre and follow-up calibrations so that, only the final calibrations have to be done with the vehicle.

Keywords: Automotive systems, neuro-hybrid models, demodulator, nonlinear systems, identification, and neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1570
3840 Barriers and Conflicts in Relationships of Small Firms – Insights from Central Europe

Authors: Maciej Mitręga

Abstract:

This paper contributes to our knowledge about buyerseller relations by identifying barriers and conflict situations associated with maintaining and developing durable business relationships by small companies. The contribution of prior studies with regard to negative aspects of marketing relationships is presented in the first section. The international research results are discussed with regard to the existing conceptualizations and main research implications identified at the end.

Keywords: Relationship marketing, barriers, conflict, SME, international research.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1315
3839 An Approach for Ensuring Data Flow in Freight Delivery and Management Systems

Authors: Aurelija Burinskienė, Dalė Dzemydienė, Arūnas Miliauskas

Abstract:

This research aims at developing the approach for more effective freight delivery and transportation process management. The road congestions and the identification of causes are important, as well as the context information recognition and management. The measure of many parameters during the transportation period and proper control of driver work became the problem. The number of vehicles per time unit passing at a given time and point for drivers can be evaluated in some situations. The collection of data is mainly used to establish new trips. The flow of the data is more complex in urban areas. Herein, the movement of freight is reported in detail, including the information on street level. When traffic density is extremely high in congestion cases, and the traffic speed is incredibly low, data transmission reaches the peak. Different data sets are generated, which depend on the type of freight delivery network. There are three types of networks: long-distance delivery networks, last-mile delivery networks and mode-based delivery networks; the last one includes different modes, in particular, railways and other networks. When freight delivery is switched from one type of the above-stated network to another, more data could be included for reporting purposes and vice versa. In this case, a significant amount of these data is used for control operations, and the problem requires an integrated methodological approach. The paper presents an approach for providing e-services for drivers by including the assessment of the multi-component infrastructure needed for delivery of freights following the network type. The construction of such a methodology is required to evaluate data flow conditions and overloads, and to minimize the time gaps in data reporting. The results obtained show the possibilities of the proposing methodological approach to support the management and decision-making processes with functionality of incorporating networking specifics, by helping to minimize the overloads in data reporting.

Keywords: Transportation networks, freight delivery, data flow, monitoring, e-services.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 608
3838 Modeling and Analysis for Effective Capacity of a Cross-Layer Optimized Wireless Networks

Authors: Reham A. El-mayet, Hesham M. El-Badawy, Salwa H. Elramly

Abstract:

New generation mobile communication networks have the ability of supporting triple play. In order that, Orthogonal Frequency Division Multiplexing (OFDM) access techniques have been chosen to enlarge the system ability for high data rates networks. Many of cross-layer modeling and optimization schemes for Quality of Service (QoS) and capacity of downlink multiuser OFDM system were proposed. In this paper, the Maximum Weighted Capacity (MWC) based resource allocation at the Physical (PHY) layer is used. This resource allocation scheme provides a much better QoS than the previous resource allocation schemes, while maintaining the highest or nearly highest capacity and costing similar complexity. In addition, the Delay Satisfaction (DS) scheduling at the Medium Access Control (MAC) layer, which allows more than one connection to be served in each slot is used. This scheduling technique is more efficient than conventional scheduling to investigate both of the number of users as well as the number of subcarriers against system capacity. The system will be optimized for different operational environments: the outdoor deployment scenarios as well as the indoor deployment scenarios are investigated and also for different channel models. In addition, effective capacity approach [1] is used not only for providing QoS for different mobile users, but also to increase the total wireless network's throughput.

Keywords: Cross-layer, effective capacity, LTE, OFDM, QoS, resource allocation, wireless networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1797
3837 The Harada Method – A Method for Employee Development during Production Ramp Up

Authors: M. Goerke, J. Gehrmann

Abstract:

Caused by shorter product life cycles and higher product variety the importance of production ramp ups is increasing. Even though companies are aware of that fact, up to 40% of the ramp up projects still miss technical and economical requirements. The success of a ramp up depends on the planning of human factors, organizational aspects and technological solutions. Since only partly considered in scientific literature, this paper lays its focus on the human factor during production ramp up. There are only incoherent methods which address the problems in this area. A systematic and holistic method to improve the capabilities of the employees during ramp up is missing. The Harada Method is a relatively young approach for developing highly-skilled workers. It consists of different worksheets which help employees to set guidelines and reach overall objectives. This approach is going to be transferred into a tool for ramp up management.

Keywords: Employee Development, Harada, Production Ramp Up.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2278
3836 Optimization of Protein Hydrolysate Production Process from Jatropha curcas Cake

Authors: Waraporn Apiwatanapiwat, Pilanee Vaithanomsat, Phanu Somkliang, Taweesiri Malapant

Abstract:

This was the first document revealing the investigation of protein hydrolysate production optimization from J. curcas cake. Proximate analysis of raw material showed 18.98% protein, 5.31% ash, 8.52% moisture and 12.18% lipid. The appropriate protein hydrolysate production process began with grinding the J. curcas cake into small pieces. Then it was suspended in 2.5% sodium hydroxide solution with ratio between solution/ J. curcas cake at 80:1 (v/w). The hydrolysis reaction was controlled at temperature 50 °C in water bath for 45 minutes. After that, the supernatant (protein hydrolysate) was separated using centrifuge at 8000g for 30 minutes. The maximum yield of resulting protein hydrolysate was 73.27 % with 7.34% moisture, 71.69% total protein, 7.12% lipid, 2.49% ash. The product was also capable of well dissolving in water.

Keywords: Production, protein hydrolysate, Jatropha curcas cake, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1955
3835 Risk Assessment Results in Biogas Production from Agriculture Biomass

Authors: Sandija Zeverte-Rivza, Irina Pilvere, Baiba Rivza

Abstract:

The use of renewable energy sources incl. biogas has become topical in accordance with the increasing demand for energy, decrease of fossil energy resources and the efforts to reduce greenhouse gas emissions as well as to increase energy independence from the territories where fossil energy resources are available.

As the technologies of biogas production from agricultural biomass develop, risk assessment and risk management become necessary for farms producing such a renewable energy. The need for risk assessments has become particularly topical when discussions on changing the biogas policy in the EU take place, which may influence the development of the sector in the future, as well as the operation of existing biogas facilities and their income level.

The current article describes results of the risk assessment for farms producing biomass from agriculture biomass in Latvia, the risk assessment system included 24 risks, that affect the whole biogas production process and the obtained results showed the high significance of political and production risks.

Keywords: Biogas production, risks, risk assessment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3265
3834 Applying 5S Lean Technology: An Infrastructure for Continuous Process Improvement

Authors: Raid A. Al-Aomar

Abstract:

This paper presents an application of 5S lean technology to a production facility. Due to increased demand, high product variety, and a push production system, the plant has suffered from excessive wastes, unorganized workstations, and unhealthy work environment. This has translated into increased production cost, frequent delays, and low workers morale. Under such conditions, it has become difficult, if not impossible, to implement effective continuous improvement studies. Hence, the lean project is aimed at diagnosing the production process, streamlining the workflow, removing/reducing process waste, cleaning the production environment, improving plant layout, and organizing workstations. 5S lean technology is utilized for achieving project objectives. The work was a combination of both culture changes and tangible/physical changes on the shop floor. The project has drastically changed the plant and developed the infrastructure for a successful implementation of continuous improvement as well as other best practices and quality initiatives.

Keywords: 5S Technique, Continuous Improvement, Kaizen, Lean Technology, Work Methods, Work Standards

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4908
3833 The Law of Treaties and National Security of Islamic Republic of Iran

Authors: S. M. Tavakoli Sani, M. Sabbet Moghadam, Y. Khorram Farhadi, Iraj Rezayi Nejad

Abstract:

The concept of national security in Iran is a permanently effective factor in acceptance or rejection of many international obligations. These obligations had been defined according to the type of legislation of Iran in many aspects. Therefore, there are several treaties at international level which requires Iran’s security to come in contact with obligations in these treaties in a way that an obstacle to join to them and their passage in parliament. This issue is a typical category which every country pays attention to be accepted in treaties or to include their national security in that treaties and also they can see the related treaties from this perspective, but this issue that 'what is the concept of Iran’s national security', and 'To what extent it is changed in recent years, especially after Islamic Revolution' are important issues that can be criticized. Thus, this study is trying to assess singed treaties from the perspective of Iran’s national security according of the true meaning of treaty and to investigate how the international treaties may be in conflict with Iran’s national security.

Keywords: Treaties, national security, Iran, Islamic Revolution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1439
3832 A Combined Meta-Heuristic with Hyper-Heuristic Approach to Single Machine Production Scheduling Problem

Authors: C. E. Nugraheni, L. Abednego

Abstract:

This paper is concerned with minimization of mean tardiness and flow time in a real single machine production scheduling problem. Two variants of genetic algorithm as metaheuristic are combined with hyper-heuristic approach are proposed to solve this problem. These methods are used to solve instances generated with real world data from a company. Encouraging results are reported.

Keywords: Hyper-heuristics, evolutionary algorithms, production scheduling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2415
3831 Lithofacies Classification from Well Log Data Using Neural Networks, Interval Neutrosophic Sets and Quantification of Uncertainty

Authors: Pawalai Kraipeerapun, Chun Che Fung, Kok Wai Wong

Abstract:

This paper proposes a novel approach to the question of lithofacies classification based on an assessment of the uncertainty in the classification results. The proposed approach has multiple neural networks (NN), and interval neutrosophic sets (INS) are used to classify the input well log data into outputs of multiple classes of lithofacies. A pair of n-class neural networks are used to predict n-degree of truth memberships and n-degree of false memberships. Indeterminacy memberships or uncertainties in the predictions are estimated using a multidimensional interpolation method. These three memberships form the INS used to support the confidence in results of multiclass classification. Based on the experimental data, our approach improves the classification performance as compared to an existing technique applied only to the truth membership. In addition, our approach has the capability to provide a measure of uncertainty in the problem of multiclass classification.

Keywords: Multiclass classification, feed-forward backpropagation neural network, interval neutrosophic sets, uncertainty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1634
3830 Performance Evaluation of Packet Scheduling with Channel Conditioning Aware Based On WiMAX Networks

Authors: Elmabruk Laias, Abdalla M. Hanashi, Mohammed Alnas

Abstract:

Worldwide Interoperability for Microwave Access (WiMAX) became one of the most challenging issues, since it was responsible for distributing available resources of the network among all users this leaded to the demand of constructing and designing high efficient scheduling algorithms in order to improve the network utilization, to increase the network throughput, and to minimize the end-to-end delay. In this study, the proposed algorithm focuses on an efficient mechanism to serve non_real time traffic in congested networks by considering channel status.

Keywords: WiMAX, Quality of Services (QoS), OPNE, Diff-Serv (DS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1835
3829 Life Cycle-Based Analysis of Meat Production: Ecosystem Impacts

Authors: Michelle Zeyuan Ma, Hermann Heilmeier

Abstract:

Recently, meat production ecosystem impacts initiated many hot discussions and researchers, and it is a difficult implementation to reduce such impacts due to the demand of meat products. It calls for better management and control of ecosystem impacts from every aspects of meat production. This article analyzes the ecosystem impacts of meat production based on meat products life cycle. The analysis shows that considerable ecosystem impacts are caused by different meat production steps: initial establishment phase, animal raising, slaughterhouse processing, meat consumption, and wastes management. Based on this analysis, the impacts are summarized as: leading factor for biodiversity loss; water waste, land use waste and land degradation; greenhouse gases emissions; pollution to air, water, and soil; related major diseases. The article also provides a discussion on a solution-sustainable food system, which could help in reducing ecosystem impacts. The analysis method is based on the life cycle level, it provides a concept of the whole meat industry ecosystem impacts, and the analysis result could be useful to manage or control meat production ecosystem impacts from investor, producer and consumer sides.

Keywords: Eutrophication, life cycle based analysis, sustainable food, waste management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1202
3828 Input Variable Selection for RBFN-based Electric Utility's CO2 Emissions Forecasting

Authors: I. Falconett, K. Nagasaka

Abstract:

This study investigates the performance of radial basis function networks (RBFN) in forecasting the monthly CO2 emissions of an electric power utility. We also propose a method for input variable selection. This method is based on identifying the general relationships between groups of input candidates and the output. The effect that each input has on the forecasting error is examined by removing all inputs except the variable to be investigated from its group, calculating the networks parameter and performing the forecast. Finally, the new forecasting error is compared with the reference model. Eight input variables were identified as the most relevant, which is significantly less than our reference model with 30 input variables. The simulation results demonstrate that the model with the 8 inputs selected using the method introduced in this study performs as accurate as the reference model, while also being the most parsimonious.

Keywords: Correlation analysis, CO2 emissions forecasting, electric power utility, radial basis function networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1538
3827 A New Fuzzy Mathematical Model in Recycling Collection Networks: A Possibilistic Approach

Authors: B. Vahdani, R. Tavakkoli-Moghaddam, A. Baboli, S. M. Mousavi

Abstract:

Focusing on the environmental issues, including the reduction of scrap and consumer residuals, along with the benefiting from the economic value during the life cycle of goods/products leads the companies to have an important competitive approach. The aim of this paper is to present a new mixed nonlinear facility locationallocation model in recycling collection networks by considering multi-echelon, multi-suppliers, multi-collection centers and multifacilities in the recycling network. To make an appropriate decision in reality, demands, returns, capacities, costs and distances, are regarded uncertain in our model. For this purpose, a fuzzy mathematical programming-based possibilistic approach is introduced as a solution methodology from the recent literature to solve the proposed mixed-nonlinear programming model (MNLP). The computational experiments are provided to illustrate the applicability of the designed model in a supply chain environment and to help the decision makers to facilitate their analysis.

Keywords: Location-allocation model, recycling collection networks, fuzzy mathematical programming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2099
3826 Effect of Distributed Generators on the Optimal Operation of Distribution Networks

Authors: J. Olamaei , T. Niknam, M. Nayeripour

Abstract:

This paper presents an approach for daily optimal operation of distribution networks considering Distributed Generators (DGs). Due to private ownership of DGs, a cost based compensation method is used to encourage DGs in active and reactive power generation. The objective function is summation of electrical energy generated by DGs and substation bus (main bus) in the next day. A genetic algorithm is used to solve the optimal operation problem. The approach is tested on an IEEE34 buses distribution feeder.

Keywords: Distributed Generator, Daily Optimal Operation, Genetic Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1633
3825 Research on the Layout of Ground Control Points in Plain area 1:10000 DLG Production Using POS Technique

Authors: Dong Ming, Chen Haipeng

Abstract:

POS (also been called DGPS/IMU) technique can obtain the Exterior Orientation Elements of aerial photo, so the triangulation and DLG production using POS can save large numbers of ground control points (GCP), and this will improve the produce efficiency of DLG and reduce the cost of collecting GCP. This paper mainly research on POS technique in production of 1:10 000 scale DLG on GCP distribution. We designed 23 kinds of ground control points distribution schemes, using integrated sensor direction method to do the triangulation experiments, based on the results of triangulation, we produce a map with the scale of 1:10 000 and test its accuracy. This paper put forward appropriate GCP distributing schemes by experiments and research above, and made preparations for the application of POS technique on photogrammetry 4D data production.

Keywords: POS, IMU, DGPS, DLG, ground control point, triangulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1705
3824 A Novel and Green Approach to Produce Nano- Porous Materials Zeolite A and MCM-41 from Coal Fly Ash and their Applications in Environmental Protection

Authors: K. S. Hui, K. N. Hui, Seong Kon Lee

Abstract:

Zeolite A and MCM-41 have extensive applications in basic science, petrochemical science, energy conservation/storage, medicine, chemical sensor, air purification, environmentally benign composite structure and waste remediation. However, the use of zeolite A and MCM-41 in these areas, especially environmental remediation, are restricted due to prohibitive production cost. Efficient recycling of and resource recovery from coal fly ash has been a major topic of current international research interest, aimed at achieving sustainable development of human society from the viewpoints of energy, economy, and environmental strategy. This project reported an original, novel, green and fast methods to produce nano-porous zeolite A and MCM-41 materials from coal fly ash. For zeolite A, this novel production method allows a reduction by half of the total production time while maintaining a high degree of crystallinity of zeolite A which exists in a narrower particle size distribution. For MCM-41, this remarkably green approach, being an environmentally friendly process and reducing generation of toxic waste, can produce pure and long-range ordered MCM-41 materials from coal fly ash. This approach took 24 h at 25 oC to produce 9 g of MCM-41 materials from 30 g of the coal fly ash, which is the shortest time and lowest reaction temperature required to produce pure and ordered MCM-41 materials (having the largest internal surface area) compared to the values reported in the literature. Performance evaluation of the produced zeolite A and MCM-41 materials in wastewater treatment and air pollution control were reported. The residual fly ash was also converted to zeolite Na-P1 which showed good performance in removal of multi-metal ions in wastewater. In wastewater treatment, compared to commercial-grade zeolite A, adsorbents produced from coal fly ash were effective in removing multi heavy metal ions in water and could be an alternative material for treatment of wastewater. In methane emission abatement, the zeolite A (produced from coal fly ash) achieved similar methane removal efficiency compared to the zeolite A prepared from pure chemicals. This report provides the guidance for production of zeolite A and MCM-41 from coal fly ash by a cost-effective approach which opens potential applications of these materials in environmental industry. Finally, environmental and economic aspects of production of zeolite A and MCM-41 from coal fly ash were discussed.

Keywords: Metal ions, waste water, methane, volatile organic compounds

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2255
3823 Signalling Cost Analysis of PDE-NEMO

Authors: Kamarularifin Abd Jalil, John Dunlop

Abstract:

A Personal Distributed Environment (PDE) is an example of an IP-based system architecture designed for future mobile communications. In a single PDE, there exist several Subnetworks hosting devices located across the infrastructure, which will inter-work with one another through the coordination of a Device Management Entity (DME). Some of these Sub-networks are fixed and some are mobile. In order to support Mobile Sub-networks mobility in the PDE, the PDE-NEMO protocol was proposed. This paper discussed the signalling cost analysis of PDE-NEMO by use of a detailed simulation model. The paper started with the introduction of the protocol, followed by the experiments and results and then followed by discussions.

Keywords: Mobile Network, PDE-NEMO, Signallling Cost.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1397