Search results for: finned surface
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2091

Search results for: finned surface

1491 Optimization of Process Parameters Affecting Biogas Production from Organic Fraction of Municipal Solid Waste via Anaerobic Digestion

Authors: Sajeena Beevi. B, Jose P. P., G. Madhu

Abstract:

The aim of this study was to obtain the optimal conditions for biogas production from anaerobic digestion of organic fraction of municipal solid waste (OFMSW) using response surface methodology (RSM). The parameters studied were initial pH, substrate concentration and total organic carbon (TOC). The experimental results showed that the linear model terms of initial pH and substrate concentration and the quadratic model terms of the substrate concentration and TOC had significant individual effect (p < 0.05) on biogas yield. However, there was no interactive effect between these variables (p > 0.05). The highest level of biogas produced was 53.4 L/Kg VS at optimum pH, substrate concentration and total organic carbon of 6.5, 99gTS/L and 20.32 g/L respectively.

Keywords: Anaerobic Digestion, Biogas, Optimization, Response Surface Methodology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4774
1490 Investigation of Chlorophylls a and b Interaction with Inner and Outer Surfaces of Single-Walled Carbon Nanotube Using Molecular Dynamics Simulation

Authors: M. Dehestani, M. Ghasemi-Kooch

Abstract:

In this work, adsorption of chlorophylls a and b pigments in aqueous solution on the inner and outer surfaces of single-walled carbon nanotube (SWCNT) has been studied using molecular dynamics simulation. The linear interaction energy algorithm has been used to calculate the binding free energy. The results show that the adsorption of two pigments is fine on the both positions. Although there is the close similarity between these two pigments, their interaction with the nanotube is different. This result is useful to separate these pigments from one another. According to interaction energy between the pigments and carbon nanotube, interaction between these pigments-SWCNT on the inner surface is stronger than the outer surface. The interaction of SWCNT with chlorophylls phytol tail is stronger than the interaction of SWCNT with porphyrin ring of chlorophylls.

Keywords: Dynamic simulation, single walled carbon nanotube, chlorophyll, adsorption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 897
1489 Performance Evaluation of Parallel Surface Modeling and Generation on Actual and Virtual Multicore Systems

Authors: Nyeng P. Gyang

Abstract:

Even though past, current and future trends suggest that multicore and cloud computing systems are increasingly prevalent/ubiquitous, this class of parallel systems is nonetheless underutilized, in general, and barely used for research on employing parallel Delaunay triangulation for parallel surface modeling and generation, in particular. The performances, of actual/physical and virtual/cloud multicore systems/machines, at executing various algorithms, which implement various parallelization strategies of the incremental insertion technique of the Delaunay triangulation algorithm, were evaluated. T-tests were run on the data collected, in order to determine whether various performance metrics differences (including execution time, speedup and efficiency) were statistically significant. Results show that the actual machine is approximately twice faster than the virtual machine at executing the same programs for the various parallelization strategies. Results, which furnish the scalability behaviors of the various parallelization strategies, also show that some of the differences between the performances of these systems, during different runs of the algorithms on the systems, were statistically significant. A few pseudo superlinear speedup results, which were computed from the raw data collected, are not true superlinear speedup values. These pseudo superlinear speedup values, which arise as a result of one way of computing speedups, disappear and give way to asymmetric speedups, which are the accurate kind of speedups that occur in the experiments performed.

Keywords: Cloud computing systems, multicore systems, parallel delaunay triangulation, parallel surface modeling and generation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 879
1488 Effect of Runup over a Vertical Pile Supported Caisson Breakwater and Quarter Circle Pile Supported Caisson Breakwater

Authors: T. J. Jemi Jeya, V. Sriram

Abstract:

Pile Supported Caisson breakwater is an ecofriendly breakwater very useful in coastal zone protection. The model is developed by considering the advantages of both caisson breakwater and pile supported breakwater, where the top portion is a vertical or quarter circle caisson and the bottom portion consists of a pile supported breakwater defined as Vertical Pile Supported Breakwater (VPSCB) and Quarter-circle Pile Supported Breakwater (QPSCB). The study mainly focuses on comparison of run up over VPSCB and QPSCB under oblique waves. The experiments are carried out in a shallow wave basin under different water depths (d = 0.5 m & 0.55 m) and under different oblique regular waves (00, 150, 300). The run up over the surface is measured by placing two run up probes over the surface at 0.3 m on both sides from the centre of the model. The results show that the non-dimensional shoreward run up shows slight decrease with respect to increase in angle of wave attack.

Keywords: Caisson breakwater, pile supported breakwater, quarter circle breakwater, vertical breakwater.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 691
1487 Dissolution of Solid Particles in Liquids: A Shrinking Core Model

Authors: Wei-Lun Hsu, Mon-Jyh Lin, Jyh-Ping Hsu

Abstract:

The dissolution of spherical particles in liquids is analyzed dynamically. Here, we consider the case the dissolution of solute yields a solute-free solid phase in the outer portion of a particle. As dissolution proceeds, the interface between the undissolved solid phase and the solute-free solid phase moves towards the center of the particle. We assume that there exist two resistances for the diffusion of solute molecules: the resistance due to the solute-free portion of the particle and that due to a surface layer near solid-liquid interface. In general, the equation governing the dynamic behavior of dissolution needs to be solved numerically. However, analytical expressions for the temporal variation of the size of the undissoved portion of a particle and the variation of dissolution time can be obtained in some special cases. The present analysis takes the effect of variable bulk solute concentration on dissolution into account.

Keywords: dissolution of particles, surface layer, shrinking core model, dissolution time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4181
1486 The Effect of Ultrasonic Vibration of Workpiece in Electrical Discharge Machining of AISIH13 Tool Steel

Authors: M. R. Shabgard, B. Sadizadeh, H. Kakoulvand

Abstract:

In the present work, a study has been made on the combination of the electrical discharge machining (EDM) with ultrasonic vibrations to improve the machining efficiency. In experiments the graphite used as tool electrode and material of workpiece was AISIH13 tool steel. The parameters such as discharge peak current and pulse duration were changed to explore their effect on the material removal rate (MRR), relative tool wear ratio (TWR) and surface roughness. From the experimental result it can be seen that ultrasonic vibration of the workpiece can significantly reduces the inactive pulses and improves the stability of process. It was found that ultrasonic assisted EDM (US-EDM) is effective in attaining a high material removal rate (MRR) in finishing regime.

Keywords: AISIH13 tool steel, Electrical discharge machining(EDM), Material removal rate (MRR), Surface roughness (Ra), Toolwear ratio (TWR), Ultrasonic assisted EDM (US-EDM)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3944
1485 High Performance In0.42Ga0.58As/In0.26Ga0.74As Vertical Cavity Surface Emitting Quantum Well Laser on In0.31Ga0.69As Ternary Substrate

Authors: Md. M. Biswas, Md. M. Hossain, Shaikh Nuruddin

Abstract:

This paper reports on the theoretical performance analysis of the 1.3 μm In0.42Ga0.58As /In0.26Ga0.74As multiple quantum well (MQW) vertical cavity surface emitting laser (VCSEL) on the ternary In0.31Ga0.69As substrate. The output power of 2.2 mW has been obtained at room temperature for 7.5 mA injection current. The material gain has been estimated to be ~3156 cm-1 at room temperature with the injection carrier concentration of 2×1017 cm-3. The modulation bandwidth of this laser is measured to be 9.34 GHz at room temperature for the biasing current of 2 mA above the threshold value. The outcomes reveal that the proposed InGaAsbased MQW laser is the promising one for optical communication system.

Keywords: Quantum well, VCSEL, output power, materialgain, modulation bandwidth.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1718
1484 Development of Better Quality Low-Cost Activated Carbon from South African Pine Tree (Pinus patula) Sawdust: Characterization and Comparative Phenol Adsorption

Authors: L. Mukosha, M. S. Onyango, A. Ochieng, H. Kasaini

Abstract:

The remediation of water resources pollution in developing countries requires the application of alternative sustainable cheaper and efficient end-of-pipe wastewater treatment technologies. The feasibility of use of South African cheap and abundant pine tree (Pinus patula) sawdust for development of lowcost AC of comparable quality to expensive commercial ACs in the abatement of water pollution was investigated. AC was developed at optimized two-stage N2-superheated steam activation conditions in a fixed bed reactor, and characterized for proximate and ultimate properties, N2-BET surface area, pore size distribution, SEM, pHPZC and FTIR. The sawdust pyrolysis activation energy was evaluated by TGA. Results indicated that the chars prepared at 800oC and 2hrs were suitable for development of better quality AC at 800oC and 47% burn-off having BET surface area (1086m2/g), micropore volume (0.26cm3/g), and mesopore volume (0.43cm3/g) comparable to expensive commercial ACs, and suitable for water contaminants removal. The developed AC showed basic surface functionality at pHPZC at 10.3, and a phenol adsorption capacity that was higher than that of commercial Norit (RO 0.8) AC. Thus, it is feasible to develop better quality low-cost AC from (Pinus patula) sawdust using twostage N2-steam activation in fixed-bed reactor.

Keywords: Activated carbon, phenol adsorption, sawdust integrated utilization, economical wastewater treatment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3470
1483 Moderation in Temperature Dependence on Counter Frictional Coefficient and Prevention of Wear of C/C Composites by Synthesizing SiC around Surface and Internal Vacancies

Authors: Noboru Wakamoto, Kiyotaka Obunai, Kazuya Okubo, Toru Fujii

Abstract:

The aim of this study is to moderate the dependence of counter frictional coefficient on temperature between counter surfaces and to reduce the wear of C/C composites at low temperature. To modify the C/C composites, Silica (SiO2) powders were added into phenolic resin for carbon precursor. The preform plate of the precursor of C/C composites was prepared by conventional filament winding method. The C/C composites plates were obtained by carbonizing preform plate at 2200 °C under an argon atmosphere. At that time, the silicon carbides (SiC) were synthesized around the surfaces and the internal vacancies of the C/C composites. The frictional coefficient on the counter surfaces and specific wear volumes of the C/C composites were measured by our developed frictional test machine like pin-on disk type. The XRD indicated that SiC was synthesized in the body of C/C composite fabricated by current method. The results of friction test showed that coefficient of friction of unmodified C/C composites have temperature dependence when the test condition was changed. In contrast, frictional coefficient of the C/C composite modified with SiO2 powders was almost constant at about 0.27 when the temperature condition was changed from Room Temperature (RT) to 300 °C. The specific wear rate decreased from 25×10-6 mm2/N to 0.1×10-6 mm2/N. The observations of the surfaces after friction tests showed that the frictional surface of the modified C/C composites was covered with a film produced by the friction. This study found that synthesizing SiC around surface and internal vacancies of C/C composites was effective to moderate the dependence on the frictional coefficient and reduce to the abrasion of C/C composites.

Keywords: C/C composites, frictional coefficient, SiC, wear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 829
1482 Structural and Optical Characterizations of CIGST Solar Cell Materials

Authors: Abhay Kumar Singh

Abstract:

Structural and UV/Visible optical properties can be useful to describe a material for the CIGS solar cell active layer, therefore, this work demonstrates the properties like surface morphology, X-ray Photoelectron Spectroscopy (XPS) bonding energy (EB) core level spectra, UV/Visible absorption spectra, refractive index (n), optical energy band (Eg), reflection spectra for the Cu25 (In16Ga9) Se40Te10 (CIGST-1) and Cu20 (In14Ga9) Se45Te12 (CIGST-2) chalcogenide compositions. Materials have been exhibited homogenous surface morphologies, broading /-or diffusion of bonding energy peaks relative elemental values and a high UV/Visible absorption tendency in the wave length range 400 nm- 850 nm range with the optical energy band gaps 1.37 and 1.42 respectively. Subsequently, UV/Visible reflectivity property in the wave length range 250 nm to 320 nm for these materials has also been discussed.

Keywords: Chalcogen, Optical energy band gap, UV/Visible spectra, XPS spectra.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1763
1481 Characterization of Complex Electromagnetic Environment Created by Multiple Sources of Electromagnetic Radiation

Authors: C. Temaneh-Nyah, J. Makiche, J. Nujoma

Abstract:

This paper considers the characterization of a complex electromagnetic environment due to multiple sources of electromagnetic radiation as a five-dimensional surface which can be described by a set of several surface sections including: instant EM field intensity distribution maps at a given frequency and altitude, instantaneous spectrum at a given location in space and the time evolution of the electromagnetic field spectrum at a given point in space. This characterization if done over time can enable the exposure levels of Radio Frequency Radiation at every point in the analysis area to be determined and results interpreted based on comparison of the determined RFR exposure level with the safe guidelines for general public exposure given by recognized body such as the International commission on non-ionizing radiation protection (ICNIRP), Institute of Electrical and Electronic Engineers (IEEE), the National Radiation Protection Authority (NRPA).

Keywords: Electromagnetic Environment, Electric Field Strength, Mathematical Models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2575
1480 Energy Recovery from Swell with a Height Inferior to 1.5 m

Authors: A. Errasti, F. Doffagne, O. Foucrier, S. Kao, A. Meigne, H. Pellae, T. Rouland

Abstract:

Renewable energy recovery is an important domain of research in past few years in view of protection of our ecosystem. Several industrial companies are setting up widespread recovery systems to exploit wave energy. Most of them have a large size, are implanted near the shores and exploit current flows. However, as oceans represent 70% of Earth surface, a huge space is still unexploited to produce energy. Present analysis focuses on surface small scale wave energy recovery. The principle is exactly the opposite of wheel damper for a car on a road. Instead of maintaining the car body as non-oscillatory as possible by adapted control, a system is designed so that its oscillation amplitude under wave action will be maximized with respect to a boat carrying it in view of differential potential energy recuperation. From parametric analysis of system equations, interesting domains have been selected and expected energy output has been evaluated.

Keywords: Small scale wave, potential energy, optimized energy recovery, auto-adaptive system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1195
1479 Finite Element Modeling to Predict the Effect of Nose Radius on the Equivalent Strain (PEEQ) for Titanium Alloy (Ti-6Al-4V)

Authors: Moaz H. Ali, M. N. M. Ansari, Pang Jing Shen

Abstract:

In present work, prediction the effect of nose radius, rz (mm) on the equivalent strain (PEEQ) and surface finish during the machining of titanium alloy (Ti-6Al-4V) through orthogonal cutting process. The results were performed at several of the nose radiuses, rz (mm) while the cutting speed, vc (m/min), feed rate, f (mm/tooth) and depth of cut, d (mm) were remained constant. The equivalent plastic strain (PEEQ) was estimated by using finite element modeling (FEM) and applied through ABAQUS/EXPLICIT software. The simulation results led to conclude that the equivalent plastic strain (PEEQ) was increased and surface roughness (Ra) decreased when increasing nose radius, rz (mm) during the machining of titanium alloy (Ti–6Al–4V) in dry cutting conditions.

Keywords: Finite element modeling (FEM), nose radius, plastic strain (PEEQ), titanium alloy (Ti-6Al-4V).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2484
1478 Removal of Elemental Mercury from Dry Methane Gas with Manganese Oxides

Authors: Junya Takenami, Md. Azhar Uddin, Eiji Sasaoka, Yasushi Shioya, Tsuneyoshi Takase

Abstract:

In this study, we sought to investigate the mercury removal efficiency of manganese oxides from natural gas. The fundamental studies on mercury removal with manganese oxides sorbents were carried out in a laboratory scale fixed bed reactor at 30 °C with a mixture of methane (20%) and nitrogen gas laden with 4.8 ppb of elemental mercury. Manganese oxides with varying surface area and crystalline phase were prepared by conventional precipitation method in this study. The effects of surface area, crystallinity and other metal oxides on mercury removal efficiency were investigated. Effect of Ag impregnation on mercury removal efficiency was also investigated. Ag supported on metal oxide such titania and zirconia as reference materials were also used in this study for comparison. The characteristics of mercury removal reaction with manganese oxide was investigated using a temperature programmed desorption (TPD) technique. Manganese oxides showed very high Hg removal activity (about 73-93% Hg removal) for first time use. Surface area of the manganese oxide samples decreased after heat-treatment and resulted in complete loss of Hg removal ability for repeated use after Hg desorption in the case of amorphous MnO2, and 75% loss of the initial Hg removal activity for the crystalline MnO2. Mercury desorption efficiency of crystalline MnO2 was very low (37%) for first time use and high (98%) after second time use. Residual potassium content in MnO2 may have some effect on the thermal stability of the adsorbed Hg species. Desorption of Hg from manganese oxides occurs at much higher temperatures (with a peak at 400 °C) than Ag/TiO2 or Ag/ZrO2. Mercury may be captured on manganese oxides in the form of mercury manganese oxide.

Keywords: Mercury removal, Metal and metal oxide sorbents, Methane, Natural gas.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2104
1477 Failure Analysis of a Fractured Control Pressure Tube from an Aircraft Engine

Authors: M. P. Valles-González, A. González Meije, A. Pastor Muro, M. García-Martínez, B. González Caballero

Abstract:

This paper studies a failure case of a fuel pressure supply tube from an aircraft engine. Multiple fracture cases of the fuel pressure control tube from aircraft engines have been reported. The studied set was composed by the mentioned tube, a welded connecting pipe, where the fracture has been produced, and a union nut. The fracture has been produced in one of the most critical zones of the tube, in a region next to the supporting body of the union nut to the connector. The tube material was X6CrNiTi18-10, an austenitic stainless steel. Chemical composition was determined using an X-Ray fluorescence spectrometer (XRF) and combustion equipment. Furthermore, the material was characterized mechanically, by a hardness test, and microstructurally using a stereo microscope and an optical microscope. The results confirmed that the material was within specifications. To determine the macrofractographic features, a visual examination and an observation using a stereo microscope of the tube fracture surface were carried out. The results revealed a tube plastic macrodeformation, surface damaged and signs of a possible corrosion process. Fracture surface was also inspected by scanning electron microscopy (FE-SEM), equipped with an energy-dispersive X-ray microanalysis system (EDX), to determine the microfractographic features in order to find out the failure mechanism involved in the fracture. Fatigue striations, which are typical from a progressive fracture by a fatigue mechanism, were observed. The origin of the fracture was placed in defects located on the outer wall of the tube, leading to a final overload fracture.

Keywords: Aircraft Engine, microstructure, fatigue, FE-SEM, fractography, fracture, fuel tube, stainless steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 564
1476 Study on Crater Detection Using FLDA

Authors: Yoshiaki Takeda, Norifumi Aoyama, Takahiro Tanaami, Syouhei Honda, Kenta Tabata, Hiroyuki Kamata

Abstract:

In this paper, we validate crater detection in moon surface image using FLDA. This proposal assumes that it is applied to SLIM (Smart Lander for Investigating Moon) project aiming at the pin-point landing to the moon surface. The point where the lander should land is judged by the position relations of the craters obtained via camera, so the real-time image processing becomes important element. Besides, in the SLIM project, 400kg-class lander is assumed, therefore, high-performance computers for image processing cannot be equipped. We are studying various crater detection methods such as Haar-Like features, LBP, and PCA. And we think these methods are appropriate to the project, however, to identify the unlearned images obtained by actual is insufficient. In this paper, we examine the crater detection using FLDA, and compare with the conventional methods.

Keywords: Crater Detection, Fisher Linear Discriminant Analysis , Haar-Like Feature, Image Processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1729
1475 Optimization for Subcritical Water Extraction of Phenolic Compounds from Rambutan Peels

Authors: Nuttawan Yoswathana, M. N. Eshtiaghi

Abstract:

Rambutan is a tropical fruit which peel possesses antioxidant properties. This work was conducted to optimize extraction conditions of phenolic compounds from rambutan peel. Response surface methodology (RSM) was adopted to optimize subcritical water extraction (SWE) on temperature, extraction time and percent solvent mixture. The results demonstrated that the optimum conditions for SWE were as follows: temperature 160°C, extraction time 20min. and concentration of 50% ethanol. Comparison of the phenolic compounds from the rambutan peels in maceration 6h, soxhlet 4h, and SWE 20min., it indicated that total phenolic content (using Folin-Ciocalteu-s phenol reagent) was 26.42, 70.29, and 172.47mg of tannic acid equivalent (TAE) per g dry rambutan peel, respectively. The comparative study concluded that SWE was a promising technique for phenolic compounds extraction from rambutan peel, due to much more two times of conventional techniques and shorter extraction times.

Keywords: Subcritical water extraction, Rambutan peel, phenolic compounds, response surface methodology

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3654
1474 Computational Studies of Binding Energies and Structures of Methylamine on Functionalized Activated Carbon Surfaces

Authors: R. C. J. Mphahlele, K. Bolton, H. Kasaini

Abstract:

Empirical force fields and density functional theory (DFT) was used to study the binding energies and structures of methylamine on the surface of activated carbons (ACs). This is a first step in studying the adsorption of alkyl amines on the surface of functionalized ACs. The force fields used were Dreiding (DFF), Universal (UFF) and Compass (CFF) models. The generalized gradient approximation with Perdew Wang 91 (PW91) functional was used for DFT calculations. In addition to obtaining the aminecarboxylic acid adsorption energies, the results were used to establish reliability of the empirical models for these systems. CFF predicted a binding energy of -9.227 (kcal/mol) which agreed with PW91 at - 13.17 (kcal/mol), compared to DFF 0 (kcal/mol) and UFF -0.72 (kcal/mol). However, the CFF binding energies for the amine to ester and ketone disagreed with PW91 results. The structures obtained from all models agreed with PW91 results.

Keywords: Activated Carbons, Binding energy, DFT, Force fields.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1953
1473 Deposition of Transparent IGZO Conducting Thin Films by Co-Sputtering of Zn2Ga2O3 and In2O3 Targets at Room Temperature

Authors: Yu-Hsin Chen, Yuan-Tai Hsieh, Cheng-Shong Hong, Chia-Ching Wu, Cheng-Fu Yang, Yu-Jhen Liou

Abstract:

In this study, we investigated (In,Ga,Zn)Ox (IGZO) thin films and examined their characteristics of using Ga2O3-2 ZnO (GZO) co-sputtered In2O3 prepared by dual target radio frequency magnetron sputtering at room temperature in a pure Ar atmosphere. RF powers of 80 W and 70 W were used for GZO and pure In2O3, room temperature (RT) was used as deposition temperature, and the deposition time was changed from 15 min to 60 min. Structural, surface, electrical, and optical properties of IGZO thin films were investigated as a function of deposition time. Furthermore, the GZO co-sputtered In2O3 thin films showed a very smooth and featureless surface and an amorphous structure regardless of the deposition time due to the room temperature sputtering process. We would show that the co-sputtered IGZO thin films exhibited transparent electrode properties with high transmittance ratio and low resistivity.

Keywords: IGZO, co-sputter, Ga2O3-2 ZnO, In2O3.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3261
1472 Adsorption of H2 and CO on Iron-based Catalysts for Fischer-Tropsch Synthesis

Authors: Weixin Qian, Haitao Zhang, Hongfang Ma, Yongdi Liu, Weiyong Ying, Dingye Fang

Abstract:

The adsorption properties of CO and H2 on iron-based catalyst with addition of Zr and Ni were investigated using temperature programmed desorption process. It was found that on the carburized iron-based catalysts, molecular state and dissociative state CO existed together. The addition of Zr was preferential for the molecular state adsorption of CO on iron-based catalyst and the presence of Ni was beneficial to the dissociative adsorption of CO. On H2 reduced catalysts, hydrogen mainly adsorbs on the surface iron sites and surface oxide sites. On CO reduced catalysts, hydrogen probably existed as the most stable CH and OH species. The addition of Zr was not benefit to the dissociative adsorption of hydrogen on iron-based catalyst and the presence of Ni was preferential for the dissociative adsorption of hydrogen.

Keywords: adsorption, Fischer-Tropsch synthesis, iron-based catalysts

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2578
1471 Co-Disposal of Coal Ash with Mine Tailings in Surface Paste Disposal Practices: A Gold Mining Case Study

Authors: M. L. Dinis, M. C. Vila, A. Fiúza, A. Futuro, C. Nunes

Abstract:

The present paper describes the study of paste tailings prepared in laboratory using gold tailings, produced in a Finnish gold mine with the incorporation of coal ash. Natural leaching tests were conducted with the original materials (tailings, fly and bottom ashes) and also with paste mixtures that were prepared with different percentages of tailings and ashes. After leaching, the solid wastes were physically and chemically characterized and the results were compared to those selected as blank – the unleached samples. The tailings and the coal ash, as well as the prepared mixtures, were characterized, in addition to the textural parameters, by the following measurements: grain size distribution, chemical composition and pH. Mixtures were also tested in order to characterize their mechanical behavior by measuring the flexural strength, the compressive strength and the consistency. The original tailing samples presented an alkaline pH because during their processing they were previously submitted to pressure oxidation with destruction of the sulfides. Therefore, it was not possible to ascertain the effect of the coal ashes in the acid mine drainage. However, it was possible to verify that the paste reactivity was affected mostly by the bottom ash and that the tailings blended with bottom ash present lower mechanical strength than when blended with a combination of fly and bottom ash. Surface paste disposal offer an attractive alternative to traditional methods in addition to the environmental benefits of incorporating large-volume wastes (e.g. bottom ash). However, a comprehensive characterization of the paste mixtures is crucial to optimize paste design in order to enhance engineer and environmental properties.

Keywords: Coal ash, gold tailings, paste, surface disposal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1444
1470 Five-axis Strip Machining with Barrel Cutter Based On Tolerance Constraint for Sculptured Surfaces

Authors: YaoAn Lu, QingZhen Bi, BaoRui Du, ShuLin Chen, LiMin Zhu, Kai Huang

Abstract:

Taking the design tolerance into account, this paper presents a novel efficient approach to generate iso-scallop tool path for five-axis strip machining with a barrel cutter. The cutter location is first determined on the scallop surface instead of the design surface, and then the cutter is adjusted to locate the optimal tool position based on the differential rotation of the tool axis and satisfies the design tolerance simultaneously. The machining strip width and error are calculated with the aid of the grazing curve of the cutter. Based on the proposed tool positioning algorithm, the tool paths are generated by keeping the scallop height formed by adjacent tool paths constant. An example is conducted to confirm the validity of the proposed method.

Keywords: Strip machining, barrel cutter, iso-scallop tool path, sculptured surfaces, differential motion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2529
1469 Measurement and Estimation of Evaporation from Water Surfaces: Application to Dams in Arid and Semi Arid Areas in Algeria

Authors: Malika Fekih, Mohamed Saighi

Abstract:

Many methods exist for either measuring or estimating evaporation from free water surfaces. Evaporation pans provide one of the simplest, inexpensive, and most widely used methods of estimating evaporative losses. In this study, the rate of evaporation starting from a water surface was calculated by modeling with application to dams in wet, arid and semi arid areas in Algeria. We calculate the evaporation rate from the pan using the energy budget equation, which offers the advantage of an ease of use, but our results do not agree completely with the measurements taken by the National Agency of areas carried out using dams located in areas of different climates. For that, we develop a mathematical model to simulate evaporation. This simulation uses an energy budget on the level of a vat of measurement and a Computational Fluid Dynamics (Fluent). Our calculation of evaporation rate is compared then by the two methods and with the measures of areas in situ.

Keywords: Evaporation, Energy budget, Surface water temperature, CFD, Dams

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5751
1468 Greenhouse Gasses’ Effect on Atmospheric Temperature Increase and the Observable Effects on Ecosystems

Authors: Alexander J. Severinsky

Abstract:

Radiative forces of greenhouse gases (GHG) increase the temperature of the Earth's surface, more on land, and less in oceans, due to their thermal capacities. Given this inertia, the temperature increase is delayed over time. Air temperature, however, is not delayed as air thermal capacity is much lower. In this study, through analysis and synthesis of multidisciplinary science and data, an estimate of atmospheric temperature increase is made. Then, this estimate is used to shed light on current observations of ice and snow loss, desertification and forest fires, and increased extreme air disturbances. The reason for this inquiry is due to the author’s skepticism that current changes cannot be explained by a "~1 oC" global average surface temperature rise within the last 50-60 years. The only other plausible cause to explore for understanding is that of atmospheric temperature rise. The study utilizes an analysis of air temperature rise from three different scientific disciplines: thermodynamics, climate science experiments, and climactic historical studies. The results coming from these diverse disciplines are nearly the same, within ± 1.6%. The direct radiative force of GHGs with a high level of scientific understanding is near 4.7 W/m2 on average over the Earth’s entire surface in 2018, as compared to one in pre-Industrial time in the mid-1700s. The additional radiative force of fast feedbacks coming from various forms of water gives approximately an additional ~15 W/m2. In 2018, these radiative forces heated the atmosphere by approximately 5.1 oC, which will create a thermal equilibrium average ground surface temperature increase of 4.6 oC to 4.8 oC by the end of this century. After 2018, the temperature will continue to rise without any additional increases in the concentration of the GHGs, primarily of carbon dioxide and methane. These findings of the radiative force of GHGs in 2018 were applied to estimates of effects on major Earth ecosystems. This additional force of nearly 20 W/m2 causes an increase in ice melting by an additional rate of over 90 cm/year, green leaves temperature increase by nearly 5 oC, and a work energy increase of air by approximately 40 Joules/mole. This explains the observed high rates of ice melting at all altitudes and latitudes, the spread of deserts and increases in forest fires, as well as increased energy of tornadoes, typhoons, hurricanes, and extreme weather, much more plausibly than the 1.5 oC increase in average global surface temperature in the same time interval. Planned mitigation and adaptation measures might prove to be much more effective when directed toward the reduction of existing GHGs in the atmosphere.

Keywords: GHG radiative forces, GHG air temperature, GHG thermodynamics, GHG historical, GHG experimental, GHG radiative force on ice, GHG radiative force on plants, GHG radiative force in air.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 566
1467 Settlement Prediction for Tehran Subway Line-3 via FLAC3D and ANFIS

Authors: S. A. Naeini, A. Khalili

Abstract:

Nowadays, tunnels with different applications are developed, and most of them are related to subway tunnels. The excavation of shallow tunnels that pass under municipal utilities is very important, and the surface settlement control is an important factor in the design. The study sought to analyze the settlement and also to find an appropriate model in order to predict the behavior of the tunnel in Tehran subway line-3. The displacement in these sections is also determined by using numerical analyses and numerical modeling. In addition, the Adaptive Neuro-Fuzzy Inference System (ANFIS) method is utilized by Hybrid training algorithm. The database pertinent to the optimum network was obtained from 46 subway tunnels in Iran and Turkey which have been constructed by the new Austrian tunneling method (NATM) with similar parameters based on type of their soil. The surface settlement was measured, and the acquired results were compared to the predicted values. The results disclosed that computing intelligence is a good substitute for numerical modeling.

Keywords: Settlement, subway line, FLAC3D, ANFIS method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1097
1466 The Use of Thermal Infrared Wavelengths to Determine the Volcanic Soils

Authors: Levent Basayigit, Mert Dedeoglu, Fadime Ozogul

Abstract:

In this study, an application was carried out to determine the Volcanic Soils by using remote sensing.  The study area was located on the Golcuk formation in Isparta-Turkey. The thermal bands of Landsat 7 image were used for processing. The implementation of the climate model that was based on the water index was used in ERDAS Imagine software together with pixel based image classification. Soil Moisture Index (SMI) was modeled by using the surface temperature (Ts) which was obtained from thermal bands and vegetation index (NDVI) derived from Landsat 7. Surface moisture values were grouped and classified by using scoring system. Thematic layers were compared together with the field studies. Consequently, different moisture levels for volcanic soils were indicator for determination and separation. Those thermal wavelengths are preferable bands for separation of volcanic soils using moisture and temperature models.

Keywords: Landsat 7, soil moisture index, temperature models, volcanic soils.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1107
1465 Analysis and Remediation of Fecal Coliform Bacteria Pollution in Selected Surface Water Bodies of Enugu State of Nigeria

Authors: Chime Charles C., Ikechukwu Alexander Okorie, Ekanem E.J., Kagbu J. A.

Abstract:

The assessment of surface waters in Enugu metropolis for fecal coliform bacteria was undertaken. Enugu urban was divided into three areas (A1, A2 and A3), and fecal coliform bacteria analysed in the surface waters found in these areas for four years (2005-2008). The plate count method was used for the analyses. Data generated were subjected to statistical tests involving; Normality test, Homogeneity of variance test, correlation test, and tolerance limit test. The influence of seasonality and pollution trends were investigated using time series plots. Results from the tolerance limit test at 95% coverage with 95% confidence, and with respect to EU maximum permissible concentration show that the three areas suffer from fecal coliform pollution. To this end, remediation procedure involving the use of saw-dust extracts from three woods namely; Chlorophora-Excelsa (C-Excelsa),Khayan-Senegalensis,(CSenegalensis) and Erythrophylum-Ivorensis (E-Ivorensis) in controlling the coliforms was studied. Results show that mixture of the acetone extracts of the woods show the most effective antibacterial inhibitory activities (26.00mm zone of inhibition) against E-coli. Methanol extract mixture of the three woods gave best inhibitory activity (26.00mm zone of inhibition) against S-areus, and 25.00mm zones of inhibition against E-Aerogenes. The aqueous extracts mixture gave acceptable zones of inhibitions against the three bacteria organisms.

Keywords: Coliform bacteria, Pollution, Remediation, Saw-dust

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2041
1464 Residue and Temporal Trend of Polychlorinated Biphenyls (PCBs) in Surface Soils from Bacninh, Vietnam

Authors: Toan Vu Duc, Son Ha Viet

Abstract:

An evaluation of the PCBs residues in the surface soils from Bacninh, Vietnam was carried out. Sixty representative soil samples were collected from the centre of Bacninh and three surrounding districts. The analyzed results indicated the wide extent of contamination of total PCBs in Bacninh. In industrial and urban zones, total PCBs concentrations ranged from ranged from <0.02 to 32.68ng g-1 (mean 19.89 ±15.64ng g-1) dry weight, while those in agricultural zones ranged from <0.02 to 13.26ng g-1 (mean 8.14 ± 4.89ng g-1) dry weight. The mean percentages of PCB28, PCB52, PCB101, PCB138, PCB153 and PCB180 compared with Σ6PCBs in the analyzed soil samples are 3.1%, 13.9%, 21.7%, 30.7%, 25.8% and 4.8%, respectively. These values can be explained by the chemical properties as well as the compositions of PCBs mixture which probably escaped from dielectric oil. An increasing trend and the long-time release of PCBs are observed.

Keywords: Contamination, PCBs, soil, temporal trend.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1453
1463 The Optimization of Sun Collector Parameters

Authors: István Patkó, Hosam Bayoumi Hamuda, András Medve, András Szeder

Abstract:

In order to efficiently solve the problems created by the deepening energy crisis affecting Europe and the world, governments cannot neglect the opportunities of using the energy produced by sun collectors. In many of the EU countries there are sun collectors producing heat energy, e.g. in 2011 in the area of EU27 (countries which belong to European Union) + Switzerland altogether 37519126 m2 were operated, which are capable of producing 26.3 GWh heat energy. The energy produced by these sun collectors is utilized at the place of production. In the near future governments will have to focus more on spreading and using sun collectors. Among the complex problems of operating sun collectors, this article deals with determining the optimal tilt angle, directions of sun collectors. We evaluate the contamination of glass surface of sun collector to the produced energy. Our theoretically results are confirmed by laboratory measurements. The purpose of our work is to help users and engineers in determination of optimal operation parameters of sun collectors.

Keywords: Heat energy, tilt angle, direction of sun collector, contamination of surface.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1757
1462 Analysis of Contact Width and Contact Stress of Three-Layer Corrugated Metal Gasket

Authors: I. Made Gatot Karohika, Shigeyuki Haruyama, Ken Kaminishi, Oke Oktavianty, Didik Nurhadiyanto

Abstract:

Contact width and contact stress are important parameters related to the leakage behavior of corrugated metal gasket. In this study, contact width and contact stress of three-layer corrugated metal gasket are investigated due to the modulus of elasticity and thickness of surface layer for 2 type gasket (0-MPa and 400-MPa mode). A finite element method was employed to develop simulation solution to analysis the effect of each parameter. The result indicated that lowering the modulus of elasticity ratio of surface layer will result in better contact width but the average contact stresses are smaller. When the modulus of elasticity ratio is held constant with thickness ratio increase, its contact width has an increscent trend otherwise the average contact stress has decreased trend.

Keywords: Contact width, contact stress, layer, metal gasket, corrugated, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1340