Search results for: software defect prediction.
2561 Lexicon-Based Sentiment Analysis for Stock Movement Prediction
Authors: Zane Turner, Kevin Labille, Susan Gauch
Abstract:
Sentiment analysis is a broad and expanding field that aims to extract and classify opinions from textual data. Lexicon-based approaches are based on the use of a sentiment lexicon, i.e., a list of words each mapped to a sentiment score, to rate the sentiment of a text chunk. Our work focuses on predicting stock price change using a sentiment lexicon built from financial conference call logs. We present a method to generate a sentiment lexicon based upon an existing probabilistic approach. By using a domain-specific lexicon, we outperform traditional techniques and demonstrate that domain-specific sentiment lexicons provide higher accuracy than generic sentiment lexicons when predicting stock price change.
Keywords: Lexicon, sentiment analysis, stock movement prediction., computational finance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7882560 A Common Automated Programming Platform for Knowledge Based Software Engineering
Authors: Ivan Stanev, Maria Koleva
Abstract:
Common Platform for Automated Programming (CPAP) is defined in details. Two versions of CPAP are described: Cloud based (including set of components for classic programming, and set of components for combined programming); and Knowledge Based Automated Software Engineering (KBASE) based (including set of components for automated programming, and set of components for ontology programming). Four KBASE products (Module for Automated Programming of Robots, Intelligent Product Manual, Intelligent Document Display, and Intelligent Form Generator) are analyzed and CPAP contributions to automated programming are presented.Keywords: Automated Programming, Cloud Computing, Knowledge Based Software Engineering, Service Oriented Architecture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18992559 Using Simulation for Prediction of Units Movements in Case of Communication Failure
Authors: J. Hodicky, P. Frantis
Abstract:
Command and Control (C2) system and its interfacethe Common Operational Picture (COP) are main means that supports commander in its decision making process. COP contains information about friendly and enemy unit positions. The friendly position is gathered via tactical network. In the case of tactical network failure the information about units are not available. The tactical simulator can be used as a tool that is capable to predict movements of units in respect of terrain features. Article deals with an experiment that was based on Czech C2 system that is in the case of connectivity lost fed by VR Forces simulator. Article analyzes maximum time interval in which the position created by simulator is still usable and truthful for commander in real time.Keywords: command and control system, movement prediction, simulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12832558 Lexicon-Based Sentiment Analysis for Stock Movement Prediction
Authors: Zane Turner, Kevin Labille, Susan Gauch
Abstract:
Sentiment analysis is a broad and expanding field that aims to extract and classify opinions from textual data. Lexicon-based approaches are based on the use of a sentiment lexicon, i.e., a list of words each mapped to a sentiment score, to rate the sentiment of a text chunk. Our work focuses on predicting stock price change using a sentiment lexicon built from financial conference call logs. We introduce a method to generate a sentiment lexicon based upon an existing probabilistic approach. By using a domain-specific lexicon, we outperform traditional techniques and demonstrate that domain-specific sentiment lexicons provide higher accuracy than generic sentiment lexicons when predicting stock price change.
Keywords: Computational finance, sentiment analysis, sentiment lexicon, stock movement prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11462557 Prediction the Limiting Drawing Ratio in Deep Drawing Process by Back Propagation Artificial Neural Network
Authors: H.Mohammadi Majd, M.Jalali Azizpour, M. Goodarzi
Abstract:
In this paper back-propagation artificial neural network (BPANN) with Levenberg–Marquardt algorithm is employed to predict the limiting drawing ratio (LDR) of the deep drawing process. To prepare a training set for BPANN, some finite element simulations were carried out. die and punch radius, die arc radius, friction coefficient, thickness, yield strength of sheet and strain hardening exponent were used as the input data and the LDR as the specified output used in the training of neural network. As a result of the specified parameters, the program will be able to estimate the LDR for any new given condition. Comparing FEM and BPANN results, an acceptable correlation was found.Keywords: BPANN, deep drawing, prediction, limiting drawingratio (LDR), Levenberg–Marquardt algorithm
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18592556 An Eulerian Numerical Method and its Application to Explosion Problems
Authors: Li Hao, Yan Zhang, Jingan Cui
Abstract:
The Eulerian numerical method is proposed to analyze the explosion in tunnel. Based on this method, an original software M-MMIC2D is developed by Cµ program language. With this software, the explosion problem in the tunnel with three expansion-chambers is numerically simulated, and the results are found to be in full agreement with the observed experimental data.Keywords: Eulerian method, numerical simulation, shock wave, tunnel
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14622555 Application of EEG Wavelet Power to Prediction of Antidepressant Treatment Response
Authors: Dorota Witkowska, Paweł Gosek, Lukasz Swiecicki, Wojciech Jernajczyk, Bruce J. West, Miroslaw Latka
Abstract:
In clinical practice, the selection of an antidepressant often degrades to lengthy trial-and-error. In this work we employ a normalized wavelet power of alpha waves as a biomarker of antidepressant treatment response. This novel EEG metric takes into account both non-stationarity and intersubject variability of alpha waves. We recorded resting, 19-channel EEG (closed eyes) in 22 inpatients suffering from unipolar (UD, n=10) or bipolar (BD, n=12) depression. The EEG measurement was done at the end of the short washout period which followed previously unsuccessful pharmacotherapy. The normalized alpha wavelet power of 11 responders was markedly different than that of 11 nonresponders at several, mostly temporoparietal sites. Using the prediction of treatment response based on the normalized alpha wavelet power, we achieved 81.8% sensitivity and 81.8% specificity for channel T4.
Keywords: Alpha waves, antidepressant, treatment outcome, wavelet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19782554 Analysis and Prediction of the Behavior of the Landslide at Ain El Hammam, Algeria Based on the Second Order Work Criterion
Authors: Zerarka Hizia, Akchiche Mustapha, Prunier Florent
Abstract:
The landslide of Ain El Hammam (AEH) is characterized by a complex geology and a high hydrogeology hazard. AEH's perpetual reactivation compels us to look closely at its triggers and to better understand the mechanisms of its evolution in mass and in depth. This study builds a numerical model to simulate the influencing factors such as precipitation, non-saturation, and pore pressure fluctuations, using Plaxis software. For a finer analysis of instabilities, we use Hill's criterion, based on the sign of the second order work, which is the most appropriate material stability criterion for non-associated elastoplastic materials. The results of this type of calculation allow us, in theory, to predict the shape and position of the slip surface(s) which are liable to ground movements of the slope, before reaching the rupture given by the plastic limit of Mohr Coulomb. To validate the numerical model, an analysis of inclinometer measures is performed to confirm the direction of movement and kinematic of the sliding mechanism of AEH’s slope.Keywords: Landslide, second order work, precipitation, inclinometers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11222553 Induction Heating Process Design Using Comsol® Multiphysics Software Version 4.2a
Authors: K. Djellabi, M. E. H. Latreche
Abstract:
Induction heating computer simulation is a powerful tool for process design and optimization, induction coil design, equipment selection, as well as education and business presentations. The authors share their vast experience in the practical use of computer simulation for different induction heating and heat treating processes. In this paper treated with mathematical modeling and numerical simulation of induction heating furnaces with axisymmetric geometries for the numerical solution, we propose finite element methods combined with boundary (FEM) for the electromagnetic model using COMSOL® Multiphysics Software. Some numerical results for an industrial furnace are shown with high frequency.
Keywords: Numerical methods, Induction furnaces, Induction Heating, Finite element method, Comsol Multiphysics software.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 80622552 Movie Genre Preference Prediction Using Machine Learning for Customer-Based Information
Authors: Haifeng Wang, Haili Zhang
Abstract:
Most movie recommendation systems have been developed for customers to find items of interest. This work introduces a predictive model usable by small and medium-sized enterprises (SMEs) who are in need of a data-based and analytical approach to stock proper movies for local audiences and retain more customers. We used classification models to extract features from thousands of customers’ demographic, behavioral and social information to predict their movie genre preference. In the implementation, a Gaussian kernel support vector machine (SVM) classification model and a logistic regression model were established to extract features from sample data and their test error-in-sample were compared. Comparison of error-out-sample was also made under different Vapnik–Chervonenkis (VC) dimensions in the machine learning algorithm to find and prevent overfitting. Gaussian kernel SVM prediction model can correctly predict movie genre preferences in 85% of positive cases. The accuracy of the algorithm increased to 93% with a smaller VC dimension and less overfitting. These findings advance our understanding of how to use machine learning approach to predict customers’ preferences with a small data set and design prediction tools for these enterprises.Keywords: Computational social science, movie preference, machine learning, SVM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16622551 A Fuzzy Predictive Filter for Sinusoidal Signals with Time-Varying Frequencies
Authors: X. Z. Gao, S. J. Ovaska, X. Wang
Abstract:
Prediction of sinusoidal signals with time-varying frequencies has been an important research topic in power electronics systems. To solve this problem, we propose a new fuzzy predictive filtering scheme, which is based on a Finite Impulse Response (FIR) filter bank. Fuzzy logic is introduced here to provide appropriate interpolation of individual filter outputs. Therefore, instead of regular 'hard' switching, our method has the advantageous 'soft' switching among different filters. Simulation comparisons between the fuzzy predictive filtering and conventional filter bank-based approach are made to demonstrate that the new scheme can achieve an enhanced prediction performance for slowly changing sinusoidal input signals.Keywords: Predictive filtering, fuzzy logic, sinusoidal signals, time-varying frequencies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14992550 An Algorithm for Determining the Arrival Behavior of a Secondary User to a Base Station in Cognitive Radio Networks
Authors: Danilo López, Edwin Rivas, Leyla López
Abstract:
This paper presents the development of an algorithm that predicts the arrival of a secondary user (SU) to a base station (BS) in a cognitive network based on infrastructure, requesting a Best Effort (BE) or Real Time (RT) type of service with a determined bandwidth (BW) implementing neural networks. The algorithm dynamically uses a neural network construction technique using the geometric pyramid topology and trains a Multilayer Perceptron Neural Networks (MLPNN) based on the historical arrival of an SU to estimate future applications. This will allow efficiently managing the information in the BS, since it precedes the arrival of the SUs in the stage of selection of the best channel in CRN. As a result, the software application determines the probability of arrival at a future time point and calculates the performance metrics to measure the effectiveness of the predictions made.
Keywords: Cognitive radio, MLPNN, base station, prediction, best effort, real time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14492549 Review and Comparison of Associative Classification Data Mining Approaches
Authors: Suzan Wedyan
Abstract:
Associative classification (AC) is a data mining approach that combines association rule and classification to build classification models (classifiers). AC has attracted a significant attention from several researchers mainly because it derives accurate classifiers that contain simple yet effective rules. In the last decade, a number of associative classification algorithms have been proposed such as Classification based Association (CBA), Classification based on Multiple Association Rules (CMAR), Class based Associative Classification (CACA), and Classification based on Predicted Association Rule (CPAR). This paper surveys major AC algorithms and compares the steps and methods performed in each algorithm including: rule learning, rule sorting, rule pruning, classifier building, and class prediction.
Keywords: Associative Classification, Classification, Data Mining, Learning, Rule Ranking, Rule Pruning, Prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 66432548 Dynamic Mesh Based Airfoil Design Optimization
Authors: Zhu Xiong-feng, Hou Zhong-xi, Guo Zheng, Liu Zhao-Wei
Abstract:
A method of dynamic mesh based airfoil optimization is proposed according to the drawbacks of surrogate model based airfoil optimization. Programs are designed to achieve the dynamic mesh. Boundary condition is add by integrating commercial software Pointwise, meanwhile the CFD calculation is carried out by commercial software Fluent. The data exchange and communication between the software and programs referred above have been accomplished, and the whole optimization process is performed in iSIGHT platform. A simplified airfoil optimization study case is brought out to show that aerodynamic performances of airfoil have been significantly improved, even save massive repeat operations and increase the robustness and credibility of the optimization result. The case above proclaims that dynamic mesh based airfoil optimization is an effective and high efficient method.
Keywords: unmanned air vehicles, dynamic mesh, airfoil optimization, CFD, genetic algorithm
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34162547 Prototype of Business Directory for Micro, Small and Medium Enterprises Using Google Maps API and Multimedia
Authors: Suselo Thomas, Suyoto, Dwiandiyanta B. Yudi
Abstract:
This paper explain about prototype of a business directory for micro-scale businesses, small and medium enterprises (SMEs), the third phase of the research. The third phase is the phase of software development based on the model of SME business directory that had been developed, to create prototype software SME business directory. In the fourth phase, namely the implementation, these units have been developed are tested to obtain input from potential users. The fifth phase is the testing phase to determine the strengths and weaknesses of software has been developed. The result of this phase is the software in the form of on-line (web based) and multimedia-based. Business Directory, if implemented will facilitate and optimize the access of SMEs to ease supplier access to marketing. Business Directory will be equipped with the power of geocoding, so each location can be easily viewed SMEs on the map. The map will be constructed by using the functionality of a web-based Google Maps API. The information presented in the form of multimedia that can be more interesting and interactive. Methodology used to achieve the goal: observation, interviews, modeling and classifying business directory for SMEs.
Keywords: Business directories, SMEs, Google Maps API, Multimedia, Prototype.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21412546 Selecting Negative Examples for Protein-Protein Interaction
Authors: Mohammad Shoyaib, M. Abdullah-Al-Wadud, Oksam Chae
Abstract:
Proteomics is one of the largest areas of research for bioinformatics and medical science. An ambitious goal of proteomics is to elucidate the structure, interactions and functions of all proteins within cells and organisms. Predicting Protein-Protein Interaction (PPI) is one of the crucial and decisive problems in current research. Genomic data offer a great opportunity and at the same time a lot of challenges for the identification of these interactions. Many methods have already been proposed in this regard. In case of in-silico identification, most of the methods require both positive and negative examples of protein interaction and the perfection of these examples are very much crucial for the final prediction accuracy. Positive examples are relatively easy to obtain from well known databases. But the generation of negative examples is not a trivial task. Current PPI identification methods generate negative examples based on some assumptions, which are likely to affect their prediction accuracy. Hence, if more reliable negative examples are used, the PPI prediction methods may achieve even more accuracy. Focusing on this issue, a graph based negative example generation method is proposed, which is simple and more accurate than the existing approaches. An interaction graph of the protein sequences is created. The basic assumption is that the longer the shortest path between two protein-sequences in the interaction graph, the less is the possibility of their interaction. A well established PPI detection algorithm is employed with our negative examples and in most cases it increases the accuracy more than 10% in comparison with the negative pair selection method in that paper.Keywords: Interaction graph, Negative training data, Protein-Protein interaction, Support vector machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17062545 Taguchi-Based Surface Roughness Optimization for Slotted and Tapered Cylindrical Products in Milling and Turning Operations
Authors: Vineeth G. Kuriakose, Joseph C. Chen, Ye Li
Abstract:
The research follows a systematic approach to optimize the parameters for parts machined by turning and milling processes. The quality characteristic chosen is surface roughness since the surface finish plays an important role for parts that require surface contact. A tapered cylindrical surface is designed as a test specimen for the research. The material chosen for machining is aluminum alloy 6061 due to its wide variety of industrial and engineering applications. HAAS VF-2 TR computer numerical control (CNC) vertical machining center is used for milling and HAAS ST-20 CNC machine is used for turning in this research. Taguchi analysis is used to optimize the surface roughness of the machined parts. The L9 Orthogonal Array is designed for four controllable factors with three different levels each, resulting in 18 experimental runs. Signal to Noise (S/N) Ratio is calculated for achieving the specific target value of 75 ± 15 µin. The controllable parameters chosen for turning process are feed rate, depth of cut, coolant flow and finish cut and for milling process are feed rate, spindle speed, step over and coolant flow. The uncontrollable factors are tool geometry for turning process and tool material for milling process. Hypothesis testing is conducted to study the significance of different uncontrollable factors on the surface roughnesses. The optimal parameter settings were identified from the Taguchi analysis and the process capability Cp and the process capability index Cpk were improved from 1.76 and 0.02 to 3.70 and 2.10 respectively for turning process and from 0.87 and 0.19 to 3.85 and 2.70 respectively for the milling process. The surface roughnesses were improved from 60.17 µin to 68.50 µin, reducing the defect rate from 52.39% to 0% for the turning process and from 93.18 µin to 79.49 µin, reducing the defect rate from 71.23% to 0% for the milling process. The purpose of this study is to efficiently utilize the Taguchi design analysis to improve the surface roughness.
Keywords: CNC milling, CNC turning, surface roughness, Taguchi analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7562544 Channel Sounding and PAPR Reduction in OFDM for WiMAX Using Software Defined Radio
Authors: B. Siva Kumar Reddy, B. Lakshmi
Abstract:
This paper addresses the reduction of peak to average power ratio (PAPR) for the OFDM in Mobile-WiMAX physical layer (PHY) standard. In the process, the best achievable PAPR of 0 dB is found for the OFDM spectrum using phase modulation technique which avoids the nonlinear distortion. The performance of the WiMAX PHY standard is handled by the software defined radio (SDR) prototype in which GNU Radio and USRP N210 employed as software and hardware platforms respectively. It is also found that BER performance is shown for different coding and different modulation schemes. To empathize wireless propagation in specific environments, a sliding correlator wireless channel sounding system is designed by using SDR testbed.
Keywords: BER, Channel sounding, GNU Radio, OFDM/OFDMA, USRP N210.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32442543 A Generic e-Tutor for Graphical Problems
Authors: B.W. Field
Abstract:
For a variety of safety and economic reasons, engineering undergraduates in Australia have experienced diminishing access to the real hardware that is typically the embodiment of their theoretical studies. This trend will delay the development of practical competence, decrease the ability to model and design, and suppress motivation. The author has attempted to address this concern by creating a software tool that contains both photographic images of real machinery, and sets of graphical modeling 'tools'. Academics from a range of disciplines can use the software to set tutorial tasks, and incorporate feedback comments for a range of student responses. An evaluation of the software demonstrated that students who had solved modeling problems with the aid of the electronic tutor performed significantly better in formal examinations with similar problems. The 2-D graphical diagnostic routines in the Tutor have the potential to be used in a wider range of problem-solving tasks.
Keywords: CAL, graphics, modeling, structural distillation, tutoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14202542 Effect of Oxygen on Biochar Yield and Properties
Authors: Ramlan Zailani, Halim Ghafar, Mohamad Sofian So'aib
Abstract:
Air infiltration in mass scale industrial applications of bio char production is inevitable. The presence of oxygen during the carbonization process is detrimental to the production of biochar yield and properties. The experiment was carried out on several wood species in a fixed-bed pyrolyser under various fractions of oxygen ranging from 0% to 11% by varying nitrogen and oxygen composition in the pyrolysing gas mixtures at desired compositions. The bed temperature and holding time were also varied. Process optimization was carried out by Response Surface Methodology (RSM) by employing Central Composite Design (CCD) using Design Expert 6.0 Software. The effect of oxygen ratio and holding time on biochar yield within the range studied were statistically significant. From the analysis result, optimum condition of 15.2% biochar yield of mangrove wood was predicted at pyrolysis temperature of 403 oC, oxygen percentage of 2.3% and holding time of two hours. This prediction agreed well with the experiment finding of 15.1% biochar yield.Keywords: Mangrove wood, slow pyrolysis, oxygen infiltration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34512541 Quantification of Aerodynamic Variables Using Analytical Technique and Computational Fluid Dynamics
Authors: Adil Loya, Kamran Maqsood, Muhammad Duraid
Abstract:
Aerodynamic stability coefficients are necessary to be known before any unmanned aircraft flight is performed. This requires expertise on aerodynamics and stability control of the aircraft. To enable efficacious performance of aircraft requires that a well-defined flight path and aerodynamics should be defined beforehand. This paper presents a study on the aerodynamics of an unmanned aero vehicle (UAV) during flight conditions. Current research holds comparative studies of different parameters for flight aerodynamic, measured using two different open source analytical software programs. These software packages are DATCOM and XLRF5, which help in depicting the flight aerodynamic variables. Computational fluid dynamics (CFD) was also used to perform aerodynamic analysis for which Star CCM+ was used. Output trends of the study demonstrate high accuracies between the two software programs with that of CFD. It can be seen that the Coefficient of Lift (CL) obtained from DATCOM and XFLR is similar to CL of CFD simulation. In the similar manner, other potential aerodynamic stability parameters obtained from analytical software are in good agreement with CFD.
Keywords: XFLR5, DATCOM, computational fluid dynamic, unmanned aero vehicle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8892540 Learning to Recommend with Negative Ratings Based on Factorization Machine
Authors: Caihong Sun, Xizi Zhang
Abstract:
Rating prediction is an important problem for recommender systems. The task is to predict the rating for an item that a user would give. Most of the existing algorithms for the task ignore the effect of negative ratings rated by users on items, but the negative ratings have a significant impact on users’ purchasing decisions in practice. In this paper, we present a rating prediction algorithm based on factorization machines that consider the effect of negative ratings inspired by Loss Aversion theory. The aim of this paper is to develop a concave and a convex negative disgust function to evaluate the negative ratings respectively. Experiments are conducted on MovieLens dataset. The experimental results demonstrate the effectiveness of the proposed methods by comparing with other four the state-of-the-art approaches. The negative ratings showed much importance in the accuracy of ratings predictions.
Keywords: Factorization machines, feature engineering, negative ratings, recommendation systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9512539 Prediction of Cutting Tool Life in Drilling of Reinforced Aluminum Alloy Composite Using a Fuzzy Method
Authors: Mohammed T. Hayajneh
Abstract:
Machining of Metal Matrix Composites (MMCs) is very significant process and has been a main problem that draws many researchers to investigate the characteristics of MMCs during different machining process. The poor machining properties of hard particles reinforced MMCs make drilling process a rather interesting task. Unlike drilling of conventional materials, many problems can be seriously encountered during drilling of MMCs, such as tool wear and cutting forces. Cutting tool wear is a very significant concern in industries. Cutting tool wear not only influences the quality of the drilled hole, but also affects the cutting tool life. Prediction the cutting tool life during drilling is essential for optimizing the cutting conditions. However, the relationship between tool life and cutting conditions, tool geometrical factors and workpiece material properties has not yet been established by any machining theory. In this research work, fuzzy subtractive clustering system has been used to model the cutting tool life in drilling of Al2O3 particle reinforced aluminum alloy composite to investigate of the effect of cutting conditions on cutting tool life. This investigation can help in controlling and optimizing of cutting conditions when the process parameters are adjusted. The built model for prediction the tool life is identified by using drill diameter, cutting speed, and cutting feed rate as input data. The validity of the model was confirmed by the examinations under various cutting conditions. Experimental results have shown the efficiency of the model to predict cutting tool life.
Keywords: Composite, fuzzy, tool life, wear.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20952538 A New History Based Method to Handle the Recurring Concept Shifts in Data Streams
Authors: Hossein Morshedlou, Ahmad Abdollahzade Barforoush
Abstract:
Recent developments in storage technology and networking architectures have made it possible for broad areas of applications to rely on data streams for quick response and accurate decision making. Data streams are generated from events of real world so existence of associations, which are among the occurrence of these events in real world, among concepts of data streams is logical. Extraction of these hidden associations can be useful for prediction of subsequent concepts in concept shifting data streams. In this paper we present a new method for learning association among concepts of data stream and prediction of what the next concept will be. Knowing the next concept, an informed update of data model will be possible. The results of conducted experiments show that the proposed method is proper for classification of concept shifting data streams.Keywords: Data Stream, Classification, Concept Shift, History.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12832537 An Investigation into the Application of Artificial Neural Networks to the Prediction of Injuries in Sport
Authors: J. McCullagh, T. Whitfort
Abstract:
Artificial Neural Networks (ANNs) have been used successfully in many scientific, industrial and business domains as a method for extracting knowledge from vast amounts of data. However the use of ANN techniques in the sporting domain has been limited. In professional sport, data is stored on many aspects of teams, games, training and players. Sporting organisations have begun to realise that there is a wealth of untapped knowledge contained in the data and there is great interest in techniques to utilise this data. This study will use player data from the elite Australian Football League (AFL) competition to train and test ANNs with the aim to predict the onset of injuries. The results demonstrate that an accuracy of 82.9% was achieved by the ANNs’ predictions across all examples with 94.5% of all injuries correctly predicted. These initial findings suggest that ANNs may have the potential to assist sporting clubs in the prediction of injuries.Keywords: Artificial Neural Networks, data, injuries, sport
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29052536 Grid-HPA: Predicting Resource Requirements of a Job in the Grid Computing Environment
Authors: M. Bohlouli, M. Analoui
Abstract:
For complete support of Quality of Service, it is better that environment itself predicts resource requirements of a job by using special methods in the Grid computing. The exact and correct prediction causes exact matching of required resources with available resources. After the execution of each job, the used resources will be saved in the active database named "History". At first some of the attributes will be exploit from the main job and according to a defined similarity algorithm the most similar executed job will be exploited from "History" using statistic terms such as linear regression or average, resource requirements will be predicted. The new idea in this research is based on active database and centralized history maintenance. Implementation and testing of the proposed architecture results in accuracy percentage of 96.68% to predict CPU usage of jobs and 91.29% of memory usage and 89.80% of the band width usage.
Keywords: Active Database, Grid Computing, ResourceRequirement Prediction, Scheduling,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14362535 Feature Selection Approaches with Missing Values Handling for Data Mining - A Case Study of Heart Failure Dataset
Authors: N.Poolsawad, C.Kambhampati, J. G. F. Cleland
Abstract:
In this paper, we investigated the characteristic of a clinical dataseton the feature selection and classification measurements which deal with missing values problem.And also posed the appropriated techniques to achieve the aim of the activity; in this research aims to find features that have high effect to mortality and mortality time frame. We quantify the complexity of a clinical dataset. According to the complexity of the dataset, we proposed the data mining processto cope their complexity; missing values, high dimensionality, and the prediction problem by using the methods of missing value replacement, feature selection, and classification.The experimental results will extend to develop the prediction model for cardiology.Keywords: feature selection, missing values, classification, clinical dataset, heart failure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32212534 Development of a Software System for Management and Genetic Analysis of Biological Samples for Forensic Laboratories
Authors: Mariana Lima, Rodrigo Silva, Victor Stange, Teodiano Bastos
Abstract:
Due to the high reliability reached by DNA tests, since the 1980s this kind of test has allowed the identification of a growing number of criminal cases, including old cases that were unsolved, now having a chance to be solved with this technology. Currently, the use of genetic profiling databases is a typical method to increase the scope of genetic comparison. Forensic laboratories must process, analyze, and generate genetic profiles of a growing number of samples, which require time and great storage capacity. Therefore, it is essential to develop methodologies capable to organize and minimize the spent time for both biological sample processing and analysis of genetic profiles, using software tools. Thus, the present work aims the development of a software system solution for laboratories of forensics genetics, which allows sample, criminal case and local database management, minimizing the time spent in the workflow and helps to compare genetic profiles. For the development of this software system, all data related to the storage and processing of samples, workflows and requirements that incorporate the system have been considered. The system uses the following software languages: HTML, CSS, and JavaScript in Web technology, with NodeJS platform as server, which has great efficiency in the input and output of data. In addition, the data are stored in a relational database (MySQL), which is free, allowing a better acceptance for users. The software system here developed allows more agility to the workflow and analysis of samples, contributing to the rapid insertion of the genetic profiles in the national database and to increase resolution of crimes. The next step of this research is its validation, in order to operate in accordance with current Brazilian national legislation.
Keywords: Database, forensic genetics, genetic analysis, sample management, software solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11782533 Parameter Sensitivity Analysis of Artificial Neural Network for Predicting Water Turbidity
Authors: Chia-Ling Chang, Chung-Sheng Liao
Abstract:
The present study focuses on the discussion over the parameter of Artificial Neural Network (ANN). Sensitivity analysis is applied to assess the effect of the parameters of ANN on the prediction of turbidity of raw water in the water treatment plant. The result shows that transfer function of hidden layer is a critical parameter of ANN. When the transfer function changes, the reliability of prediction of water turbidity is greatly different. Moreover, the estimated water turbidity is less sensitive to training times and learning velocity than the number of neurons in the hidden layer. Therefore, it is important to select an appropriate transfer function and suitable number of neurons in the hidden layer in the process of parameter training and validation.Keywords: Artificial Neural Network (ANN), sensitivity analysis, turbidity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28202532 Combining the Deep Neural Network with the K-Means for Traffic Accident Prediction
Authors: Celso L. Fernando, Toshio Yoshii, Takahiro Tsubota
Abstract:
Understanding the causes of a road accident and predicting their occurrence is key to prevent deaths and serious injuries from road accident events. Traditional statistical methods such as the Poisson and the Logistics regressions have been used to find the association of the traffic environmental factors with the accident occurred; recently, an artificial neural network, ANN, a computational technique that learns from historical data to make a more accurate prediction, has emerged. Although the ability to make accurate predictions, the ANN has difficulty dealing with highly unbalanced attribute patterns distribution in the training dataset; in such circumstances, the ANN treats the minority group as noise. However, in the real world data, the minority group is often the group of interest; e.g., in the road traffic accident data, the events of the accident are the group of interest. This study proposes a combination of the k-means with the ANN to improve the predictive ability of the neural network model by alleviating the effect of the unbalanced distribution of the attribute patterns in the training dataset. The results show that the proposed method improves the ability of the neural network to make a prediction on a highly unbalanced distributed attribute patterns dataset; however, on an even distributed attribute patterns dataset, the proposed method performs almost like a standard neural network.
Keywords: Accident risks estimation, artificial neural network, deep learning, K-mean, road safety.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 991