Search results for: Chaos Optimization Algorithm
4068 Sloshing Control in Tilting Phases of the Pouring Process
Authors: Maria P. Tzamtzi, Fotis N. Koumboulis
Abstract:
We propose a control design scheme that aims to prevent undesirable liquid outpouring and suppress sloshing during the forward and backward tilting phases of the pouring process, for the case of liquid containers carried by manipulators. The proposed scheme combines a partial inverse dynamics controller with a PID controller, tuned with the use of a “metaheuristic" search algorithm. The “metaheuristic" search algorithm tunes the PID controller based on simulation results of the plant-s linearization around the operating point corresponding to the critical tilting angle, where outpouring initiates. Liquid motion is modeled using the well-known pendulumtype model. However, the proposed controller does not require measurements of the liquid-s motion within the tank.Keywords: Robotic systems, Controller design, Sloshingsuppression, Metaheuristic optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19574067 Satellite Beam Handoff Detection Algorithm Based On RCST Mobility Information
Authors: Ji Nyong Jang, Min Woo Lee, Eun Kyung Kim, Ki Keun Kim, Jae Sung Lim
Abstract:
Since DVB-RCS has been successively implemented, the mobile communication on the multi-beam satellite communication is attractive attention. And the DVB-RCS standard sets up to support mobility of a RCST. In the case of the spot-beam satellite system, the received signal strength does not differ largely between the center and the boundary of the beam. Thus, the RSS based handoff detection algorithm is not benefit to the satellite system as a terrestrial system. Therefore we propose an Adaptive handoff detection algorithm based on RCST mobility information. Our handoff detection algorithm not only can be used as centralized handoff detection algorithm but also removes uncertainties of handoff due to the variation of RSS. Performances were compared with RSS based handoff algorithm. Simulation results show that the proposed handoff detection algorithm not only achieved better handoff and link degradation rate, but also achieved better forward link spectral efficiency.
Keywords: DVB-RCS, satellite multi-beam handoff, mobility information, handover.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17124066 Experimental Modal Analysis and Model Validation of Antenna Structures
Authors: B.R. Potgieter, G. Venter
Abstract:
Numerical design optimization is a powerful tool that can be used by engineers during any stage of the design process. There are many different applications for structural optimization. A specific application that will be discussed in the following paper is experimental data matching. Data obtained through tests on a physical structure will be matched with data from a numerical model of that same structure. The data of interest will be the dynamic characteristics of an antenna structure focusing on the mode shapes and modal frequencies. The structure used was a scaled and simplified model of the Karoo Array Telescope-7 (KAT-7) antenna structure. This kind of data matching is a complex and difficult task. This paper discusses how optimization can assist an engineer during the process of correlating a finite element model with vibration test data.Keywords: Finite Element Model (FEM), Karoo Array Telescope(KAT-7), modal frequencies, mode shapes, optimization, shape optimization, size optimization, vibration tests
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18524065 Design of an Augmented Automatic Choosing Control with Constrained Input by Lyapunov Functions Using Gradient Optimization Automatic Choosing Functions
Authors: Toshinori Nawata
Abstract:
In this paper a nonlinear feedback control called augmented automatic choosing control (AACC) for a class of nonlinear systems with constrained input is presented. When designed the control, a constant term which arises from linearization of a given nonlinear system is treated as a coefficient of a stable zero dynamics. Parameters of the control are suboptimally selected by maximizing the stable region in the sense of Lyapunov with the aid of a genetic algorithm. This approach is applied to a field excitation control problem of power system to demonstrate the splendidness of the AACC. Simulation results show that the new controller can improve performance remarkably well.
Keywords: Augmented automatic choosing control, nonlinear control, genetic algorithm, zero dynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17344064 Application of a New Efficient Normal Parameter Reduction Algorithm of Soft Sets in Online Shopping
Authors: Xiuqin Ma, Hongwu Qin
Abstract:
A new efficient normal parameter reduction algorithm of soft set in decision making was proposed. However, up to the present, few documents have focused on real-life applications of this algorithm. Accordingly, we apply a New Efficient Normal Parameter Reduction algorithm into real-life datasets of online shopping, such as Blackberry Mobile Phone Dataset. Experimental results show that this algorithm is not only suitable but feasible for dealing with the online shopping.
Keywords: Normal parameter reduction, Online shopping, Parameter reduction, Soft sets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18264063 Hybrid Approach for Software Defect Prediction Using Machine Learning with Optimization Technique
Authors: C. Manjula, Lilly Florence
Abstract:
Software technology is developing rapidly which leads to the growth of various industries. Now-a-days, software-based applications have been adopted widely for business purposes. For any software industry, development of reliable software is becoming a challenging task because a faulty software module may be harmful for the growth of industry and business. Hence there is a need to develop techniques which can be used for early prediction of software defects. Due to complexities in manual prediction, automated software defect prediction techniques have been introduced. These techniques are based on the pattern learning from the previous software versions and finding the defects in the current version. These techniques have attracted researchers due to their significant impact on industrial growth by identifying the bugs in software. Based on this, several researches have been carried out but achieving desirable defect prediction performance is still a challenging task. To address this issue, here we present a machine learning based hybrid technique for software defect prediction. First of all, Genetic Algorithm (GA) is presented where an improved fitness function is used for better optimization of features in data sets. Later, these features are processed through Decision Tree (DT) classification model. Finally, an experimental study is presented where results from the proposed GA-DT based hybrid approach is compared with those from the DT classification technique. The results show that the proposed hybrid approach achieves better classification accuracy.
Keywords: Decision tree, genetic algorithm, machine learning, software defect prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14654062 Probabilistic Approach of Dealing with Uncertainties in Distributed Constraint Optimization Problems and Situation Awareness for Multi-agent Systems
Authors: Sagir M. Yusuf, Chris Baber
Abstract:
In this paper, we describe how Bayesian inferential reasoning will contributes in obtaining a well-satisfied prediction for Distributed Constraint Optimization Problems (DCOPs) with uncertainties. We also demonstrate how DCOPs could be merged to multi-agent knowledge understand and prediction (i.e. Situation Awareness). The DCOPs functions were merged with Bayesian Belief Network (BBN) in the form of situation, awareness, and utility nodes. We describe how the uncertainties can be represented to the BBN and make an effective prediction using the expectation-maximization algorithm or conjugate gradient descent algorithm. The idea of variable prediction using Bayesian inference may reduce the number of variables in agents’ sampling domain and also allow missing variables estimations. Experiment results proved that the BBN perform compelling predictions with samples containing uncertainties than the perfect samples. That is, Bayesian inference can help in handling uncertainties and dynamism of DCOPs, which is the current issue in the DCOPs community. We show how Bayesian inference could be formalized with Distributed Situation Awareness (DSA) using uncertain and missing agents’ data. The whole framework was tested on multi-UAV mission for forest fire searching. Future work focuses on augmenting existing architecture to deal with dynamic DCOPs algorithms and multi-agent information merging.
Keywords: DCOP, multi-agent reasoning, Bayesian reasoning, swarm intelligence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10104061 A Speeded up Robust Scale-Invariant Feature Transform Currency Recognition Algorithm
Authors: Daliyah S. Aljutaili, Redna A. Almutlaq, Suha A. Alharbi, Dina M. Ibrahim
Abstract:
All currencies around the world look very different from each other. For instance, the size, color, and pattern of the paper are different. With the development of modern banking services, automatic methods for paper currency recognition become important in many applications like vending machines. One of the currency recognition architecture’s phases is Feature detection and description. There are many algorithms that are used for this phase, but they still have some disadvantages. This paper proposes a feature detection algorithm, which merges the advantages given in the current SIFT and SURF algorithms, which we call, Speeded up Robust Scale-Invariant Feature Transform (SR-SIFT) algorithm. Our proposed SR-SIFT algorithm overcomes the problems of both the SIFT and SURF algorithms. The proposed algorithm aims to speed up the SIFT feature detection algorithm and keep it robust. Simulation results demonstrate that the proposed SR-SIFT algorithm decreases the average response time, especially in small and minimum number of best key points, increases the distribution of the number of best key points on the surface of the currency. Furthermore, the proposed algorithm increases the accuracy of the true best point distribution inside the currency edge than the other two algorithms.
Keywords: Currency recognition, feature detection and description, SIFT algorithm, SURF algorithm, speeded up and robust features.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8644060 Solving the Teacher Assignment-Course Scheduling Problem by a Hybrid Algorithm
Authors: Aldy Gunawan, Kien Ming Ng, Kim Leng Poh
Abstract:
This paper presents a hybrid algorithm for solving a timetabling problem, which is commonly encountered in many universities. The problem combines both teacher assignment and course scheduling problems simultaneously, and is presented as a mathematical programming model. However, this problem becomes intractable and it is unlikely that a proven optimal solution can be obtained by an integer programming approach, especially for large problem instances. A hybrid algorithm that combines an integer programming approach, a greedy heuristic and a modified simulated annealing algorithm collaboratively is proposed to solve the problem. Several randomly generated data sets of sizes comparable to that of an institution in Indonesia are solved using the proposed algorithm. Computational results indicate that the algorithm can overcome difficulties of large problem sizes encountered in previous related works.
Keywords: Timetabling problem, mathematical programming model, hybrid algorithm, simulated annealing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 45734059 Performance Analysis of MATLAB Solvers in the Case of a Quadratic Programming Generation Scheduling Optimization Problem
Authors: Dávid Csercsik, Péter Kádár
Abstract:
In the case of the proposed method, the problem is parallelized by considering multiple possible mode of operation profiles, which determine the range in which the generators operate in each period. For each of these profiles, the optimization is carried out independently, and the best resulting dispatch is chosen. For each such profile, the resulting problem is a quadratic programming (QP) problem with a potentially negative definite Q quadratic term, and constraints depending on the actual operation profile. In this paper we analyze the performance of available MATLAB optimization methods and solvers for the corresponding QP.Keywords: Economic dispatch, optimization, quadratic programming, MATLAB.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9484058 The Variable Step-Size Gauss-Seidel Pseudo Affine Projection Algorithm
Authors: F. Albu, C. Paleologu
Abstract:
In this paper, a new pseudo affine projection (AP) algorithm based on Gauss-Seidel (GS) iterations is proposed for acoustic echo cancellation (AEC). It is shown that the algorithm is robust against near-end signal variations (including double-talk).Keywords: pseudo affine projection algorithm, acoustic echo cancellation, double-talk.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14264057 Non-Convex Multi Objective Economic Dispatch Using Ramp Rate Biogeography Based Optimization
Authors: Susanta Kumar Gachhayat, S. K. Dash
Abstract:
Multi objective non-convex economic dispatch problems of a thermal power plant are of grave concern for deciding the cost of generation and reduction of emission level for diminishing the global warming level for improving green-house effect. This paper deals with ramp rate constraints for achieving better inequality constraints so as to incorporate valve point loading for cost of generation in thermal power plant through ramp rate biogeography based optimization involving mutation and migration. Through 50 out of 100 trials, the cost function and emission objective function were found to have outperformed other classical methods such as lambda iteration method, quadratic programming method and many heuristic methods like particle swarm optimization method, weight improved particle swarm optimization method, constriction factor based particle swarm optimization method, moderate random particle swarm optimization method etc. Ramp rate biogeography based optimization applications prove quite advantageous in solving non convex multi objective economic dispatch problems subjected to nonlinear loads that pollute the source giving rise to third harmonic distortions and other such disturbances.
Keywords: Economic load dispatch, Biogeography based optimization, Ramp rate biogeography based optimization, Valve Point loading, Moderate random particle swarm optimization method, Weight improved particle swarm optimization method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10504056 Binary Programming for Manufacturing Material and Manufacturing Process Selection Using Genetic Algorithms
Authors: Saleem Z. Ramadan
Abstract:
The material selection problem is concerned with the determination of the right material for a certain product to optimize certain performance indices in that product such as mass, energy density, and power-to-weight ratio. This paper is concerned about optimizing the selection of the manufacturing process along with the material used in the product under performance indices and availability constraints. In this paper, the material selection problem is formulated using binary programming and solved by genetic algorithm. The objective function of the model is to minimize the total manufacturing cost under performance indices and material and manufacturing process availability constraints.Keywords: Optimization, Material selection, Process selection, Genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15974055 Optimal Production and Maintenance Policy for a Partially Observable Production System with Stochastic Demand
Authors: Leila Jafari, Viliam Makis
Abstract:
In this paper, the joint optimization of the economic manufacturing quantity (EMQ), safety stock level, and condition-based maintenance (CBM) is presented for a partially observable, deteriorating system subject to random failure. The demand is stochastic and it is described by a Poisson process. The stochastic model is developed and the optimization problem is formulated in the semi-Markov decision process framework. A modification of the policy iteration algorithm is developed to find the optimal policy. A numerical example is presented to compare the optimal policy with the policy considering zero safety stock.Keywords: Condition-based maintenance, economic manufacturing quantity, safety stock, stochastic demand.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8314054 A Self-stabilizing Algorithm for Maximum Popular Matching of Strictly Ordered Preference Lists
Authors: Zhengnan Shi
Abstract:
In this paper, we consider the problem of Popular Matching of strictly ordered preference lists. A Popular Matching is not guaranteed to exist in any network. We propose an IDbased, constant space, self-stabilizing algorithm that converges to a Maximum Popular Matching an optimum solution, if one exist. We show that the algorithm stabilizes in O(n5) moves under any scheduler (daemon).
Keywords: self-stabilization, popular matching, algorithm, distributed computing, fault tolerance
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11874053 Analysis of a Spatiotemporal Phytoplankton Dynamics: Higher Order Stability and Pattern Formation
Authors: Randhir Singh Baghel, Joydip Dhar, Renu Jain
Abstract:
In this paper, for the understanding of the phytoplankton dynamics in marine ecosystem, a susceptible and an infected class of phytoplankton population is considered in spatiotemporal domain. Here, the susceptible phytoplankton is growing logistically and the growth of infected phytoplankton is due to the instantaneous Holling type-II infection response function. The dynamics are studied in terms of the local and global stabilities for the system and further explore the possibility of Hopf -bifurcation, taking the half saturation period as (i.e., ) the bifurcation parameter in temporal domain. It is also observe that the reaction diffusion system exhibits spatiotemporal chaos and pattern formation in phytoplankton dynamics, which is particularly important role play for the spatially extended phytoplankton system. Also the effect of the diffusion coefficient on the spatial system for both one and two dimensional case is obtained. Furthermore, we explore the higher-order stability analysis of the spatial phytoplankton system for both linear and no-linear system. Finally, few numerical simulations are carried out for pattern formation.Keywords: Phytoplankton dynamics, Reaction-diffusion system, Local stability, Hopf-bifurcation, Global stability, Chaos, Pattern Formation, Higher-order stability analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16504052 Comparing Hilditch, Rosenfeld, Zhang-Suen,and Nagendraprasad -Wang-Gupta Thinning
Authors: Anastasia Rita Widiarti
Abstract:
This paper compares Hilditch, Rosenfeld, Zhang- Suen, dan Nagendraprasad Wang Gupta (NWG) thinning algorithms for Javanese character image recognition. Thinning is an effective process when the focus in not on the size of the pattern, but rather on the relative position of the strokes in the pattern. The research analyzes the thinning of 60 Javanese characters. Time-wise, Zhang-Suen algorithm gives the best results with the average process time being 0.00455188 seconds. But if we look at the percentage of pixels that meet one-pixel thickness, Rosenfelt algorithm gives the best results, with a 99.98% success rate. From the number of pixels that are erased, NWG algorithm gives the best results with the average number of pixels erased being 84.12%. It can be concluded that the Hilditch algorithm performs least successfully compared to the other three algorithms.Keywords: Hilditch algorithm, Nagendraprasad-Wang-Guptaalgorithm, Rosenfeld algorithm, Thinning, Zhang-suen algorithm
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39184051 Noise Reduction in Image Sequences using an Effective Fuzzy Algorithm
Authors: Mahmoud Saeidi, Khadijeh Saeidi, Mahmoud Khaleghi
Abstract:
In this paper, we propose a novel spatiotemporal fuzzy based algorithm for noise filtering of image sequences. Our proposed algorithm uses adaptive weights based on a triangular membership functions. In this algorithm median filter is used to suppress noise. Experimental results show when the images are corrupted by highdensity Salt and Pepper noise, our fuzzy based algorithm for noise filtering of image sequences, are much more effective in suppressing noise and preserving edges than the previously reported algorithms such as [1-7]. Indeed, assigned weights to noisy pixels are very adaptive so that they well make use of correlation of pixels. On the other hand, the motion estimation methods are erroneous and in highdensity noise they may degrade the filter performance. Therefore, our proposed fuzzy algorithm doesn-t need any estimation of motion trajectory. The proposed algorithm admissibly removes noise without having any knowledge of Salt and Pepper noise density.Keywords: Image Sequences, Noise Reduction, fuzzy algorithm, triangular membership function
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18804050 Kinematic Hardening Parameters Identification with Respect to Objective Function
Authors: Marina Franulovic, Robert Basan, Bozidar Krizan
Abstract:
Constitutive modeling of material behavior is becoming increasingly important in prediction of possible failures in highly loaded engineering components, and consequently, optimization of their design. In order to account for large number of phenomena that occur in the material during operation, such as kinematic hardening effect in low cycle fatigue behavior of steels, complex nonlinear material models are used ever more frequently, despite of the complexity of determination of their parameters. As a method for the determination of these parameters, genetic algorithm is good choice because of its capability to provide very good approximation of the solution in systems with large number of unknown variables. For the application of genetic algorithm to parameter identification, inverse analysis must be primarily defined. It is used as a tool to fine-tune calculated stress-strain values with experimental ones. In order to choose proper objective function for inverse analysis among already existent and newly developed functions, the research is performed to investigate its influence on material behavior modeling.
Keywords: Genetic algorithm, kinematic hardening, material model, objective function
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38014049 A New Heuristic for Improving the Performance of Genetic Algorithm
Authors: Warattapop Chainate, Peeraya Thapatsuwan, Pupong Pongcharoen
Abstract:
The hybridisation of genetic algorithm with heuristics has been shown to be one of an effective way to improve its performance. In this work, genetic algorithm hybridised with four heuristics including a new heuristic called neighbourhood improvement were investigated through the classical travelling salesman problem. The experimental results showed that the proposed heuristic outperformed other heuristics both in terms of quality of the results obtained and the computational time.Keywords: Genetic Algorithm, Hybridisation, Metaheuristics, Travelling Salesman Problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18484048 Stock Portfolio Selection Using Chemical Reaction Optimization
Authors: Jin Xu, Albert Y.S. Lam, Victor O.K. Li
Abstract:
Stock portfolio selection is a classic problem in finance, and it involves deciding how to allocate an institution-s or an individual-s wealth to a number of stocks, with certain investment objectives (return and risk). In this paper, we adopt the classical Markowitz mean-variance model and consider an additional common realistic constraint, namely, the cardinality constraint. Thus, stock portfolio optimization becomes a mixed-integer quadratic programming problem and it is difficult to be solved by exact optimization algorithms. Chemical Reaction Optimization (CRO), which mimics the molecular interactions in a chemical reaction process, is a population-based metaheuristic method. Two different types of CRO, named canonical CRO and Super Molecule-based CRO (S-CRO), are proposed to solve the stock portfolio selection problem. We test both canonical CRO and S-CRO on a benchmark and compare their performance under two criteria: Markowitz efficient frontier (Pareto frontier) and Sharpe ratio. Computational experiments suggest that S-CRO is promising in handling the stock portfolio optimization problem.Keywords: Stock portfolio selection, Markowitz model, Chemical Reaction Optimization, Sharpe ratio
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20754047 Enhanced Ant Colony Based Algorithm for Routing in Mobile Ad Hoc Network
Authors: Cauvery N. K., K. V. Viswanatha
Abstract:
Mobile Ad hoc network consists of a set of mobile nodes. It is a dynamic network which does not have fixed topology. This network does not have any infrastructure or central administration, hence it is called infrastructure-less network. The change in topology makes the route from source to destination as dynamic fixed and changes with respect to time. The nature of network requires the algorithm to perform route discovery, maintain route and detect failure along the path between two nodes [1]. This paper presents the enhancements of ARA [2] to improve the performance of routing algorithm. ARA [2] finds route between nodes in mobile ad-hoc network. The algorithm is on-demand source initiated routing algorithm. This is based on the principles of swarm intelligence. The algorithm is adaptive, scalable and favors load balancing. The improvements suggested in this paper are handling of loss ants and resource reservation.Keywords: Ad hoc networks, On-demand routing, Swarmintelligence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18344046 A Cost Function for Joint Blind Equalization and Phase Recovery
Authors: Reza Berangi, Morteza Babaee, Majid Soleimanipour
Abstract:
In this paper a new cost function for blind equalization is proposed. The proposed cost function, referred to as the modified maximum normalized cumulant criterion (MMNC), is an extension of the previously proposed maximum normalized cumulant criterion (MNC). While the MNC requires a separate phase recovery system after blind equalization, the MMNC performs joint blind equalization and phase recovery. To achieve this, the proposed algorithm maximizes a cost function that considers both amplitude and phase of the equalizer output. The simulation results show that the proposed algorithm has an improved channel equalization effect than the MNC algorithm and simultaneously can correct the phase error that the MNC algorithm is unable to do. The simulation results also show that the MMNC algorithm has lower complexity than the MNC algorithm. Moreover, the MMNC algorithm outperforms the MNC algorithm particularly when the symbols block size is small.Keywords: Blind equalization, maximum normalized cumulant criterion (MNC), intersymbol interference (ISI), modified MNC criterion (MMNC), phase recovery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17644045 Inversion of Electrical Resistivity Data: A Review
Authors: Shrey Sharma, Gunjan Kumar Verma
Abstract:
High density electrical prospecting has been widely used in groundwater investigation, civil engineering and environmental survey. For efficient inversion, the forward modeling routine, sensitivity calculation, and inversion algorithm must be efficient. This paper attempts to provide a brief summary of the past and ongoing developments of the method. It includes reviews of the procedures used for data acquisition, processing and inversion of electrical resistivity data based on compilation of academic literature. In recent times there had been a significant evolution in field survey designs and data inversion techniques for the resistivity method. In general 2-D inversion for resistivity data is carried out using the linearized least-square method with the local optimization technique .Multi-electrode and multi-channel systems have made it possible to conduct large 2-D, 3-D and even 4-D surveys efficiently to resolve complex geological structures that were not possible with traditional 1-D surveys. 3-D surveys play an increasingly important role in very complex areas where 2-D models suffer from artifacts due to off-line structures. Continued developments in computation technology, as well as fast data inversion techniques and software, have made it possible to use optimization techniques to obtain model parameters to a higher accuracy. A brief discussion on the limitations of the electrical resistivity method has also been presented.Keywords: Resistivity, inversion, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 60734044 Simultaneous Tuning of Static Var Compensator and Power System Stabilizer Employing Real- Coded Genetic Algorithm
Authors: S. Panda, N. P. Patidar, R. Singh
Abstract:
Power system stability enhancement by simultaneous tuning of a Power System Stabilizer (PSS) and a Static Var Compensator (SVC)-based controller is thoroughly investigated in this paper. The coordination among the proposed damping stabilizers and the SVC internal voltage regulators has also been taken into consideration. The design problem is formulated as an optimization problem with a time-domain simulation-based objective function and Real-Coded Genetic Algorithm (RCGA) is employed to search for optimal controller parameters. The proposed stabilizers are tested on a weakly connected power system with different disturbances and loading conditions. The nonlinear simulation results are presented to show the effectiveness and robustness of the proposed control schemes over a wide range of loading conditions and disturbances. Further, the proposed design approach is found to be robust and improves stability effectively even under small disturbance and unbalanced fault conditions.
Keywords: Real-Coded Genetic Algorithm (RCGA), Static Var Compensator (SVC), Power System Stabilizer (PSS), Low Frequency Oscillations, Power System Stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22554043 A Minimum Spanning Tree-Based Method for Initializing the K-Means Clustering Algorithm
Authors: J. Yang, Y. Ma, X. Zhang, S. Li, Y. Zhang
Abstract:
The traditional k-means algorithm has been widely used as a simple and efficient clustering method. However, the algorithm often converges to local minima for the reason that it is sensitive to the initial cluster centers. In this paper, an algorithm for selecting initial cluster centers on the basis of minimum spanning tree (MST) is presented. The set of vertices in MST with same degree are regarded as a whole which is used to find the skeleton data points. Furthermore, a distance measure between the skeleton data points with consideration of degree and Euclidean distance is presented. Finally, MST-based initialization method for the k-means algorithm is presented, and the corresponding time complexity is analyzed as well. The presented algorithm is tested on five data sets from the UCI Machine Learning Repository. The experimental results illustrate the effectiveness of the presented algorithm compared to three existing initialization methods.
Keywords: Degree, initial cluster center, k-means, minimum spanning tree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15524042 Budget Optimization for Maintenance of Bridges in Egypt
Authors: Hesham Abd Elkhalek, Sherif M. Hafez, Yasser M. El Fahham
Abstract:
Allocating limited budget to maintain bridge networks and selecting effective maintenance strategies for each bridge represent challenging tasks for maintenance managers and decision makers. In Egypt, bridges are continuously deteriorating. In many cases, maintenance works are performed due to user complaints. The objective of this paper is to develop a practical and reliable framework to manage the maintenance, repair, and rehabilitation (MR&R) activities of Bridges network considering performance and budget limits. The model solves an optimization problem that maximizes the average condition of the entire network given the limited available budget using Genetic Algorithm (GA). The framework contains bridge inventory, condition assessment, repair cost calculation, deterioration prediction, and maintenance optimization. The developed model takes into account multiple parameters including serviceability requirements, budget allocation, element importance on structural safety and serviceability, bridge impact on network, and traffic. A questionnaire is conducted to complete the research scope. The proposed model is implemented in software, which provides a friendly user interface. The framework provides a multi-year maintenance plan for the entire network for up to five years. A case study of ten bridges is presented to validate and test the proposed model with data collected from Transportation Authorities in Egypt. Different scenarios are presented. The results are reasonable, feasible and within acceptable domain.Keywords: Bridge Management Systems (BMS), cost optimization condition assessment, fund allocation, Markov chain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19584041 Application of Genetic Algorithm for FACTS-based Controller Design
Authors: Sidhartha Panda, N. P. Padhy, R.N.Patel
Abstract:
In this paper, genetic algorithm (GA) opmization technique is applied to design Flexible AC Transmission System (FACTS)-based damping controllers. Two types of controller structures, namely a proportional-integral (PI) and a lead-lag (LL) are considered. The design problem of the proposed controllers is formulated as an optimization problem and GA is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor speed of the generator is involved; stability performance of the system is improved. The proposed controllers are tested on a weakly connected power system subjected to different disturbances. The non-linear simulation results are presented to show the effectiveness of the proposed controller and their ability to provide efficient damping of low frequency oscillations. It is also observed that the proposed SSSC-based controllers improve greatly the voltage profile of the system under severe disturbances. Further, the dynamic performances of both the PI and LL structured FACTS-controller are analyzed at different loading conditions and under various disturbance condition as well as under unbalanced fault conditions..
Keywords: Genetic algorithm, proportional-integral controller, lead-lag controller, power system stability, FACTS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25424040 Algorithm of Measurement of Noise Signal Power in the Presence of Narrowband Interference
Authors: Alexey V. Klyuev, Valery P. Samarin, Viktor F. Klyuev
Abstract:
A power measurement algorithm of the input mix components of the noise signal and narrowband interference is considered using functional transformations of the input mix in the postdetection processing channel. The algorithm efficiency analysis has been carried out for different interference-to-signal ratio. Algorithm performance features have been explored by numerical experiment results.
Keywords: Noise signal, continuous narrowband interference, signal power, spectrum width, detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13974039 An Optimal Feature Subset Selection for Leaf Analysis
Authors: N. Valliammal, S.N. Geethalakshmi
Abstract:
This paper describes an optimal approach for feature subset selection to classify the leaves based on Genetic Algorithm (GA) and Kernel Based Principle Component Analysis (KPCA). Due to high complexity in the selection of the optimal features, the classification has become a critical task to analyse the leaf image data. Initially the shape, texture and colour features are extracted from the leaf images. These extracted features are optimized through the separate functioning of GA and KPCA. This approach performs an intersection operation over the subsets obtained from the optimization process. Finally, the most common matching subset is forwarded to train the Support Vector Machine (SVM). Our experimental results successfully prove that the application of GA and KPCA for feature subset selection using SVM as a classifier is computationally effective and improves the accuracy of the classifier.Keywords: Optimization, Feature extraction, Feature subset, Classification, GA, KPCA, SVM and Computation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2241