Search results for: Back Propagation training
1125 A Unified Robust Algorithm for Detection of Human and Non-human Object in Intelligent Safety Application
Authors: M A Hannan, A. Hussain, S. A. Samad, K. A. Ishak, A. Mohamed
Abstract:
This paper presents a general trainable framework for fast and robust upright human face and non-human object detection and verification in static images. To enhance the performance of the detection process, the technique we develop is based on the combination of fast neural network (FNN) and classical neural network (CNN). In FNN, a useful correlation is exploited to sustain high level of detection accuracy between input image and the weight of the hidden neurons. This is to enable the use of Fourier transform that significantly speed up the time detection. The combination of CNN is responsible to verify the face region. A bootstrap algorithm is used to collect non human object, which adds the false detection to the training process of the human and non-human object. Experimental results on test images with both simple and complex background demonstrate that the proposed method has obtained high detection rate and low false positive rate in detecting both human face and non-human object.Keywords: Algorithm, detection of human and non-human object, FNN, CNN, Image training.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16331124 Teachers’ Emotional Experience in Online Classes in Adult Education in Selected European Countries
Authors: Andreas Ahrens, Jelena Zascerinska
Abstract:
Emotions are crucial in online classes in adult education. Despite that, a little attention was devoted to the emotional experience of being an online teacher in the field of andragogy, and the online teacher’s emotional perspectives in ever changing environments have to be analysed. The paper aims at the analysis of teachers’ emotional experience in online classes in adult education in selected European countries. The research tends to propose implications for training of teachers who work in online classes in adult education. The survey was conducted in April 2022. In the selected European countries 78 respondents took part in the study. Among them, 30 respondents represented Germany, 28 respondents Greece, and 20 respondents were from Italy. The theoretical findings allow defining teacher emotional experience. The analysis of the elements of the respondents’ emotional experience allows concluding that teachers’ attitude to online classes has to be developed. The key content for teacher training is presented. Directions of further work are proposed.
Keywords: Adult education, online classes, teacher emotional experience, European countries.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4381123 Improving Air Temperature Prediction with Artificial Neural Networks
Authors: Brian A. Smith, Ronald W. McClendon, Gerrit Hoogenboom
Abstract:
The mitigation of crop loss due to damaging freezes requires accurate air temperature prediction models. Previous work established that the Ward-style artificial neural network (ANN) is a suitable tool for developing such models. The current research focused on developing ANN models with reduced average prediction error by increasing the number of distinct observations used in training, adding additional input terms that describe the date of an observation, increasing the duration of prior weather data included in each observation, and reexamining the number of hidden nodes used in the network. Models were created to predict air temperature at hourly intervals from one to 12 hours ahead. Each ANN model, consisting of a network architecture and set of associated parameters, was evaluated by instantiating and training 30 networks and calculating the mean absolute error (MAE) of the resulting networks for some set of input patterns. The inclusion of seasonal input terms, up to 24 hours of prior weather information, and a larger number of processing nodes were some of the improvements that reduced average prediction error compared to previous research across all horizons. For example, the four-hour MAE of 1.40°C was 0.20°C, or 12.5%, less than the previous model. Prediction MAEs eight and 12 hours ahead improved by 0.17°C and 0.16°C, respectively, improvements of 7.4% and 5.9% over the existing model at these horizons. Networks instantiating the same model but with different initial random weights often led to different prediction errors. These results strongly suggest that ANN model developers should consider instantiating and training multiple networks with different initial weights to establish preferred model parameters.Keywords: Decision support systems, frost protection, fruit, time-series prediction, weather modeling
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27251122 The Effects of Tissue Optical Parameters and Interface Reflectivity on Light Diffusion in Biological Tissues
Authors: MA. Ansari
Abstract:
In cancer progress, the optical properties of tissues like absorption and scattering coefficient change, so by these changes, we can trace the progress of cancer, even it can be applied for pre-detection of cancer. In this paper, we investigate the effects of changes of optical properties on light penetrated into tissues. The diffusion equation is widely used to simulate light propagation into biological tissues. In this study, the boundary integral method (BIM) is used to solve the diffusion equation. We illustrate that the changes of optical properties can modified the reflectance or penetrating light.Keywords: Diffusion equation, boundary element method, refractive index
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20171121 Inferential Reasoning for Heterogeneous Multi-Agent Mission
Authors: Sagir M. Yusuf, Chris Baber
Abstract:
We describe issues bedeviling the coordination of heterogeneous (different sensors carrying agents) multi-agent missions such as belief conflict, situation reasoning, etc. We applied Bayesian and agents' presumptions inferential reasoning to solve the outlined issues with the heterogeneous multi-agent belief variation and situational-base reasoning. Bayesian Belief Network (BBN) was used in modeling the agents' belief conflict due to sensor variations. Simulation experiments were designed, and cases from agents’ missions were used in training the BBN using gradient descent and expectation-maximization algorithms. The output network is a well-trained BBN for making inferences for both agents and human experts. We claim that the Bayesian learning algorithm prediction capacity improves by the number of training data and argue that it enhances multi-agents robustness and solve agents’ sensor conflicts.Keywords: Distributed constraint optimization problem, multi-agent system, multi-robot coordination, autonomous system, swarm intelligence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6411120 Surface and Guided Waves in Composites with Nematic Coatings
Authors: Dmitry D. Zakharov
Abstract:
The theoretical prediction of the acoustical polarization effects in the heterogeneous composites, made of thick elastic solids with thin nematic films, is presented. The numericalanalytical solution to the problem of the different wave propagation exhibits some new physical effects in the low frequency domain: the appearance of the critical frequency and the existence of the narrow transition zone where the wave rapidly changes its speed. The associated wave attenuation is highly perturbed in this zone. We also show the possible appearance of the critical frequencies where the attenuation changes the sign. The numerical results of parametrical analysis are presented and discussed.Keywords: Surface wave, guided wave, heterogeneous composite, nematic coating.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13621119 Analysis of Linked in Series Servers with Blocking, Priority Feedback Service and Threshold Policy
Authors: Walenty Oniszczuk
Abstract:
The use of buffer thresholds, blocking and adequate service strategies are well-known techniques for computer networks traffic congestion control. This motivates the study of series queues with blocking, feedback (service under Head of Line (HoL) priority discipline) and finite capacity buffers with thresholds. In this paper, the external traffic is modelled using the Poisson process and the service times have been modelled using the exponential distribution. We consider a three-station network with two finite buffers, for which a set of thresholds (tm1 and tm2) is defined. This computer network behaves as follows. A task, which finishes its service at station B, gets sent back to station A for re-processing with probability o. When the number of tasks in the second buffer exceeds a threshold tm2 and the number of task in the first buffer is less than tm1, the fed back task is served under HoL priority discipline. In opposite case, for fed backed tasks, “no two priority services in succession" procedure (preventing a possible overflow in the first buffer) is applied. Using an open Markovian queuing schema with blocking, priority feedback service and thresholds, a closed form cost-effective analytical solution is obtained. The model of servers linked in series is very accurate. It is derived directly from a twodimensional state graph and a set of steady-state equations, followed by calculations of main measures of effectiveness. Consequently, efficient expressions of the low computational cost are determined. Based on numerical experiments and collected results we conclude that the proposed model with blocking, feedback and thresholds can provide accurate performance estimates of linked in series networks.Keywords: Blocking, Congestion control, Feedback, Markov chains, Performance evaluation, Threshold-base networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12941118 Food Habits and Nutritional Status of Fiji Rugby Players
Authors: Jimaima Lako, Subramaniam Sotheeswaran, Ketan Christi
Abstract:
The 15-a-side Fiji rugby team trains well in preparations for any rugby competition but rarely performs to expectations. In order to help the Fiji local based rugby players to identify some key basic areas in improving their performance, a series of workshops were conducted to assess their nutritional status and dietary habits in relation to energy demand during rugby matches. The nutrition workshop included the administration of questionnaires to 19 local based rugby players, requesting the following information: usual food intakes, training camp food intakes, carbohydrate loading, pre-game meals and post-game meals. The study revealed that poor eating habits of the players resulted in the low carbohydrate intake, which may have contributed to increase levels of fatigue leading to loss of stamina even before the second half of the game. It appears that the diet of most 15-a-side players does not provide enough energy to enable them to last the full eightyminutes of the game.
Keywords: Fiji rugby, Food habits, Physical fitness, Training meals
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 43121117 Comparing Field Displacement History with Numerical Results to Estimate Geotechnical Parameters: Case Study of Arash-Esfandiar-Niayesh under Passing Tunnel, 2.5 Traffic Lane Tunnel, Tehran, Iran
Authors: A. Golshani, M. Gharizade Varnusefaderani, S. Majidian
Abstract:
Underground structures are of those structures that have uncertainty in design procedures. That is due to the complexity of soil condition around. Under passing tunnels are also such affected structures. Despite geotechnical site investigations, lots of uncertainties exist in soil properties due to unknown events. As results, it possibly causes conflicting settlements in numerical analysis with recorded values in the project. This paper aims to report a case study on a specific under passing tunnel constructed by New Austrian Tunnelling Method in Iran. The intended tunnel has an overburden of about 11.3m, the height of 12.2m and, the width of 14.4m with 2.5 traffic lane. The numerical modeling was developed by a 2D finite element program (PLAXIS Version 8). Comparing displacement histories at the ground surface during the entire installation of initial lining, the estimated surface settlement was about four times the field recorded one, which indicates that some local unknown events affect that value. Also, the displacement ratios were in a big difference between the numerical and field data. Consequently, running several numerical back analyses using laboratory and field tests data, the geotechnical parameters were accurately revised to match with the obtained monitoring data. Finally, it was found that usually the values of soil parameters are conservatively low-estimated up to 40 percent by typical engineering judgment. Additionally, it could be attributed to inappropriate constitutive models applied for the specific soil condition.
Keywords: NATM, surface displacement history, soil tests, monitoring data, numerical back-analysis, geotechnical parameters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7991116 Microstructural Evolution of an Interface Region in a Nickel-Based Superalloy Joint Produced by Direct Energy Deposition
Authors: M. Ferguson, T. Konkova, I. Violatos
Abstract:
Microstructure analysis of additively manufactured (AM) materials is an important step in understanding the interrelationship between mechanical properties and materials performance. Literature on the effect of a laser-based AM process parameters on the microstructure in the substrate-deposit interface is limited. The interface region, the adjoining area of substrate and deposit, is characterized by the presence of the fusion zone (FZ) and heat affected zone (HAZ) experiencing rapid thermal gyrations resulting in thermal induced transformations. Inconel 718 was utilized as a work material for both the substrate and deposit. Three blocks of Inconel 718 material were deposited by Direct Energy Deposition (DED) using three different laser powers, 550W, 750W and 950W, respectively. A coupled thermo-mechanical transient approach was utilized to correlate temperature history to the evolution of microstructure. Thermal history of the deposition process was monitored with the thermocouples installed inside the substrate material. Interface region of the blocks were analysed with Optical Microscopy (OM) and Scanning Electron Microscopy (SEM) including electron back-scattered diffraction (EBSD) technique. Laser power was found to influence the dissolution of intermetallic precipitated phases in the substrate and grain growth in the interface region. Microstructure and thermal history data were utilized to draw conclusive comparisons between the investigated process parameters.
Keywords: Additive manufacturing, direct energy deposition, electron back-scatter diffraction, finite element analysis, Inconel 718, microstructure, optical microscopy, scanning electron microscopy, substrate-deposit interface region.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5011115 Acoustic Analysis with Consideration of Damping Effects of Air Viscosity in Sound Pathway
Authors: M. Sasajima, M. Watanabe, T. Yamaguchi, Y. Kurosawa, Y. Koike
Abstract:
Sound pathways in the enclosures of small earphones are very narrow. In such narrow pathways, the speed of sound propagation and the phase of sound waves change because of the air viscosity. We have developed a new finite element method that includes the effects of damping due to air viscosity for modeling the sound pathway. This method is developed as an extension of the existing finite element method for porous sound-absorbing materials. The numerical calculation results using the proposed finite element method are validated against the existing calculation methods.Keywords: Simulation, FEM, air viscosity, damping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21971114 On the Perfomance of Multiband OFDM under Log-normal Channel Fading
Authors: N.M. Anas, S.K.S. Yusoff, R. Mohamad
Abstract:
A modified Saleh-Valenzuela channel model has been adapted for Ultra Wideband (UWB) system. The suggested realistic channel is assessed by its distribution of fading amplitude and time of arrivals. Furthermore, the propagation characteristic has been distinct into four channel models, namely CM 1 to 4. Each are differentiate in terms of cluster arrival rates, rays arrival rate within each cluster and its respective constant decay rates. This paper described the multiband OFDM system performance simulates under these multipath conditions. Simulation work described in this paper is based on WiMedia ECMA-368 standard, which has been deployed for practical implementation of low cost and low power UWB devices.Keywords: Log-Normal, Multiband OFDM, Saleh-Valenzuela
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17801113 Defect Modes in Multilayered Piezoelectric Structures
Authors: D. G. Piliposyan
Abstract:
Propagation of electro-elastic waves in a piezoelectric waveguide with finite stacks and a defect layer is studied using a modified transfer matrix method. The dispersion equation for a periodic structure consisting of unit cells made up from two piezoelectric materials with metallized interfaces is obtained. An analytical expression, for the transmission coefficient for a waveguide with finite stacks and a defect layer, that is found can be used to accurately detect and control the position of the passband within a stopband. The result can be instrumental in constructing a tunable waveguide made of layers of different or identical piezoelectric crystals and separated by metallized interfaces.Keywords: Defect mode, Bloch waves, periodic phononic crystal, piezoelectric composite waveguide.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11041112 Automated, Objective Assessment of Pilot Performance in Simulated Environment
Authors: Maciej Zasuwa, Grzegorz Ptasinski, Antoni Kopyt
Abstract:
Nowadays flight simulators offer tremendous possibilities for safe and cost-effective pilot training, by utilization of powerful, computational tools. Due to technology outpacing methodology, vast majority of training related work is done by human instructors. It makes assessment not efficient, and vulnerable to instructors’ subjectivity. The research presents an Objective Assessment Tool (gOAT) developed at the Warsaw University of Technology, and tested on SW-4 helicopter flight simulator. The tool uses database of the predefined manoeuvres, defined and integrated to the virtual environment. These were implemented, basing on Aeronautical Design Standard Performance Specification Handling Qualities Requirements for Military Rotorcraft (ADS-33), with predefined Mission-Task-Elements (MTEs). The core element of the gOAT enhanced algorithm that provides instructor a new set of information. In details, a set of objective flight parameters fused with report about psychophysical state of the pilot. While the pilot performs the task, the gOAT system automatically calculates performance using the embedded algorithms, data registered by the simulator software (position, orientation, velocity, etc.), as well as measurements of physiological changes of pilot’s psychophysiological state (temperature, sweating, heart rate). Complete set of measurements is presented on-line to instructor’s station and shown in dedicated graphical interface. The presented tool is based on open source solutions, and flexible for editing. Additional manoeuvres can be easily added using guide developed by authors, and MTEs can be changed by instructor even during an exercise. Algorithm and measurements used allow not only to implement basic stress level measurements, but also to reduce instructor’s workload significantly. Tool developed can be used for training purpose, as well as periodical checks of the aircrew. Flexibility and ease of modifications allow the further development to be wide ranged, and the tool to be customized. Depending on simulation purpose, gOAT can be adjusted to support simulator of aircraft, helicopter, or unmanned aerial vehicle (UAV).
Keywords: Automated assessment, flight simulator, human factors, pilot training.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8081111 On Developing a Core Guideline for English Language Training Programs in Business Settings
Authors: T. Ito, K. Kawaguchi, R. Ohta
Abstract:
The purpose of this study is to provide a guideline to assist globally-minded companies in developing task-based English- language programs for their employees. After conducting an online self-assessment questionnaire comprised of 45 job-related tasks, we analyzed responses received from 3,000 Japanese company employees and developed a checklist that considered three areas; i) the percentage of those who need to accomplish English-language tasks in their workplace (need for English), ii) a five-point self-assessment score (task performance level), and iii) the impact of previous task experience on perceived performance (experience factor). The 45 tasks were graded according to five proficiency levels. Our results helped us to create a core guideline that may assist companies in two ways: first, in helping determine which tasks employees with a certain English proficiency should be able to satisfactorily carry out, and secondly, to quickly prioritize which business-related English skills they would need in future English language programs.
Keywords: Business settings, Can-do statements, English language training programs, Self-assessment, Task experience.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14481110 Review Risk and Threats Due to Dam Break
Authors: A.Roshandel, N.Hedayat, H.kiamanesh
Abstract:
The one of most important objects in implementation of damage analysis observations is manner of dam break wave propagation. In this paper velocity and wave height due dam break in with and without tailwater states for appointment hazardous lands and flood radius are investigate. In order to modeling above phenomenon finite volume method of Roe type for solving shallow water equations is used. Results indicated that in the dry bed state risk radius due to dam break is too high. While in the wet bed risk radius has a less wide. Therefore in the first state constructions and storage facilities are encountered with destruction risk. Further velocity due to dam break in the second state is more comparing to the first state. Hence erosion and scour the river bed in the dry bed is too more compare to the wet bed.Keywords: Dam break, finite volume method, tailwater, risk radius, scour
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16201109 Wavelet Based Residual Method of Detecting GSM Signal Strength Fading
Authors: Danladi Ali, Onah Festus Iloabuchi
Abstract:
In this paper, GSM signal strength was measured in order to detect the type of the signal fading phenomenon using onedimensional multilevel wavelet residual method and neural network clustering to determine the average GSM signal strength received in the study area. The wavelet residual method predicted that the GSM signal experienced slow fading and attenuated with MSE of 3.875dB. The neural network clustering revealed that mostly -75dB, -85dB and -95dB were received. This means that the signal strength received in the study is a weak signal.
Keywords: One-dimensional multilevel wavelets, path loss, GSM signal strength, propagation and urban environment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19581108 Clustering Based Formulation for Short Term Load Forecasting
Authors: Ajay Shekhar Pandey, D. Singh, S. K. Sinha
Abstract:
A clustering based technique has been developed and implemented for Short Term Load Forecasting, in this article. Formulation has been done using Mean Absolute Percentage Error (MAPE) as an objective function. Data Matrix and cluster size are optimization variables. Model designed, uses two temperature variables. This is compared with six input Radial Basis Function Neural Network (RBFNN) and Fuzzy Inference Neural Network (FINN) for the data of the same system, for same time period. The fuzzy inference system has the network structure and the training procedure of a neural network which initially creates a rule base from existing historical load data. It is observed that the proposed clustering based model is giving better forecasting accuracy as compared to the other two methods. Test results also indicate that the RBFNN can forecast future loads with accuracy comparable to that of proposed method, where as the training time required in the case of FINN is much less.
Keywords: Load forecasting, clustering, fuzzy inference.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16271107 Combining Fuzzy Logic and Neural Networks in Modeling Landfill Gas Production
Authors: Mohamed Abdallah, Mostafa Warith, Roberto Narbaitz, Emil Petriu, Kevin Kennedy
Abstract:
Heterogeneity of solid waste characteristics as well as the complex processes taking place within the landfill ecosystem motivated the implementation of soft computing methodologies such as artificial neural networks (ANN), fuzzy logic (FL), and their combination. The present work uses a hybrid ANN-FL model that employs knowledge-based FL to describe the process qualitatively and implements the learning algorithm of ANN to optimize model parameters. The model was developed to simulate and predict the landfill gas production at a given time based on operational parameters. The experimental data used were compiled from lab-scale experiment that involved various operating scenarios. The developed model was validated and statistically analyzed using F-test, linear regression between actual and predicted data, and mean squared error measures. Overall, the simulated landfill gas production rates demonstrated reasonable agreement with actual data. The discussion focused on the effect of the size of training datasets and number of training epochs.
Keywords: Adaptive neural fuzzy inference system (ANFIS), gas production, landfill
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24151106 A Content-Based Optimization of Data Stream Television Multiplex
Authors: Jaroslav Polec, Martin Šimek, Michal Martinovič, Elena Šikudová
Abstract:
The television multiplex has reserved capacity and therefore we can use only limited number of videos for propagation of it. Appropriate composition of the multiplex has a major impact on how many videos is spread by multiplex. Therefore in this paper is designed a simple algorithm to optimize capacity utilization multiplex. Significant impact on the number of programs in the multiplex has also the fact from which programs is composed. Content of multiplex can be movies, news, sport, animated stories, documentaries, etc. These types have their own specific characteristics that affect their resulting data stream. In this paper is also done an impact analysis of the composition of the multiplex to use its capacity by video content.
Keywords: Multiplex, content, group of pictures, frame, capacity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14751105 The Difficulties Witnessed by People with Intellectual Disability in Transition to Work in Saudi Arabia
Authors: Adel S. Alanazi
Abstract:
The transition of a student with a disability from school to work is the most crucial phase while moving from the stage of adolescence into early adulthood. In this process, young individuals face various difficulties and challenges in order to accomplish the next venture of life successfully. In this respect, this paper aims to examine the challenges encountered by the individuals with intellectual disabilities in transition to work in Saudi Arabia. For this purpose, this study has undertaken a qualitative research-based methodology; wherein interpretivist philosophy has been followed along with inductive approach and exploratory research design. The data for the research has been gathered with the help of semi-structured interviews, whose findings are analysed with the help of thematic analysis. Semi-structured interviews were conducted with parents of persons with intellectual disabilities, officials, supervisors and specialists of two vocational rehabilitation centres providing training to intellectually disabled students, in addition to that, directors of companies and websites in hiring those individuals. The total number of respondents for the interview was 15. The purposive sampling method was used to select the respondents for the interview. This sampling method is a non-probability sampling method which draws respondents from a known population and allows flexibility and suitability in selecting the participants for the study. The findings gathered from the interview revealed that the lack of awareness among their parents regarding the rights of their children who are intellectually disabled; the lack of adequate communication and coordination between various entities; concerns regarding their training and subsequent employment are the key difficulties experienced by the individuals with intellectual disabilities. Training in programmes such as bookbinding, carpentry, computing, agriculture, electricity and telephone exchange operations were involved as key training programmes. The findings of this study also revealed that information technology and media were playing a significant role in smoothing the transition to employment of individuals with intellectual disabilities. Furthermore, religious and cultural attitudes have been identified to be restricted for people with such disabilities in seeking advantages from job opportunities. On the basis of these findings, it can be implied that the information gathered through this study will serve to be highly beneficial for Saudi Arabian schools/ rehabilitation centres for individuals with intellectual disability to facilitate them in overcoming the problems they encounter during the transition to work.
Keywords: Intellectual disability, transition services, rehabilitation centre.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13261104 Continuous Functions Modeling with Artificial Neural Network: An Improvement Technique to Feed the Input-Output Mapping
Authors: A. Belayadi, A. Mougari, L. Ait-Gougam, F. Mekideche-Chafa
Abstract:
The artificial neural network is one of the interesting techniques that have been advantageously used to deal with modeling problems. In this study, the computing with artificial neural network (CANN) is proposed. The model is applied to modulate the information processing of one-dimensional task. We aim to integrate a new method which is based on a new coding approach of generating the input-output mapping. The latter is based on increasing the neuron unit in the last layer. Accordingly, to show the efficiency of the approach under study, a comparison is made between the proposed method of generating the input-output set and the conventional method. The results illustrated that the increasing of the neuron units, in the last layer, allows to find the optimal network’s parameters that fit with the mapping data. Moreover, it permits to decrease the training time, during the computation process, which avoids the use of computers with high memory usage.
Keywords: Neural network computing, information processing, input-output mapping, training time, computers with high memory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13231103 Hybrid Anomaly Detection Using Decision Tree and Support Vector Machine
Authors: Elham Serkani, Hossein Gharaee Garakani, Naser Mohammadzadeh, Elaheh Vaezpour
Abstract:
Intrusion detection systems (IDS) are the main components of network security. These systems analyze the network events for intrusion detection. The design of an IDS is through the training of normal traffic data or attack. The methods of machine learning are the best ways to design IDSs. In the method presented in this article, the pruning algorithm of C5.0 decision tree is being used to reduce the features of traffic data used and training IDS by the least square vector algorithm (LS-SVM). Then, the remaining features are arranged according to the predictor importance criterion. The least important features are eliminated in the order. The remaining features of this stage, which have created the highest level of accuracy in LS-SVM, are selected as the final features. The features obtained, compared to other similar articles which have examined the selected features in the least squared support vector machine model, are better in the accuracy, true positive rate, and false positive. The results are tested by the UNSW-NB15 dataset.
Keywords: Intrusion detection system, decision tree, support vector machine, feature selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12401102 Sensorless Control of Induction Motor: Design and Stability Analysis
Authors: Nadia Bensiali, Erik Etien, Amar Omeiri, Gerard Champenois
Abstract:
Adaptive observers used in sensorless control of induction motors suffer from instability especally in regenerating mode. In this paper, an optimal feed back gain design is proposed, it can reduce the instability region in the torque speed plane .
Keywords: Induction motor drive, adaptive observer, regenerating mode, stabilizing design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15481101 Convergence Analysis of Training Two-Hidden-Layer Partially Over-Parameterized ReLU Networks via Gradient Descent
Authors: Zhifeng Kong
Abstract:
Over-parameterized neural networks have attracted a great deal of attention in recent deep learning theory research, as they challenge the classic perspective of over-fitting when the model has excessive parameters and have gained empirical success in various settings. While a number of theoretical works have been presented to demystify properties of such models, the convergence properties of such models are still far from being thoroughly understood. In this work, we study the convergence properties of training two-hidden-layer partially over-parameterized fully connected networks with the Rectified Linear Unit activation via gradient descent. To our knowledge, this is the first theoretical work to understand convergence properties of deep over-parameterized networks without the equally-wide-hidden-layer assumption and other unrealistic assumptions. We provide a probabilistic lower bound of the widths of hidden layers and proved linear convergence rate of gradient descent. We also conducted experiments on synthetic and real-world datasets to validate our theory.Keywords: Over-parameterization, Rectified Linear Units (ReLU), convergence, gradient descent, neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8971100 Cross Project Software Fault Prediction at Design Phase
Authors: Pradeep Singh, Shrish Verma
Abstract:
Software fault prediction models are created by using the source code, processed metrics from the same or previous version of code and related fault data. Some company do not store and keep track of all artifacts which are required for software fault prediction. To construct fault prediction model for such company, the training data from the other projects can be one potential solution. Earlier we predicted the fault the less cost it requires to correct. The training data consists of metrics data and related fault data at function/module level. This paper investigates fault predictions at early stage using the cross-project data focusing on the design metrics. In this study, empirical analysis is carried out to validate design metrics for cross project fault prediction. The machine learning techniques used for evaluation is Naïve Bayes. The design phase metrics of other projects can be used as initial guideline for the projects where no previous fault data is available. We analyze seven datasets from NASA Metrics Data Program which offer design as well as code metrics. Overall, the results of cross project is comparable to the within company data learning.Keywords: Software Metrics, Fault prediction, Cross project, Within project.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25461099 Debt Reconstruction, Career Development and Famers Household Well-Being in Thailand
Authors: Yothin Sawangdee, Piyawat Katewongsa, Chutima Yousomboon, Kornkanok Pongpradit, Sakapas Saengchai, Phusit Khantikul
Abstract:
Debts reconstruction under some of moratorium projects is one of important method that highly benefits to both the Banks and farmers. The method can reduce probabilities for nonprofits loan. This paper discuss about debts reconstruction and career development training for farmers in Thailand between 2011 and 2013. The research designed is mix-method between quantitative survey and qualitative survey. Sample size for quantitative method is 1003 cases. Data gathering procedure is between October and December 2013. Main results affirmed that debts reconstruction is needed. And there are numerous benefits from farmers’ career development training. Many of farmers who attend field school activities able to bring knowledge learned to apply for the farms’ work. They can reduce production costs. Framers’ quality of life and their household well-being also improve. This program should apply in any countries where farmers have highly debts and highly risks for not return the debts.Keywords: Career development, debts reconstruction, farmers household well-being, Thailand.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10231098 Optical Induction of 2D and 3D Photonic Lattices in Photorefractive Materials based on Talbot effect
Authors: A. Badalyan, R. Hovsepyan, V. Mekhitaryan, P. Mantashyan, R. Drampyan
Abstract:
In this paper we report the technique of optical induction of 2 and 3-dimensional (2D and 3D) photonic lattices in photorefractive materials based on diffraction grating self replication -Talbot effect. 1D and 2D different rotational symmery diffraction masks with the periods of few tens micrometers and 532 nm cw laser beam were used in the experiments to form an intensity modulated light beam profile. A few hundred micrometric scale replications of mask generated intensity structures along the beam propagation axis were observed. Up to 20 high contrast replications were detected for 1D annular mask with 30Keywords: Diffraction gratings, laser, photonic lattice, Talbot effect.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18671097 Prediction Compressive Strength of Self-Compacting Concrete Containing Fly Ash Using Fuzzy Logic Inference System
Authors: O. Belalia Douma, B. Boukhatem, M. Ghrici
Abstract:
Self-compacting concrete (SCC) developed in Japan in the late 80s has enabled the construction industry to reduce demand on the resources, improve the work condition and also reduce the impact of environment by elimination of the need for compaction. Fuzzy logic (FL) approaches has recently been used to model some of the human activities in many areas of civil engineering applications. Especially from these systems in the model experimental studies, very good results have been obtained. In the present study, a model for predicting compressive strength of SCC containing various proportions of fly ash, as partial replacement of cement has been developed by using Fuzzy Inference System (FIS). For the purpose of building this model, a database of experimental data were gathered from the literature and used for training and testing the model. The used data as the inputs of fuzzy logic models are arranged in a format of five parameters that cover the total binder content, fly ash replacement percentage, water content, superplasticizer and age of specimens. The training and testing results in the fuzzy logic model have shown a strong potential for predicting the compressive strength of SCC containing fly ash in the considered range.
Keywords: Self-compacting concrete, fly ash, strength prediction, fuzzy logic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28511096 Lack of BIM Training: Investigating Practical Solutions for the State of Kuwait
Authors: Noor M. Abdulfattah, Ahmed M. Khalafallah, Nabil A. Kartam
Abstract:
Despite the evident benefits of building information modeling (BIM) to the construction industry, it faces significant implementation challenges in the State of Kuwait. This study investigates the awareness of construction stakeholders of BIM implementation challenges, and identifies various solutions to overcome these challenges. Specifically, the main objectives of this study are to: (1) characterize the barriers that deter utilization of BIM, (2) examine the awareness of engineers, architects, and construction stakeholders of these barriers, and (3) identify practical solutions to facilitate BIM utilization. A questionnaire survey was designed to collect data on the aforementioned objectives from local companies and senior BIM experts. It was found that engineers are highly aware of BIM implementation barriers. In addition, it was concluded from the questionnaire that the biggest barrier is the lack of BIM training. Based on expert feedback, the study concluded with a number of recommendations on how to overcome the barriers of BIM utilization. This should prove useful to the construction industry stakeholders and can lead to significant changes to design and construction practices.
Keywords: Building information modeling, construction, challenges, information technology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2474