Search results for: Face synthesis and recognition
1148 SMaTTS: Standard Malay Text to Speech System
Authors: Othman O. Khalifa, Zakiah Hanim Ahmad, Teddy Surya Gunawan
Abstract:
This paper presents a rule-based text- to- speech (TTS) Synthesis System for Standard Malay, namely SMaTTS. The proposed system using sinusoidal method and some pre- recorded wave files in generating speech for the system. The use of phone database significantly decreases the amount of computer memory space used, thus making the system very light and embeddable. The overall system was comprised of two phases the Natural Language Processing (NLP) that consisted of the high-level processing of text analysis, phonetic analysis, text normalization and morphophonemic module. The module was designed specially for SM to overcome few problems in defining the rules for SM orthography system before it can be passed to the DSP module. The second phase is the Digital Signal Processing (DSP) which operated on the low-level process of the speech waveform generation. A developed an intelligible and adequately natural sounding formant-based speech synthesis system with a light and user-friendly Graphical User Interface (GUI) is introduced. A Standard Malay Language (SM) phoneme set and an inclusive set of phone database have been constructed carefully for this phone-based speech synthesizer. By applying the generative phonology, a comprehensive letter-to-sound (LTS) rules and a pronunciation lexicon have been invented for SMaTTS. As for the evaluation tests, a set of Diagnostic Rhyme Test (DRT) word list was compiled and several experiments have been performed to evaluate the quality of the synthesized speech by analyzing the Mean Opinion Score (MOS) obtained. The overall performance of the system as well as the room for improvements was thoroughly discussed.Keywords: Natural Language Processing, Text-To-Speech (TTS), Diphone, source filter, low-/ high- level synthesis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19721147 Signature Recognition and Verification using Hybrid Features and Clustered Artificial Neural Network(ANN)s
Authors: Manasjyoti Bhuyan, Kandarpa Kumar Sarma, Hirendra Das
Abstract:
Signature represents an individual characteristic of a person which can be used for his / her validation. For such application proper modeling is essential. Here we propose an offline signature recognition and verification scheme which is based on extraction of several features including one hybrid set from the input signature and compare them with the already trained forms. Feature points are classified using statistical parameters like mean and variance. The scanned signature is normalized in slant using a very simple algorithm with an intention to make the system robust which is found to be very helpful. The slant correction is further aided by the use of an Artificial Neural Network (ANN). The suggested scheme discriminates between originals and forged signatures from simple and random forgeries. The primary objective is to reduce the two crucial parameters-False Acceptance Rate (FAR) and False Rejection Rate (FRR) with lesser training time with an intension to make the system dynamic using a cluster of ANNs forming a multiple classifier system.Keywords: offline, algorithm, FAR, FRR, ANN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17791146 Aliveness Detection of Fingerprints using Multiple Static Features
Authors: Heeseung Choi, Raechoong Kang, Kyungtaek Choi, Jaihie Kim
Abstract:
Fake finger submission attack is a major problem in fingerprint recognition systems. In this paper, we introduce an aliveness detection method based on multiple static features, which derived from a single fingerprint image. The static features are comprised of individual pore spacing, residual noise and several first order statistics. Specifically, correlation filter is adopted to address individual pore spacing. The multiple static features are useful to reflect the physiological and statistical characteristics of live and fake fingerprint. The classification can be made by calculating the liveness scores from each feature and fusing the scores through a classifier. In our dataset, we compare nine classifiers and the best classification rate at 85% is attained by using a Reduced Multivariate Polynomial classifier. Our approach is faster and more convenient for aliveness check for field applications.Keywords: Aliveness detection, Fingerprint recognition, individual pore spacing, multiple static features, residual noise.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19241145 Microwave LNA Design Based On Adaptive Network Fuzzy Inference and Evolutionary Optimization
Authors: Samad Nejatian, Vahideh Rezaie, Vahid Asadpour
Abstract:
This paper presents a novel approach for the design of microwave circuits using Adaptive Network Fuzzy Inference Optimizer (ANFIO). The method takes advantage of direct synthesis of subsections of the amplifier using very fast and accurate ANFIO models based on exact simulations using ADS. A mapping from course space to fine space known as space mapping is also used. The proposed synthesis approach takes into account the noise and scattering parameters due to parasitic elements to achieve optimal results. The overall ANFIO system is capable of designing different LNAs at different noise and scattering criteria. This approach offers significantly reduced time in the design of microwave amplifiers within the validity range of the ANFIO system. The method has been proven to work efficiently for a 2.4GHz LNA example. The S21 of 10.1 dB and noise figure (NF) of 2.7 dB achieved for ANFIO while S21 of 9.05 dB and NF of 2.6 dB achieved for ANN.Keywords: fuzzy system, low noise amplifier, microwaveamplifier, space mapping
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17951144 Enhancing Human-Computer Interaction and Feedback in Touchscreen Icon
Authors: Hsinfu Huang Li-Hao Chen
Abstract:
In order to enhance the usability of the human computer interface (HCI) on the touchscreen, this study explored the optimal tactile depth and effect of visual cues on the user-s tendency to touch the touchscreen icons. The experimental program was designed on the touchscreen in this study. Results indicated that the ratio of the icon size to the tactile depth was 1:0.106. There were significant effects of experienced users and novices on the tactile feedback depth (p < 0.01). In addition, the results proved that the visual cues provided a feedback that helped to guide the user-s touch icons accurately and increased the capture efficiency for a tactile recognition field. This tactile recognition field was 18.6 mm in length. There was consistency between the experienced users and novices under the visual cue effects. Finally, the study developed an applied design with touch feedback for touchscreen icons.
Keywords: HCI, Touchscreen icon, Touch feedback, Optimaltactile depth, Visual cues.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22131143 A Decision Matrix for the Evaluation of Triplestores for Use in a Virtual Research Environment
Authors: Tristan O’Neill, Trina Myers, Jarrod Trevathan
Abstract:
The Tropical Data Hub (TDH) is a virtual research environment that provides researchers with an e-research infrastructure to congregate significant tropical data sets for data reuse, integration, searching, and correlation. However, researchers often require data and metadata synthesis across disciplines for cross-domain analyses and knowledge discovery. A triplestore offers a semantic layer to achieve a more intelligent method of search to support the synthesis requirements by automating latent linkages in the data and metadata. Presently, the benchmarks to aid the decision of which triplestore is best suited for use in an application environment like the TDH are limited to performance. This paper describes a new evaluation tool developed to analyze both features and performance. The tool comprises a weighted decision matrix to evaluate the interoperability, functionality, performance, and support availability of a range of integrated and native triplestores to rank them according to requirements of the TDH.
Keywords: Virtual research environment, Semantic Web, performance analysis, tropical data hub.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17031142 Evaluation of Robust Feature Descriptors for Texture Classification
Authors: Jia-Hong Lee, Mei-Yi Wu, Hsien-Tsung Kuo
Abstract:
Texture is an important characteristic in real and synthetic scenes. Texture analysis plays a critical role in inspecting surfaces and provides important techniques in a variety of applications. Although several descriptors have been presented to extract texture features, the development of object recognition is still a difficult task due to the complex aspects of texture. Recently, many robust and scaling-invariant image features such as SIFT, SURF and ORB have been successfully used in image retrieval and object recognition. In this paper, we have tried to compare the performance for texture classification using these feature descriptors with k-means clustering. Different classifiers including K-NN, Naive Bayes, Back Propagation Neural Network , Decision Tree and Kstar were applied in three texture image sets - UIUCTex, KTH-TIPS and Brodatz, respectively. Experimental results reveal SIFTS as the best average accuracy rate holder in UIUCTex, KTH-TIPS and SURF is advantaged in Brodatz texture set. BP neuro network works best in the test set classification among all used classifiers.Keywords: Texture classification, texture descriptor, SIFT, SURF, ORB.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15991141 Sound Instance: Art, Perception and Composition through Soundscapes
Authors: Ricardo Mestre
Abstract:
The soundscape stands out as an agglomeration of sounds available in the world, associated with different contexts and origins, being a theme studied by various areas of knowledge, seeking to guide their benefits and their consequences, contributing to the welfare of society and other ecosystems. With the objective for a greater recognition of sound reality, through the selection and differentiation of sounds, the soundscape studies focus on the contribution for a better tuning of the world and to the balance and well-being of humanity. Sound environment, produced and created in various ways, can provide various sources of information, contributing to the orientation of the human being, alerting and manipulating him during his daily journey, like small notifications received on a cell phone or other device with these features. In this way, it becomes possible to give sound its due importance in relation to the processes of individual representation, in manners of social, professional and emotional life. Ensuring an individual representation means providing the human being with new tools for the long process of reflection by recognizing his environment, the sounds that represent him, and his perspective on his respective function in it. In order to provide more information about the importance of the sound environment inherent to the individual reality, one introduces the term sound instance, in order to refer to the whole sound field existing in the individual's life, which is divided into four distinct subfields, but essential to the process of individual representation, called sound matrix, sound cycles, sound traces and sound interference. Alongside volunteers we were able to create six representations of sound instances, based on the individual perception of his/her life, focusing on the present, past and future. With this investigation it was possible to determine that sound instance has a tool for self-recognition, considering the statements of opinion about the experience from the volunteers, reflecting about the three time lines, based on memories, thoughts and wishes.
Keywords: Sound instance, soundscape, sound art, self-recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5761140 Manufacturing Dispersions Based Simulation and Synthesis of Design Tolerances
Authors: Nassima Cheikh, Abdelmadjid Cheikh, Said Hamou
Abstract:
The objective of this work which is based on the approach of simultaneous engineering is to contribute to the development of a CIM tool for the synthesis of functional design dimensions expressed by average values and tolerance intervals. In this paper, the dispersions method known as the Δl method which proved reliable in the simulation of manufacturing dimensions is used to develop a methodology for the automation of the simulation. This methodology is constructed around three procedures. The first procedure executes the verification of the functional requirements by automatically extracting the functional dimension chains in the mechanical sub-assembly. Then a second procedure performs an optimization of the dispersions on the basis of unknown variables. The third procedure uses the optimized values of the dispersions to compute the optimized average values and tolerances of the functional dimensions in the chains. A statistical and cost based approach is integrated in the methodology in order to take account of the capabilities of the manufacturing processes and to distribute optimal values among the individual components of the chains.Keywords: functional tolerances, manufacturing dispersions, simulation, CIM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14721139 Faster Pedestrian Recognition Using Deformable Part Models
Authors: Alessandro Preziosi, Antonio Prioletti, Luca Castangia
Abstract:
Deformable part models achieve high precision in pedestrian recognition, but all publicly available implementations are too slow for real-time applications. We implemented a deformable part model algorithm fast enough for real-time use by exploiting information about the camera position and orientation. This implementation is both faster and more precise than alternative DPM implementations. These results are obtained by computing convolutions in the frequency domain and using lookup tables to speed up feature computation. This approach is almost an order of magnitude faster than the reference DPM implementation, with no loss in precision. Knowing the position of the camera with respect to horizon it is also possible prune many hypotheses based on their size and location. The range of acceptable sizes and positions is set by looking at the statistical distribution of bounding boxes in labelled images. With this approach it is not needed to compute the entire feature pyramid: for example higher resolution features are only needed near the horizon. This results in an increase in mean average precision of 5% and an increase in speed by a factor of two. Furthermore, to reduce misdetections involving small pedestrians near the horizon, input images are supersampled near the horizon. Supersampling the image at 1.5 times the original scale, results in an increase in precision of about 4%. The implementation was tested against the public KITTI dataset, obtaining an 8% improvement in mean average precision over the best performing DPM-based method. By allowing for a small loss in precision computational time can be easily brought down to our target of 100ms per image, reaching a solution that is faster and still more precise than all publicly available DPM implementations.Keywords: Autonomous vehicles, deformable part model, dpm, pedestrian recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13961138 A Hybrid System of Hidden Markov Models and Recurrent Neural Networks for Learning Deterministic Finite State Automata
Authors: Pavan K. Rallabandi, Kailash C. Patidar
Abstract:
In this paper, we present an optimization technique or a learning algorithm using the hybrid architecture by combining the most popular sequence recognition models such as Recurrent Neural Networks (RNNs) and Hidden Markov models (HMMs). In order to improve the sequence/pattern recognition/classification performance by applying a hybrid/neural symbolic approach, a gradient descent learning algorithm is developed using the Real Time Recurrent Learning of Recurrent Neural Network for processing the knowledge represented in trained Hidden Markov Models. The developed hybrid algorithm is implemented on automata theory as a sample test beds and the performance of the designed algorithm is demonstrated and evaluated on learning the deterministic finite state automata.Keywords: Hybrid systems, Hidden Markov Models, Recurrent neural networks, Deterministic finite state automata.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28831137 A Robust Method for Finding Nearest-Neighbor using Hexagon Cells
Authors: Ahmad Attiq Al-Ogaibi, Ahmad Sharieh, Moh’d Belal Al-Zoubi, R. Bremananth
Abstract:
In pattern clustering, nearest neighborhood point computation is a challenging issue for many applications in the area of research such as Remote Sensing, Computer Vision, Pattern Recognition and Statistical Imaging. Nearest neighborhood computation is an essential computation for providing sufficient classification among the volume of pixels (voxels) in order to localize the active-region-of-interests (AROI). Furthermore, it is needed to compute spatial metric relationships of diverse area of imaging based on the applications of pattern recognition. In this paper, we propose a new methodology for finding the nearest neighbor point, depending on making a virtually grid of a hexagon cells, then locate every point beneath them. An algorithm is suggested for minimizing the computation and increasing the turnaround time of the process. The nearest neighbor query points Φ are fetched by seeking fashion of hexagon holistic. Seeking will be repeated until an AROI Φ is to be expected. If any point Υ is located then searching starts in the nearest hexagons in a circular way. The First hexagon is considered be level 0 (L0) and the surrounded hexagons is level 1 (L1). If Υ is located in L1, then search starts in the next level (L2) to ensure that Υ is the nearest neighbor for Φ. Based on the result and experimental results, we found that the proposed method has an advantage over the traditional methods in terms of minimizing the time complexity required for searching the neighbors, in turn, efficiency of classification will be improved sufficiently.
Keywords: Hexagon cells, k-nearest neighbors, Nearest Neighbor, Pattern recognition, Query pattern, Virtually grid
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28011136 Optimized Facial Features-based Age Classification
Authors: Md. Zahangir Alom, Mei-Lan Piao, Md. Shariful Islam, Nam Kim, Jae-Hyeung Park
Abstract:
The evaluation and measurement of human body dimensions are achieved by physical anthropometry. This research was conducted in view of the importance of anthropometric indices of the face in forensic medicine, surgery, and medical imaging. The main goal of this research is to optimization of facial feature point by establishing a mathematical relationship among facial features and used optimize feature points for age classification. Since selected facial feature points are located to the area of mouth, nose, eyes and eyebrow on facial images, all desire facial feature points are extracted accurately. According this proposes method; sixteen Euclidean distances are calculated from the eighteen selected facial feature points vertically as well as horizontally. The mathematical relationships among horizontal and vertical distances are established. Moreover, it is also discovered that distances of the facial feature follows a constant ratio due to age progression. The distances between the specified features points increase with respect the age progression of a human from his or her childhood but the ratio of the distances does not change (d = 1 .618 ) . Finally, according to the proposed mathematical relationship four independent feature distances related to eight feature points are selected from sixteen distances and eighteen feature point-s respectively. These four feature distances are used for classification of age using Support Vector Machine (SVM)-Sequential Minimal Optimization (SMO) algorithm and shown around 96 % accuracy. Experiment result shows the proposed system is effective and accurate for age classification.Keywords: 3D Face Model, Face Anthropometrics, Facial Features Extraction, Feature distances, SVM-SMO
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20461135 Synthesis, Characterization and Antibacterial Screening of 3-Hydroxy-2-[3-(2/3/4-Methoxybenzoyl)Thioureido]Butyric Acid
Authors: M. S. M. Yusof, R. Ramli, S. K. C. Soh, N. Ismail, N. Ngah
Abstract:
This study presents the synthesis of a series of methoxybenzoylthiourea amino acid derivatives. The compounds were obtained from the reactions between 2/3/4-methoxybenzoyl isothiocyanate with threonine. All of the compounds were characterized via mass spectrometry, 1H and 13C NMR spectrometry, UV-Vis spectrophotometer and FT-IR spectroscopy. Mass spectra for all of the compounds showed the presence of molecular ion [M]+ peaks at m/z 312, which are in agreement to the calculated molecular weight. For 1H NMR spectra, the presence of OCH3, C=S-NH and C=O-NH protons were observed within range of δH 3.8-4.0 ppm, 11.1-11.5 ppm and 10.0-11.5 ppm, respectively. 13C NMR spectra in all compounds displayed the presence of OCH3, C=O-NH, C=O-OH and C=S carbon resonances within range of δC 55.0-57.0 ppm, 165.0-168.0 ppm, 170.0-171.0 ppm and 180.0-182.0 ppm, respectively. In UV spectra, two absorption bands have been observed and both were assigned to the n-π* and π-π* transitions. Six vibrational modes of v(N-H), v(O-H), v(C=O-OH), v(C=O-NH), v(C=C) aromatic and v(C=S) appeared in the FT-IR spectra within the range of 3241-3467 cm-1, 2976-3302 cm-1, 1720-1768 cm-1, 1655-1672 cm-1, 1519-1525 cm-1 and 754-763 cm-1, respectively. The antibacterial activity for all of the compounds was screened against Staphylococcus aureus, Staphylococcus epidermidis, Salmonella typhimurium and Escherichia coli. However, no activity was observed.
Keywords: Methoxybenzoyl isothiocyanate, amino acid, threonine, antibacterial.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9231134 The Feedback Control for Distributed Systems
Authors: Kamil Aida-zade, C. Ardil
Abstract:
We study the problem of synthesis of lumped sources control for the objects with distributed parameters on the basis of continuous observation of phase state at given points of object. In the proposed approach the phase state space (phase space) is beforehand somehow partitioned at observable points into given subsets (zones). The synthesizing control actions therewith are taken from the class of piecewise constant functions. The current values of control actions are determined by the subset of phase space that contains the aggregate of current states of object at the observable points (in these states control actions take constant values). In the paper such synthesized control actions are called zone control actions. A technique to obtain optimal values of zone control actions with the use of smooth optimization methods is given. With this aim, the formulas of objective functional gradient in the space of zone control actions are obtained.Keywords: Feedback control, distributed systems, smooth optimization methods, lumped control synthesis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6111133 Synthesis and Foam Power of New Biodegradable Surfactant
Authors: R. Mousli, A. Tazerouti
Abstract:
This work deals with the synthesis and the determination of some surface properties of a new anionic surfactant belonging to sulfonamide derivatives. The interest in this new surfactant is that its behavior in aqueous solution is interesting both from a fundamental and a practice point of view. Indeed, it is well known that this kind of surfactant leads to the formation of bilayer structures, and the microstructures obtained have applications in various fields, ranging from cosmetics to detergents, to biological systems such as cell membranes and bioreactors. The surfactant synthesized from pure n-alkane by photosulfochlorination and derivatized using N-ethanol amine is a mixture of position isomers. These compounds have been analyzed by Gas Chromatography coupled to Mass Spectrometry by Electron Impact mode (GC -MS/IE), and IR. The surface tension measurements were carried out, leading to the determination of the critical micelle concentration (CMC), surface excess and the area occupied per molecule at the interface. The foaming power has also been determined by Bartsch method, and the results have been compared to those of commercial surfactants. The stability of the foam formed has also been evaluated. These compounds show good foaming power characterized in most cases by dry foam.
Keywords: Non ionic surfactants, GC-MS, surface properties, CMC, foam power.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25431132 The Role of Food Labeling on Consumers’ Buying Decision: Georgian Case
Authors: Nugzar Todua
Abstract:
The paper studies the role of food labeling in order to promote healthy eating issue in Georgia. The main focus of the research is directed to consumer attitudes regarding food labeling. The methodology of the paper is based on the focus group work, as well as online and face to face surveys. The data analysis has been provided through ANOVA. The study proves that the impact of variables such as the interest, awareness, reliability, assurance and satisfaction of consumers' on buying decision, is statistically important. The study reveals that consumers’ perception regarding to food labeling is positive, but their level of knowledge and ability is rather low. It is urgent to strengthen marketing promotions strategies in the process of implementations of food security policy in Georgia.Keywords: Food labeling, buying decision, Georgian consumers, marketing research.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10611131 Architecture of Speech-based Registration System
Authors: Mayank Kumar, D B Mahesh Kumar, Ashwin S Kumar, N K Srinath
Abstract:
In this era of technology, fueled by the pervasive usage of the internet, security is a prime concern. The number of new attacks by the so-called “bots", which are automated programs, is increasing at an alarming rate. They are most likely to attack online registration systems. Technology, called “CAPTCHA" (Completely Automated Public Turing test to tell Computers and Humans Apart) do exist, which can differentiate between automated programs and humans and prevent replay attacks. Traditionally CAPTCHA-s have been implemented with the challenge involved in recognizing textual images and reproducing the same. We propose an approach where the visual challenge has to be read out from which randomly selected keywords are used to verify the correctness of spoken text and in turn detect the presence of human. This is supplemented with a speaker recognition system which can identify the speaker also. Thus, this framework fulfills both the objectives – it can determine whether the user is a human or not and if it is a human, it can verify its identity.
Keywords: CAPTCHA, automatic speech recognition, keyword spotting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15461130 Synthesis of Monoacylglycerol from Glycerolysis of Crude Glycerol with Coconut Oil Catalyzed by Carica papaya Lipase
Authors: P. Pinyaphong, P. Sriburi, S. Phutrakul
Abstract:
This paper studied the synthesis of monoacylglycerol (monolaurin) by glycerolysis of coconut oil and crude glycerol, catalyzed by Carica papaya lipase. Coconut oil obtained from cold pressed extraction method and crude glycerol obtained from the biodiesel plant in Department of Chemistry, Uttaradit Rajabhat University, Thailand which used oils were used as raw materials for biodiesel production through transesterification process catalyzed by sodium hydroxide. The influences of the following variables were studied: (i) type of organic solvent, (ii) molar ratio of substrate, (iii) reaction temperature, (iv) reaction time, (v) lipase dosage, and (vi) initial water activity of enzyme. High yields in monoacylglycerol (58.35%) were obtained with molar ratio of glycerol to oil at 8:1 in ethanol, temperature was controlled at 45oC for 36 hours, the amount of enzyme used was 20 wt% of oil and initial water activity of enzyme at 0.53.
Keywords: Monoacylglycerol, crude glycerol, coconut oil, Carica papaya lipase.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40211129 Novel PES Membrane Reinforced by Nano-WS2 for Enhanced Fouling Resistance
Authors: Jiuyang Lin, Wenyuan Ye, Arcadio Sotto, Bart Van der Bruggen
Abstract:
Application of nanoparticles as additives in membrane synthesis for improving the resistance of membranes against fouling has triggered recent interest in new membrane types. However, most nanoparticle-enhanced membranes suffer from the tradeoff between permeability and selectivity. In this study, nano-WS2 was explored as the additive in membrane synthesis by non-solvent induced phase separation. Blended PES-WS2 flat-sheet membranes with the incorporation of ultra-low concentrations of nanoparticles (from 0.025 to 0.25%, WS2/PES ratio) were manufactured and investigated in terms of permeability, fouling resistance and solute rejection. Remarkably, a significant enhancement in the permeability was observed as a result of the incorporation of ultra-low fractions of nano-WS2 to the membrane structure. Optimal permeability values were obtained for modified membranes with 0.10% nanoparticle/polymer concentration ratios. Furthermore, fouling resistance and solute rejection were significantly improved by the incorporation of nanoparticles into the membrane matrix. Specifically, fouling resistance of modified membrane can increase by around 50%.
Keywords: Nano-WS2, Nanoparticle enhanced hybrid membrane, Ultralow concentration, Antifouling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21341128 The Role of Parents in Teaching Entrepreneurship Culture to Their Children in Family Businesses
Authors: Ahmet Diken, Meral Erdirençelebi
Abstract:
Similar to economies in many countries; family-owned enterprises have a significant role in the development of Turkish economy. Although they have a large share in economic terms, their lifetime is limited to working life of their founders. Failure in achieving their sustainability deeply affects not only these businesses but also the economy. Therefore, two basic elements of family owned enterprises, family and organizational culture and especially entrepreneurship culture, should be examined closely. The degree of effectiveness of parents in instilling their children with entrepreneurship culture and their effects on children's profession choices are examined through face-to-face surveys with the managers owning family businesses randomly chosen among family-owned enterprises registered in Konya Chamber of Industry, which are active in specific sectors and which had different generations in their management.Keywords: Family-owned enterprises, entrepreneurship, entrepreneurship culture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12891127 Real-time Laser Monitoring based on Pipe Detective Operation
Authors: Mongkorn Klingajay, Tawatchai Jitson
Abstract:
The pipe inspection operation is the difficult detective performance. Almost applications are mainly relies on a manual recognition of defective areas that have carried out detection by an engineer. Therefore, an automation process task becomes a necessary in order to avoid the cost incurred in such a manual process. An automated monitoring method to obtain a complete picture of the sewer condition is proposed in this work. The focus of the research is the automated identification and classification of discontinuities in the internal surface of the pipe. The methodology consists of several processing stages including image segmentation into the potential defect regions and geometrical characteristic features. Automatic recognition and classification of pipe defects are carried out by means of using an artificial neural network technique (ANN) based on Radial Basic Function (RBF). Experiments in a realistic environment have been conducted and results are presented.Keywords: Artificial neural network, Radial basic function, Curve fitting, CCTV, Image segmentation, Data acquisition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18181126 Effect of Hybrid Learning in Higher Education
Authors: A. Meydanlioglu, F. Arikan
Abstract:
In recent years, thanks to the development of information and communication technologies, the computer and internet have been used widely in higher education. Internet-based education is impacting traditional higher education as online components increasingly become integrated into face- to- face (FTF) courses. The goal of combined internet-based and traditional education is to take full advantage of the benefits of each platform in order to provide an educational opportunity that can promote student learning better than can either platform alone. Research results show that the use of hybrid learning is more effective than online or FTF models in higher education. Due to the potential benefits, an increasing number of institutions are interested in developing hybrid courses, programs, and degrees. Future research should evaluate the effectiveness of hybrid learning. This paper is designed to determine the impact of hybrid learning on higher education.
Keywords: E-learning, higher education, hybrid learning, online education.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 81461125 A Neural Network Based Facial Expression Analysis using Gabor Wavelets
Authors: Praseeda Lekshmi.V, Dr.M.Sasikumar
Abstract:
Facial expression analysis is rapidly becoming an area of intense interest in computer science and human-computer interaction design communities. The most expressive way humans display emotions is through facial expressions. In this paper we present a method to analyze facial expression from images by applying Gabor wavelet transform (GWT) and Discrete Cosine Transform (DCT) on face images. Radial Basis Function (RBF) Network is used to classify the facial expressions. As a second stage, the images are preprocessed to enhance the edge details and non uniform down sampling is done to reduce the computational complexity and processing time. Our method reliably works even with faces, which carry heavy expressions.Keywords: Face Expression, Radial Basis Function, GaborWavelet Transform, Human Computer Interaction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21051124 Generative Adversarial Network Based Fingerprint Anti-Spoofing Limitations
Authors: Yehjune Heo
Abstract:
Fingerprint Anti-Spoofing approaches have been actively developed and applied in real-world applications. One of the main problems for Fingerprint Anti-Spoofing is not robust to unseen samples, especially in real-world scenarios. A possible solution will be to generate artificial, but realistic fingerprint samples and use them for training in order to achieve good generalization. This paper contains experimental and comparative results with currently popular GAN based methods and uses realistic synthesis of fingerprints in training in order to increase the performance. Among various GAN models, the most popular StyleGAN is used for the experiments. The CNN models were first trained with the dataset that did not contain generated fake images and the accuracy along with the mean average error rate were recorded. Then, the fake generated images (fake images of live fingerprints and fake images of spoof fingerprints) were each combined with the original images (real images of live fingerprints and real images of spoof fingerprints), and various CNN models were trained. The best performances for each CNN model, trained with the dataset of generated fake images and each time the accuracy and the mean average error rate, were recorded. We observe that current GAN based approaches need significant improvements for the Anti-Spoofing performance, although the overall quality of the synthesized fingerprints seems to be reasonable. We include the analysis of this performance degradation, especially with a small number of samples. In addition, we suggest several approaches towards improved generalization with a small number of samples, by focusing on what GAN based approaches should learn and should not learn.
Keywords: Anti-spoofing, CNN, fingerprint recognition, GAN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5921123 Weed Classification using Histogram Maxima with Threshold for Selective Herbicide Applications
Authors: Irshad Ahmad, Abdul Muhamin Naeem, Muhammad Islam, Shahid Nawaz
Abstract:
Information on weed distribution within the field is necessary to implement spatially variable herbicide application. Since hand labor is costly, an automated weed control system could be feasible. This paper deals with the development of an algorithm for real time specific weed recognition system based on Histogram Maxima with threshold of an image that is used for the weed classification. This algorithm is specifically developed to classify images into broad and narrow class for real-time selective herbicide application. The developed system has been tested on weeds in the lab, which have shown that the system to be very effectiveness in weed identification. Further the results show a very reliable performance on images of weeds taken under varying field conditions. The analysis of the results shows over 95 percent classification accuracy over 140 sample images (broad and narrow) with 70 samples from each category of weeds.Keywords: Image processing, real-time recognition, weeddetection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21621122 Human Action Recognition Based on Ridgelet Transform and SVM
Authors: A. Ouanane, A. Serir
Abstract:
In this paper, a novel algorithm based on Ridgelet Transform and support vector machine is proposed for human action recognition. The Ridgelet transform is a directional multi-resolution transform and it is more suitable for describing the human action by performing its directional information to form spatial features vectors. The dynamic transition between the spatial features is carried out using both the Principal Component Analysis and clustering algorithm K-means. First, the Principal Component Analysis is used to reduce the dimensionality of the obtained vectors. Then, the kmeans algorithm is then used to perform the obtained vectors to form the spatio-temporal pattern, called set-of-labels, according to given periodicity of human action. Finally, a Support Machine classifier is used to discriminate between the different human actions. Different tests are conducted on popular Datasets, such as Weizmann and KTH. The obtained results show that the proposed method provides more significant accuracy rate and it drives more robustness in very challenging situations such as lighting changes, scaling and dynamic environmentKeywords: Human action, Ridgelet Transform, PCA, K-means, SVM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20681121 Unconstrained Arabic Online Handwritten Words Segmentation using New HMM State Design
Authors: Randa Ibrahim Elanwar, Mohsen Rashwan, Samia Mashali
Abstract:
In this paper we propose a segmentation system for unconstrained Arabic online handwriting. An essential problem addressed by analytical-based word recognition system. The system is composed of two-stages the first is a newly special designed hidden Markov model (HMM) and the second is a rules based stage. In our system, handwritten words are broken up into characters by simultaneous segmentation-recognition using HMMs of unique design trained using online features most of which are novel. The HMM output characters boundaries represent the proposed segmentation points (PSP) which are then validated by rules-based post stage without any contextual information help to solve different segmentation errors. The HMM has been designed and tested using a self collected dataset (OHASD) [1]. Most errors cases are cured and remarkable segmentation enhancement is achieved. Very promising word and character segmentation rates are obtained regarding the unconstrained Arabic handwriting difficulty and not using context help.
Keywords: Arabic, Hidden Markov Models, online handwriting, word segmentation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18351120 An Adaptive Hand-Talking System for the Hearing Impaired
Authors: Zhou Yu, Jiang Feng
Abstract:
An adaptive Chinese hand-talking system is presented in this paper. By analyzing the 3 data collecting strategies for new users, the adaptation framework including supervised and unsupervised adaptation methods is proposed. For supervised adaptation, affinity propagation (AP) is used to extract exemplar subsets, and enhanced maximum a posteriori / vector field smoothing (eMAP/VFS) is proposed to pool the adaptation data among different models. For unsupervised adaptation, polynomial segment models (PSMs) are used to help hidden Markov models (HMMs) to accurately label the unlabeled data, then the "labeled" data together with signerindependent models are inputted to MAP algorithm to generate signer-adapted models. Experimental results show that the proposed framework can execute both supervised adaptation with small amount of labeled data and unsupervised adaptation with large amount of unlabeled data to tailor the original models, and both achieve improvements on the performance of recognition rate.Keywords: sign language recognition, signer adaptation, eMAP/VFS, polynomial segment model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17581119 Supplementary JAVA Programming Course for e-Learning with Small-Group Instruction
Authors: Eiko Takaoka, Yuji Osawa
Abstract:
We have designed and implemented e-Learning materials for a JAVA programming course since 2004 and have found that “normal” students, meaning motivated and capable students, can successfully learn the course material taught in a fully online manner. However, for “weaker” students, meaning those lacking motivation, experience, and/or aptitude, the results have been unsatisfactory, and such students thus fall into the supplementary category. From 2007 to 2008, we offered a face-to-face class with small-group instruction for the weaker students, while we provided the fully online course for the normal students. Consequently, we succeeded in helping the weaker students to overcome their programming phobia and develop the ability to create basic programs.
Keywords: e-learning, JAVA Programming Course, Small-Group Instruction, Supplementary.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1739