Search results for: Biomechanical energy management
4834 Open Source Library Management System Software: A Review
Authors: Sangsuree Vasupongayya, Kittisak Keawneam, Kittipong Sengloilaun, Patt Emmawat
Abstract:
Library management systems are commonly used in all educational related institutes. Many commercial products are available. However, many institutions may not be able to afford the cost of using commercial products. Therefore, an alternative solution in such situations would be open source software. This paper is focusing on reviewing open source library management system packages currently available. The review will focus on the abilities to perform four basic components which are traditional services, interlibrary load management, managing electronic materials and basic common management system such as security, alert system and statistical reports. In addition, environment, basic requirement and supporting aspects of each open source package are also mentioned.Keywords: open source, library management, review.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 73534833 Wind Energy Resources Assessment and Micrositting on Different Areas of Libya: The Case Study in Darnah
Authors: F. Ahwide, Y. Bouker, K. Hatem
Abstract:
This paper presents long term wind data analysis in terms of annual and diurnal variations at different areas of Libya. The data of the wind speed and direction are taken each ten minutes for a period, at least two years, are used in the analysis. ‘WindPRO’ software and Excel workbook were used for the wind statistics and energy calculations. As for Darnah, average speeds are 10m, 20m and 40m and 6.57 m/s, 7.18 m/s, and 8.09 m/s, respectively. Highest wind speeds are observed at SSW, followed by S, WNW and NW sectors. Lowest wind speeds are observed between N and E sectors. Most frequent wind directions are NW and NNW. Hence, wind turbines can be installed against these directions. The most powerful sector is NW (31.3% of total expected wind energy), followed by 17.9% SSW, 11.5% NNW and 8.2% WNW
In Excel workbook, an estimation of annual energy yield at position of Derna, Al-Maqrun, Tarhuna and Al-Asaaba meteorological mast has been done, considering a generic wind turbine of 1.65 MW. (mtORRES, TWT 82-1.65MW) in position of meteorological mast. Three other turbines have been tested and a reduction of 18% over the net AEP. At 80m, the estimation of energy yield for Derna, Al- Maqrun, Tarhuna and Asaaba is 6.78 GWh or 3390 equivalent hours, 5.80 GWh or 2900 equivalent hours, 4.91 GWh or 2454 equivalent hours and 5.08 GWh or 2541 equivalent hours respectively. It seems a fair value in the context of a possible development of a wind energy project in the areas, considering a value of 2400 equivalent hours as an approximate limit to consider a wind warm economically profitable. Furthermore, an estimation of annual energy yield at positions of Misalatha, Azizyah and Goterria meteorological mast has been done, considering a generic wind turbine of 2 MW. We found that, at 80 m the estimation of energy yield is 3.12 GWh or 1557 equivalent hours, 4.47 GWh or 2235 equivalent hours and 4.07GWh or 2033 respectively.
It seems a very poor value in the context of possible development of a wind energy project in the areas, considering a value of 2400 equivalent hours as an approximate limit to consider a wind warm economically profitable. Anyway, more data and a detailed wind farm study would be necessary to draw conclusions.
Keywords: Wind turbines, wind data, energy yield, micrositting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26374832 A Promising Approach to Supporting Knowledge-Intensive Business Processes: Business Case Management
Authors: Zeljko Panian
Abstract:
Through the course of this paper we define Business Case Management and its characteristics, and highlight its link to knowledge workers. Business Case Management combines knowledge and process effectively, supporting the ad hoc and unpredictable nature of cases, and coordinate a range of other technologies to appropriately support knowledge-intensive processes. We emphasize the growing importance of knowledge workers and the current poor support for knowledge work automation. We also discuss the challenges in supporting this kind of knowledge work and propose a novel approach to overcome these challenges.
Keywords: Knowledge management, knowledge workers, business process management, business case management, automation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21744831 Electricity Consumption and Economic Growth: The Case of Mexico
Authors: Mario Gómez, José Carlos Rodríguez
Abstract:
The causality between energy consumption and economic growth has been an important issue in the economic literature. This paper studies the causal relationship between electricity consumption and economic growth in Mexico for the period of 1971-2011. In so doing, unit root and causality tests are applied. The results show that energy consumption and economic growth series are stationary and there is also a causality relationship running from economic growth to electricity consumption. Therefore, any energy conservation policy would have little or no impact at all on economic growth in México.Keywords: Causality, economic growth, electricity consumption, Mexico.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28744830 Maximization of Lifetime for Wireless Sensor Networks Based on Energy Efficient Clustering Algorithm
Authors: Frodouard Minani
Abstract:
Since last decade, wireless sensor networks (WSNs) have been used in many areas like health care, agriculture, defense, military, disaster hit areas and so on. Wireless Sensor Networks consist of a Base Station (BS) and more number of wireless sensors in order to monitor temperature, pressure, motion in different environment conditions. The key parameter that plays a major role in designing a protocol for Wireless Sensor Networks is energy efficiency which is a scarcest resource of sensor nodes and it determines the lifetime of sensor nodes. Maximizing sensor node’s lifetime is an important issue in the design of applications and protocols for Wireless Sensor Networks. Clustering sensor nodes mechanism is an effective topology control approach for helping to achieve the goal of this research. In this paper, the researcher presents an energy efficiency protocol to prolong the network lifetime based on Energy efficient clustering algorithm. The Low Energy Adaptive Clustering Hierarchy (LEACH) is a routing protocol for clusters which is used to lower the energy consumption and also to improve the lifetime of the Wireless Sensor Networks. Maximizing energy dissipation and network lifetime are important matters in the design of applications and protocols for wireless sensor networks. Proposed system is to maximize the lifetime of the Wireless Sensor Networks by choosing the farthest cluster head (CH) instead of the closest CH and forming the cluster by considering the following parameter metrics such as Node’s density, residual-energy and distance between clusters (inter-cluster distance). In this paper, comparisons between the proposed protocol and comparative protocols in different scenarios have been done and the simulation results showed that the proposed protocol performs well over other comparative protocols in various scenarios.
Keywords: Base station, clustering algorithm, energy efficient, wireless sensor networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8454829 Energy-Efficient Clustering Protocol in Wireless Sensor Networks for Healthcare Monitoring
Authors: Ebrahim Farahmand, Ali Mahani
Abstract:
Wireless sensor networks (WSNs) can facilitate continuous monitoring of patients and increase early detection of emergency conditions and diseases. High density WSNs helps us to accurately monitor a remote environment by intelligently combining the data from the individual nodes. Due to energy capacity limitation of sensors, enhancing the lifetime and the reliability of WSNs are important factors in designing of these networks. The clustering strategies are verified as effective and practical algorithms for reducing energy consumption in WSNs and can tackle WSNs limitations. In this paper, an Energy-efficient weight-based Clustering Protocol (EWCP) is presented. Artificial retina is selected as a case study of WSNs applied in body sensors. Cluster heads’ (CHs) selection is equipped with energy efficient parameters. Moreover, cluster members are selected based on their distance to the selected CHs. Comparing with the other benchmark protocols, the lifetime of EWCP is improved significantly.Keywords: Clustering of WSNs, healthcare monitoring, weight-based clustering, wireless sensor networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15554828 Markov Chain Based QoS Support for Wireless Body Area Network Communication in Health Monitoring Services
Authors: R. A. Isabel, E. Baburaj
Abstract:
Wireless Body Area Networks (WBANs) are essential for real-time health monitoring of patients and in diagnosing of many diseases. WBANs comprise many sensors to monitor a large range of ambient conditions. Quality of Service (QoS) is a key challenge in WBAN, because the different state information of the neighboring nodes has to be monitored in an accurate manner. However, energy consumption gets increased while predicting and maintaining the exact information in highly dynamic environments. In order to reduce energy consumption and end to end delay, Markov Chain Based Quality of Service Support (MC-QoSS) method is designed in the health monitoring services of WBAN communication. The energy consumption gets reduced by forming a Markov chain with high energy nodes in the sensor networks communication path. The low energy level sensor nodes are removed using transitional probability in order to reduce end to end delay. High energy nodes are formed in the chain structure of its corresponding path to enhance communication. After choosing the communication path through high energy nodes, the packets are sent to the sink node from the source node with a higher Packet Delivery Ratio. The simulation result shows that MC-QoSS method improves the packet delivery ratio and reduces energy consumption with minimum end to end delay, compared to existing methods.
Keywords: Wireless body area networks, quality of service, Markov chain, health monitoring services.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14394827 Analyzing The Effect of Variable Round Time for Clustering Approach in Wireless Sensor Networks
Authors: Vipin Pal, Girdhari Singh, R P Yadav
Abstract:
As wireless sensor networks are energy constraint networks so energy efficiency of sensor nodes is the main design issue. Clustering of nodes is an energy efficient approach. It prolongs the lifetime of wireless sensor networks by avoiding long distance communication. Clustering algorithms operate in rounds. Performance of clustering algorithm depends upon the round time. A large round time consumes more energy of cluster heads while a small round time causes frequent re-clustering. So existing clustering algorithms apply a trade off to round time and calculate it from the initial parameters of networks. But it is not appropriate to use initial parameters based round time value throughout the network lifetime because wireless sensor networks are dynamic in nature (nodes can be added to the network or some nodes go out of energy). In this paper a variable round time approach is proposed that calculates round time depending upon the number of active nodes remaining in the field. The proposed approach makes the clustering algorithm adaptive to network dynamics. For simulation the approach is implemented with LEACH in NS-2 and the results show that there is 6% increase in network lifetime, 7% increase in 50% node death time and 5% improvement over the data units gathered at the base station.Keywords: Wireless Sensor Network, Clustering, Energy Efficiency, Round Time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17874826 Nuclear Power Generation and CO2 Abatement Scenarios in Taiwan
Authors: Chang-Bin Huang, Fu-Kuang Ko
Abstract:
Taiwan was the first country in Asia to announce “Nuclear-Free Homeland" in 2002. In 2008, the new government released the Sustainable Energy Policy Guidelines to lower the nationwide CO2 emissions some time between 2016 and 2020 back to the level of year 2008, further abatement of CO2 emissions is planed in year 2025 when CO2 emissions will decrease to the level of year 2000. Besides, under consideration of the issues of energy, environment and economics (3E), the new government declared that the nuclear power is a carbon-less energy option. This study analyses the effects of nuclear power generation for CO2 abatement scenarios in Taiwan. The MARKAL-MACRO energy model was adopted to evaluate economic impacts and energy deployment due to life extension of existing nuclear power plants and build new nuclear power units in CO2 abatement scenarios. The results show that CO2 abatement effort is expensive. On the other hand, nuclear power is a cost-effective choice. The GDP loss rate in the case of building new nuclear power plants is around two thirds of the Nuclear-Free Homeland case. Nuclear power generation has the capacity to provide large-scale CO2 free electricity. Therefore, the results show that nuclear power is not only an option for Taiwan, but also a requisite for Taiwan-s CO2 reduction strategy.Keywords: Energy model, CO2 abatement, nuclear power, economic impacts.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18784825 Performance of a Connected Random Covered Energy Efficient Wireless Sensor Network
Authors: M. Mahdavi, M. Ismail, K. Jumari, Z. M. Hanapi
Abstract:
For the sensor network to operate successfully, the active nodes should maintain both sensing coverage and network connectivity. Furthermore, scheduling sleep intervals plays critical role for energy efficiency of wireless sensor networks. Traditional methods for sensor scheduling use either sensing coverage or network connectivity, but rarely both. In this paper, we use random scheduling for sensing coverage and then turn on extra sensor nodes, if necessary, for network connectivity. Simulation results have demonstrated that the number of extra nodes that is on with upper bound of around 9%, is small compared to the total number of deployed sensor nodes. Thus energy consumption for switching on extra sensor node is small.
Keywords: Wireless sensor networks, energy efficient network, performance analysis, network coverage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13114824 Increasing of Energy Efficiency based on Persian Ancient Architectural Patterns in Desert Regions (Case Study Of Traditional Houses In Kashan)
Authors: Mehran Jamshidi, Naghmeh Yazdanfar, Masoud Nasri
Abstract:
In general architecture means the art of creating the space. Comprehensive and complete body which is created by a creative and purposeful thought to respond the human needs. Professionally, architecture is the are of designing and comprehensive planning of physical spaces that is created for human-s productivity. The purpose of architectural design is to respond the human needs which is appeared in physical frame. Human in response to his needs is always looking to achieve comfort. Throughout history of human civilization this relative comfort has been inspired by nature and assimilating the facility and natural achievement in the format of artifact patterns base on the nature, so that it is achieved in this comfort level and invention of these factors. All physical factors like regional, social and economical factors are made available to human in order to achieve a specific goal and are made to gain an ideal architecture to respond the functional needs and consider the aesthetics and elemental principles and pay attention to residents- comfort. In this study the Persian architecture with exploiting and transforming the energies into the requisite energies of architecture spaces and importing fuel products, utilities, etc, in order to achieve a relative comfort level will be investigated. In this paper the study of structural and physical specialties of traditional houses in desert regions and Central Plateau of Iran gave us this opportunity to being more familiar with important specialties of energy productivity in architecture body of traditional houses in these regions specially traditional houses of Kashan and in order to use these principles to create modern architectures in these regions.Keywords: architecture principles, stable architecture, management, energy productivity, body, energy
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19904823 Handling Mobility using Virtual Grid in Static Wireless Sensor Networks
Authors: T.P. Sharma
Abstract:
Querying a data source and routing data towards sink becomes a serious challenge in static wireless sensor networks if sink and/or data source are mobile. Many a times the event to be observed either moves or spreads across wide area making maintenance of continuous path between source and sink a challenge. Also, sink can move while query is being issued or data is on its way towards sink. In this paper, we extend our already proposed Grid Based Data Dissemination (GBDD) scheme which is a virtual grid based topology management scheme restricting impact of movement of sink(s) and event(s) to some specific cells of a grid. This obviates the need for frequent path modifications and hence maintains continuous flow of data while minimizing the network energy consumptions. Simulation experiments show significant improvements in network energy savings and average packet delay for a packet to reach at sink.Keywords: Mobility in WSNs, virtual grid, GBDD, clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15504822 Heat Transfer and Friction Factor Study for Triangular Duct Solar Air Heater Having Discrete V-Shaped Ribs
Authors: Varun
Abstract:
Solar energy is a good option among renewable energy resources due to its easy availability and abundance. The simplest and most efficient way to utilize solar energy is to convert it into thermal energy and this can be done with the help of solar collectors. The thermal performance of such collectors is poor due to less heat transfer from the collector surface to air. In this work, experimental investigations of single pass solar air heater having triangular duct and provided with roughness element on the underside of the absorber plate. V-shaped ribs are used for investigation having three different values of relative roughness pitch (p/e) ranges from 4- 16 for a fixed value of angle of attack (α), relative roughness height (e/Dh) and a relative gap distance (d/x) values are 60°, 0.044 and 0.60 respectively. Result shows that considerable augmentation in heat transfer has been obtained by providing roughness.
Keywords: Artificial roughness, Solar Air heater, Triangular duct, V-Shaped Ribs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29074821 Solar Energy Collection using a Double-layer Roof
Authors: S. Kong Wang
Abstract:
The purpose of this study is to investigate the efficiency of a double-layer roof in collecting solar energy as an application to the areas such as raising high-end temperature of organic Rankine cycle (ORC). The by-product of the solar roof is to reduce building air-conditioning loads. The experimental apparatus are arranged to evaluate the effects of the solar roof in absorbing solar energy. The flow channel is basically formed by an aluminum plate on top of a plywood plate. The geometric configurations in which the effects of absorbing energy is analyzed include: a bare uncovered aluminum plate, a glass-covered aluminum plate, a glass-covered/black-painted aluminum plate, a plate with variable lengths, a flow channel with stuffed material (in an attempt on enhancement of heat conduction), and a flow channel with variable slanted angles. The experimental results show that the efficiency of energy collection varies from 0.6 % to 11 % for the geometric configurations mentioned above. An additional study is carried out using CFD simulation to investigate the effects of fins on the aluminum plate. It shows that due to vastly enhanced heat conduction, the efficiency can reach ~23 % if 50 fins are installed on the aluminum plate. The study shows that a double-layer roof can efficiently absorb solar energy and substantially reduce building air-conditioning loads. On the high end of an organic Rankine cycle, a solar pond is used to replace the warm surface water of the sea as OTEC (ocean thermal energy conversion) is the driving energy for the ORC. The energy collected from the double-layered solar roof can be pumped into the pond and raise the pond temperature as the pond surface area is equivalently increased by nearly one-fourth of the total area of the double-layer solar roof. The effect of raising solar pond temperature is especially prominent if the double-layer solar roofs are installed in a community area.Keywords: solar energy collection, double-layer solar roof, energy conservation, ORC, OTEC
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23344820 The Tendencies of Development of the Management in the Education System of the Republic of Kazakhstan
Authors: Altynai Zhaitapova, Aizhan Satyvaldiyeva
Abstract:
In this article the authors investigate the main tendencies of development of the management in the education system of the Republic of Kazakhstan: problems, solutions and development of the education system of Kazakhstan in the realities of globalization.Keywords: Change management, education, globalization, innovations management systems, quality of education.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16814819 Simulation Study of DFIG Wind Turbine under Grid Fault
Authors: N. Zerzouri, H. Labar, S. Kechida
Abstract:
During recent years wind turbine technology has undergone rapid developments. Growth in size and the optimization of wind turbines has enabled wind energy to become increasingly competitive with conventional energy sources. As a result today-s wind turbines participate actively in the power production of several countries around the world. These developments raise a number of challenges to be dealt with now and in the future. The penetration of wind energy in the grid raises questions about the compatibility of the wind turbine power production with the grid. In particular, the contribution to grid stability, power quality and behavior during fault situations plays therefore as important a role as the reliability. In the present work, we addressed two fault situations that have shown their influence on the generator and the behavior of the wind over the defects which are briefly discussed based on simulation results.Keywords: Doubly fed induction generator (DFIG), Wind energy, grid fault
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24204818 Cascaded Transcritical/Supercritical CO2 Cycles and Organic Rankine Cycles to Recover Low-Temperature Waste Heat and LNG Cold Energy Simultaneously
Authors: Haoshui Yu, Donghoi Kim, Truls Gundersen
Abstract:
Low-temperature waste heat is abundant in the process industries, and large amounts of Liquefied Natural Gas (LNG) cold energy are discarded without being recovered properly in LNG terminals. Power generation is an effective way to utilize low-temperature waste heat and LNG cold energy simultaneously. Organic Rankine Cycles (ORCs) and CO2 power cycles are promising technologies to convert low-temperature waste heat and LNG cold energy into electricity. If waste heat and LNG cold energy are utilized simultaneously in one system, the performance may outperform separate systems utilizing low-temperature waste heat and LNG cold energy, respectively. Low-temperature waste heat acts as the heat source and LNG regasification acts as the heat sink in the combined system. Due to the large temperature difference between the heat source and the heat sink, cascaded power cycle configurations are proposed in this paper. Cascaded power cycles can improve the energy efficiency of the system considerably. The cycle operating at a higher temperature to recover waste heat is called top cycle and the cycle operating at a lower temperature to utilize LNG cold energy is called bottom cycle in this study. The top cycle condensation heat is used as the heat source in the bottom cycle. The top cycle can be an ORC, transcritical CO2 (tCO2) cycle or supercritical CO2 (sCO2) cycle, while the bottom cycle only can be an ORC due to the low-temperature range of the bottom cycle. However, the thermodynamic path of the tCO2 cycle and sCO2 cycle are different from that of an ORC. The tCO2 cycle and the sCO2 cycle perform better than an ORC for sensible waste heat recovery due to a better temperature match with the waste heat source. Different combinations of the tCO2 cycle, sCO2 cycle and ORC are compared to screen the best configurations of the cascaded power cycles. The influence of the working fluid and the operating conditions are also investigated in this study. Each configuration is modeled and optimized in Aspen HYSYS. The results show that cascaded tCO2/ORC performs better compared with cascaded ORC/ORC and cascaded sCO2/ORC for the case study.
Keywords: LNG cold energy, low-temperature waste heat, organic Rankine cycle, supercritical CO2 cycle, transcritical CO2 cycle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10744817 Decision Making about the Environmental Management Implementation – Incentives and Expectations
Authors: Eva Štěpánková
Abstract:
Environmental management implementation is presently one of the ways of organization success and value improvement. Increasing an organization motivation to environmental measures introduction is caused primarily by the rising pressure of the society that generates various incentives to endeavor for the environmental performance improvement. The aim of the paper is to identify and characterize the key incentives and expectations leading organizations to the environmental management implementation. The author focuses on five businesses of different size and field, operating in the Czech Republic. The qualitative approach and grounded theory procedure are used in research. The results point out that the significant incentives for environmental management implementation represent primarily demands of customers, the opportunity to declare the environmental commitment and image improvement. The researched enterprises less commonly expect the economical contribution, competitive advantage increase or export rate improvement. The results show that marketing contributions are primarily expected from the environmental management implementation.
Keywords: Environmental management, environmental management systems, ISO 14001.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25414816 Improvement of Wear Resistance of 356 Aluminum Alloy by High Energy Electron Beam Irradiation
Authors: M. Farnush
Abstract:
This study is concerned with the microstructural analysis and improvement of wear resistance of 356 aluminum alloy by a high energy electron beam. Shock hardening on material by high energy electron beam improved wear resistance. Particularly, in the surface of material by shock hardening, the wear resistance was greatly enhanced to 29% higher than that of the 356 aluminum alloy substrate. These findings suggested that surface shock hardening using high energy electron beam irradiation was economical and useful for the development of surface shock hardening with improved wear resistance.
Keywords: Al356 alloy, HEEB, wear resistance, frictional characteristics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11914815 Dynamic Shear Energy Absorption of Ultra-High Performance Concrete
Authors: Robert J. Thomas, Colton Bedke, Andrew Sorensen
Abstract:
The exemplary mechanical performance and durability of ultra-high performance concrete (UHPC) has led to its rapid emergence as an advanced cementitious material. The uncharacteristically high mechanical strength and ductility of UHPC makes it a promising potential material for defense structures which may be subject to highly dynamic loads like impact or blast. However, the mechanical response of UHPC under dynamic loading has not been fully characterized. In particular, there is a need to characterize the energy absorption of UHPC under high-frequency shear loading. This paper presents preliminary results from a parametric study of the dynamic shear energy absorption of UHPC using the Charpy impact test. UHPC mixtures with compressive strengths in the range of 100-150 MPa exhibited dynamic shear energy absorption in the range of 0.9-1.5 kJ/m. Energy absorption is shown to be sensitive to the water/cement ratio, silica fume content, and aggregate gradation. Energy absorption was weakly correlated to compressive strength. Results are highly sensitive to specimen preparation methods, and there is a demonstrated need for a standardized test method for high frequency shear in cementitious composites.
Keywords: Charpy impact test, dynamic shear, impact loading, ultra-high performance concrete.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11814814 Effect of Clustering on Energy Efficiency and Network Lifetime in Wireless Sensor Networks
Authors: Prakash G L, Chaitra K Meti, Poojitha K, Divya R.K.
Abstract:
Wireless Sensor Network is Multi hop Self-configuring Wireless Network consisting of sensor nodes. The deployment of wireless sensor networks in many application areas, e.g., aggregation services, requires self-organization of the network nodes into clusters. Efficient way to enhance the lifetime of the system is to partition the network into distinct clusters with a high energy node as cluster head. The different methods of node clustering techniques have appeared in the literature, and roughly fall into two families; those based on the construction of a dominating set and those which are based solely on energy considerations. Energy optimized cluster formation for a set of randomly scattered wireless sensors is presented. Sensors within a cluster are expected to be communicating with cluster head only. The energy constraint and limited computing resources of the sensor nodes present the major challenges in gathering the data. In this paper we propose a framework to study how partially correlated data affect the performance of clustering algorithms. The total energy consumption and network lifetime can be analyzed by combining random geometry techniques and rate distortion theory. We also present the relation between compression distortion and data correlation.Keywords: Clusters, multi hop, random geometry, rate distortion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16374813 Comparison of Traditional and Green Building Designs in Egypt: Energy Saving
Authors: Hala M. Abdel Mageed, Ahmed I. Omar, Shady H. E. Abdel Aleem
Abstract:
This paper describes in details a commercial green building that has been designed and constructed in Marsa Matrouh, Egypt. The balance between homebuilding and the sustainable environment has been taken into consideration in the design and construction of this building. The building consists of one floor with 3 m height and 2810 m2 area while the envelope area is 1400 m2. The building construction fulfills the natural ventilation requirements. The glass curtain walls are about 50% of the building and the windows area is 300 m2. 6 mm greenish gray tinted temper glass as outer board lite, 6 mm safety glass as inner board lite and 16 mm thick dehydrated air spaces are used in the building. Visible light with 50% transmission, 0.26 solar factor, 0.67 shading coefficient and 1.3 W/m2.K thermal insulation U-value are implemented to realize the performance requirements. Optimum electrical distribution for lighting system, air conditions and other electrical loads has been carried out. Power and quantity of each type of the lighting system lamps and the energy consumption of the lighting system are investigated. The design of the air conditions system is based on summer and winter outdoor conditions. Ventilated, air conditioned spaces and fresh air rates are determined. Variable Refrigerant Flow (VRF) is the air conditioning system used in this building. The VRF outdoor units are located on the roof of the building and connected to indoor units through refrigerant piping. Indoor units are distributed in all building zones through ducts and air outlets to ensure efficient air distribution. The green building energy consumption is evaluated monthly all over one year and compared with the consumed energy in the non-green conditions using the Hourly Analysis Program (HAP) model. The comparison results show that the total energy consumed per year in the green building is about 1,103,221 kWh while the non-green energy consumption is about 1,692,057 kWh. In other words, the green building total annual energy cost is reduced from 136,581 $ to 89,051 $. This means that, the energy saving and consequently the money-saving of this green construction is about 35%. In addition, 13 points are awarded by applying one of the most popular worldwide green energy certification programs (Leadership in Energy and Environmental Design “LEED”) as a rating system for the green construction. It is concluded that this green building ensures sustainability, saves energy and offers an optimum energy performance with minimum cost.
Keywords: Energy consumption, energy saving, green building, leadership in energy and environmental design, sustainability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15464812 Methods for Analyzing the Energy Efficiencyand Cost Effectiveness of Evaporative Cooling Air Conditioning
Authors: A Fouda, Z. Melikyan
Abstract:
Air conditioning systems of houses consume large quantity of electricity. To reducing energy consumption for air conditioning purposes it is becoming attractive the use of evaporative cooling air conditioning which is less energy consuming compared to air chillers. But, it is obvious that higher energy efficiency of evaporative cooling is not enough to judge whether evaporative cooling economically is competitive with other types of cooling systems. To proving the higher energy efficiency and cost effectiveness of the evaporative cooling competitive analysis of various types of cooling system should be accomplished. For noted purpose optimization mathematical model for each system should be composed based on system approach analysis. In this paper different types of evaporative cooling-heating systems are discussed and methods for increasing their energy efficiency and as well as determining of their design parameters are developed. The optimization mathematical models for each of them are composed with help of which least specific costs for each of them are reviled. The comparison of specific costs proved that the most efficient and cost effective is considered the “direct evaporating" system if it is applicable for given climatic conditions. Next more universal and applicable for many climatic conditions system providing least cost of heating and cooling is considered the “direct evaporating" system.Keywords: air, conditioning, system, evaporative cooling, mathematical model, optimization, thermoeconomic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17724811 Performance of an Improved Fluidized System for Processing Green Tea
Authors: Nickson Kipng’etich Lang’at, Thomas Thoruwa, John Abraham, John Wanyoko
Abstract:
Green tea is made from the top two leaves and buds of a shrub, Camellia sinensis, of the family Theaceae and the order Theales. The green tea leaves are picked and immediately sent to be dried or steamed to prevent fermentation. Fluid bed drying technique is a common drying method used in drying green tea because of its ease in design and construction and fluidization of fine tea particles. Major problems in this method are significant loss of chemical content of the leaf and green appearance of tea, retention of high moisture content in the leaves and bed channeling and defluidization. The energy associated with the drying technology has been shown to be a vital factor in determining the quality of green tea. As part of the implementation, prototype dryer was built that facilitated sequence of operations involving steaming, cooling, pre-drying and final drying. The major findings of the project were in terms of quality characteristics of tea leaves and energy consumption during processing. The optimal design achieved a moisture content of 4.2 ± 0.84%. With the optimum drying temperature of 100 ºC, the specific energy consumption was 1697.8 kj.Kg-1 and evaporation rate of 4.272 x 10-4 Kg.m-2.s-1. The energy consumption in a fluidized system can be further reduced by focusing on energy saving designs.
Keywords: Evaporation rate, fluid bed dryer, maceration, specific energy consumption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17014810 Optimal Sizing of a Hybrid Wind/PV Plant Considering Reliability Indices
Authors: S. Dehghan, B. Kiani, A. Kazemi, A. Parizad
Abstract:
The utilization of renewable energy sources in electric power systems is increasing quickly because of public apprehensions for unpleasant environmental impacts and increase in the energy costs involved with the use of conventional energy sources. Despite the application of these energy sources can considerably diminish the system fuel costs, they can also have significant influence on the system reliability. Therefore an appropriate combination of the system reliability indices level and capital investment costs of system is vital. This paper presents a hybrid wind/photovoltaic plant, with the aim of supplying IEEE reliability test system load pattern while the plant capital investment costs is minimized by applying a hybrid particle swarm optimization (PSO) / harmony search (HS) approach, and the system fulfills the appropriate level of reliability.Keywords: Distributed Generation, Fuel Cell, HS, Hybrid Power Plant, PSO, Photovoltaic, Reliability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23024809 Sustainable and Ecological Designs of the Built Environment
Authors: Charles Mbohwa, Alexander Mudiwakure
Abstract:
This paper reviews designs of the built environment from a sustainability perspective, emphasizing their importance in achieving ecological and sustainable economic objectives. The built environment has traditionally resulted in loss of biodiversity, extinction of some species, climate change, excessive water use, land degradation, space depletion, waste accumulation, energy consumption and environmental pollution. Materials used like plastics, metals, bricks, concrete, cement, natural aggregates, glass and plaster have wreaked havoc on the earth´s resources, since they have high levels of embodied energy hence not sustainable. Additional resources are consumed during use and disposal phases. Proposed designs for sustainability solutions include: ecological sanitation and eco-efficiency systems that ensure social, economic, environmental and technical sustainability. Renewable materials and energy systems, passive cooling and heating systems and material and energy reduction, reuse and recycling can improve the sector. These ideas are intended to inform the field of ecological design of the built environment.Keywords: Ecological and sustainability designs, environmental degradation, ecological sanitation, energy use efficiency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24014808 Problems of the Management of Legal Entities of Private Law in Georgia
Authors: Ketevan Kokrashvili, Rusudan Kutateladze, Nino Pailodze
Abstract:
Importance of management of legal entities under private law of which especially corporate management, as well as looking for ways of its improvement and perfection has become especially relevant in the twenty-first century, which was greatly contributed to by the global economic crisis. Some states have adopted Corporate Governance Codes; the European Union has set to work on a series of directives the main purpose of which is an improvement of corporate governance, provision of greater transparency and implementation of an effective control mechanism. This process is not yet completed, and various problematic issues associated with management of legal persons are still being debated among practitioner experts and scholars. Georgia is not an exception in this regard. The article discusses the legislative gaps, and in some cases, discrepancies having arisen in legal relationships under private law and having caused many practical problems. This especially applies to the management of capital companies.Keywords: Business entities, corporate management, public capital management, collective norms, existing problems, legal discrepancies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9214807 Oncological Management of Medulloblastoma and New Viral Therapeutic Targets
Authors: A. Taqaddas
Abstract:
Medulloblastoma (MB) is one of the most prevalent brain tumours among paediatrics. Although its management has evolved over time still there is need to find new therapeutic targets for MB that can result in less normal tissue toxicity while improving survival and reducing recurrence. This literature review is aimed at finding new potential therapeutic targets for MB focusing on viruses that can be used as potential targets for MB. The review also gives an over-view of management of paediatric Medulloblastoma focusing on Radiotherapy management.
Keywords: Cytomegalovirus, Measles Virus, Medulloblastoma, Radiotherapy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23254806 Teaching Method in Situational Crisis Communication Theory: A Literature Review
Authors: Proud Arunrangsiwed
Abstract:
Crisis management strategies could be found in various curriculums, not only in schools of business, but also schools of communication. Young students, such as freshmen and sophomores of undergraduate schools, may not care about learning crisis management strategies. Moreover, crisis management strategies are not a topic art students are familiar with. The current paper discusses a way to adapt entertainment media into a crisis management lesson, and the importance of learning crisis management strategies in the school of animation. Students could learn crisis management strategies by watching movies with content about a crisis and responding to crisis responding. The students should then participate in follow up discussions related to the strategies that were used to address the crisis, as well as their success in solving the crisis.Keywords: Situational crisis communication theory, crisis response strategies, media effect, unintentional effect.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18694805 Energy Deposited by Secondary Electrons Generated by Swift Proton Beams through Polymethylmethacrylate
Authors: Maurizio Dapor, Isabel Abril, Pablo de Vera, Rafael Garcia-Molina
Abstract:
The ionization yield of ion tracks in polymers and bio-molecular systems reaches a maximum, known as the Bragg peak, close to the end of the ion trajectories. Along the path of the ions through the materials, many electrons are generated, which produce a cascade of further ionizations and, consequently, a shower of secondary electrons. Among these, very low energy secondary electrons can produce damage in the biomolecules by dissociative electron attachment. This work deals with the calculation of the energy distribution of electrons produced by protons in a sample of polymethylmethacrylate (PMMA), a material that is used as a phantom for living tissues in hadron therapy. PMMA is also of relevance for microelectronics in CMOS technologies and as a photoresist mask in electron beam lithography. We present a Monte Carlo code that, starting from a realistic description of the energy distribution of the electrons ejected by protons moving through PMMA, simulates the entire cascade of generated secondary electrons. By following in detail the motion of all these electrons, we find the radial distribution of the energy that they deposit in PMMA for several initial proton energies characteristic of the Bragg peak.Keywords: Monte Carlo method, secondary electrons, energetic ions, ion-beam cancer therapy, ionization cross section, polymethylmethacrylate, proton beams, secondary electrons, radial energy distribution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1568