Search results for: Water absorption
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2679

Search results for: Water absorption

2109 Application of Build-up and Wash-off Models for an East-Australian Catchment

Authors: Iqbal Hossain, Monzur Alam Imteaz, Mohammed Iqbal Hossain

Abstract:

Estimation of stormwater pollutants is a pre-requisite for the protection and improvement of the aquatic environment and for appropriate management options. The usual practice for the stormwater quality prediction is performed through water quality modeling. However, the accuracy of the prediction by the models depends on the proper estimation of model parameters. This paper presents the estimation of model parameters for a catchment water quality model developed for the continuous simulation of stormwater pollutants from a catchment to the catchment outlet. The model is capable of simulating the accumulation and transportation of the stormwater pollutants; suspended solids (SS), total nitrogen (TN) and total phosphorus (TP) from a particular catchment. Rainfall and water quality data were collected for the Hotham Creek Catchment (HTCC), Gold Coast, Australia. Runoff calculations from the developed model were compared with the calculated discharges from the widely used hydrological models, WBNM and DRAINS. Based on the measured water quality data, model water quality parameters were calibrated for the above-mentioned catchment. The calibrated parameters are expected to be helpful for the best management practices (BMPs) of the region. Sensitivity analyses of the estimated parameters were performed to assess the impacts of the model parameters on overall model estimations of runoff water quality.

Keywords: Calibration, Model Parameters, Suspended Solids, TotalNitrogen, Total Phosphorus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2184
2108 Experimental Challenges and Solutions in Design and Operation of the Test Rig for Water Lubricated Journal Bearing

Authors: Ravindra Mallya, B. Satish Shenoy, B. Raghuvir Pai

Abstract:

The study deals with the challenges in developing a test rig to test the performance of water lubricated journal bearing. The test rig is designed to simulate the working conditions of the bearing in order to understand their performance before they are put in operation. The bearing that is studied is the commercially available water lubricated bearing which has a rubber liner bonded with a rigid metal shell. The lubricant enters the bearing axially through a pressurized inlet tank and exits to an outlet tank which is at sufficiently low pressure. The load on the bearing is applied through the dead weight system which acts both in upward and downward direction so that net load acts on the bearing. The issues in feeding the lubricant into the bearing from the inlet side and preventing the leakage of the lubricant is discussed. The application of the load on the test bearing while maintaining the bearing afloat is also discussed.

Keywords: Axial groove, hydrodynamic pressure, journal bearing, test rig, water lubrication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2654
2107 A Study on Polymer Coated Colour Pigments for Water-Based Ink

Authors: T. K N. Hoang, P. A. Tuan, R. Finsy, L. Deriemaeker

Abstract:

The pigments covered by film-forming polymers have opened a prospect to improve the quality of water-based printing inks. In this study such pigments were prepared by the initiated polymerization of styrene and methacrylate derivative monomers in the aqueous pigment dispersions. The formation of polymer films covering pigment cores depends on the polymerization time and the ratio of pigment to monomers. At the time of 4 hours and the ratio of 1/10 almost pigment particles are coated by the polymer. The formed polymer covers of pigments have the average thickness of 5.95 nm. The size increasing percentage of the coated particles after a week is 4.5 %, about fourteen-fold lower than of the original ones. The obtained results indicate that the coated pigments are improved dispersion stability in water medium along with a guarantee for the optical colour.

Keywords: Aqueous pigment dispersion stability, colored resin particles, emulsion polymerization, water based ink.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2244
2106 Achieving Sustainable Agriculture with Treated Municipal Wastewater

Authors: Reshu Yadav, Himanshu Joshi, S. K.Tripathi

Abstract:

A pilot field study was conducted at the Jagjeetpur Municipal Sewage treatment plant situated in the Haridwar town in Uttarakhand state, India. The objectives of the present study were to study the effect of treated wastewater on the production of various paddy varieties (Sharbati, PR-114, PB-1, Menaka, PB1121 and PB 1509) and the emission of GHG gases (CO2, CH4 and N2O) as compared to the same varieties grown in the control plots irrigated with fresh water. Of late, the concept of water footprint assessment has emerged, which explains enumeration of various types of water footprints of an agricultural entity from its production to processing stages. Paddy, the most water demanding staple crop of Uttarakhand state, displayed a high green water footprint value of 2474.12 m3/ Ton. Most of the wastewater irrigated varieties displayed up to 6% increase in production, except Menaka and PB-1121, which showed a reduction in production (6% and 3% respectively), due to pest and insect infestation. The treated wastewater was observed to be rich in Nitrogen (55.94 mg/ml Nitrate), Phosphorus (54.24 mg/ml) and Potassium (9.78 mg/ml), thus rejuvenating the soil quality and not requiring any external nutritional supplements. A Percentage increase of GHG gases of irrigation with treated municipal wastewater as compared to control plots was observed as 0.4% - 8.6% (CH4), 1.1% - 9.2% (CO2), and 0.07% - 5.8% (N2O). The variety, Sharbati, displayed maximum production (5.5 ton/ha) and emerged as the most resistant variety against pests and insects. The emission values of CH4, CO2 and N2O were 729.31 mg/m2/d, 322.10 mg/m2/d and 400.21 mg/m2/d in water stagnant condition. This study highlighted a successful possibility of reuse of wastewater for non-potable purposes offering the potential for exploiting this resource that can replace or reduce the existing use of fresh water sources in agriculture sector.

Keywords: Greenhouse gases, nutrients, water footprint, wastewater irrigation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1863
2105 Comparative Study of Drip and Furrow Irrigation Methods at Farmer-s Field in Umarkot

Authors: A. Tagar, F. A. Chandio, I. A. Mari, B. Wagan

Abstract:

An experiment was conducted on the comparative study of drip and furrow irrigation methods at the farmer-s field in Umar Kot. The total area under experiment about 4000m2 was divided into two equal portions. One portion about 40m X 50m was occupied by drip and the other portion about 40m X 50m by furrow irrigation method. Soil at the experimental site was clay loam in texture for 0-60cm depth; average dry bulk density and field capacity was 1.16g/cm3 and 28.5% respectively. The results reveal that the drip irrigation method saved 56.4% water and gave 22% more yield as compared to that of furrow irrigation method. Higher water use efficiency about 4.87 was obtained in drip irrigation method; whereas lower water used efficiency about 1.66 was obtained in furrow irrigation method. The present study suggests farming community to adopt drip irrigation method instead of old traditional flooding methods.

Keywords: Drip and furrow irrigations methods, water saving, yield of tomato crop.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5572
2104 BER Performance of NLOS Underwater Wireless Optical Communication with Multiple Scattering

Authors: V. K. Jagadeesh, K. V. Naveen, P. Muthuchidambaranathan

Abstract:

Recently, there is a lot of interest in the field of under water optical wireless communication for short range because of its high bandwidth. But in most of the previous works line of sight propagation or single scattering of photons only considered. In practical case this is not applicable because of beam blockage in underwater and multiple scattering also occurred during the photons propagation through water. In this paper we consider a non-line of sight underwater wireless optical communication system with multiple scattering and examine the performance of the system using monte carlo simulation. The distribution scattering angle of photons are modeled by Henyey-Greenstein method. The average bit error rate is calculated using on-off keying modulation for different water types.

Keywords: Non line of sight under Water optical wireless communication, Henyey-Greenstein model, Multiple scattering, Monte-Carlo simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2841
2103 Multi-Walled Carbon Nanotubes/Polyacrylonitrile Composite as Novel Semi-Permeable Mixed Matrix Membrane in Reverse Osmosis Water Treatment Process

Authors: M. M. Doroodmand, Z.Tahvildar, M. H.Sheikhi

Abstract:

novel and simple method is introduced for rapid and highly efficient water treatment by reverse osmosis (RO) method using multi-walled carbon nanotubes (MWCNTs) / polyacrylonitrile (PAN) polymer as a flexible, highly efficient, reusable and semi-permeable mixed matrix membrane (MMM). For this purpose, MWCNTs were directly synthesized and on-line purified by chemical vapor deposition (CVD) process, followed by directing the MWCNT bundles towards an ultrasonic bath, in which PAN polymer was simultaneously suspended inside a solid porous silica support in water at temperature to ~70 οC. Fabrication process of MMM was finally completed by hot isostatic pressing (HIP) process. In accordance with the analytical figures of merit, the efficiency of fabricated MMM was ~97%. The rate of water treatment process was also evaluated to 6.35 L min-1. The results reveal that, the CNT-based MMM is suitable for rapid treatment of different forms of industrial, sea, drinking and well water samples.

Keywords: Mixed Matrix Membrane, Carbon Nanostructures, Chemical Vapour Deposition, Hot Isostatic Pressing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2211
2102 Investigation of Water Deficit Stress on Agronomical Traits of Soybean Cultivars in Temperate Climate

Authors: Jahanfar Daneshian, P. Jonoubi, D. Barari Tari

Abstract:

In order to investigate water deficit stress on 24 of soybean (Glycine Max. L) cultivars and lines in temperate climate, an experiment was conducted in Iran Seed and Plant Improvement Institute. Stress levels were irrigation after evaporation of 50, 100, 150 mm water from pan, class A. Randomized Completely Block Design was arranged for each stress levels. Some traits such as, node number, plant height, pod number per area, grain number per pod, grain number per area, 1000 grains weight, grain yield and harvest index were measured. Results showed that water deficit stress had significant effect on node number, plant height, pod number per area, grain number per pod, grain number per area, 1000 grains weight and harvest index. Also all of agronomic traits except harvest index influenced significantly by cultivars and lines. The least and most grain yield was belonged to Ronak X Williams and M41 x Clark respectively.

Keywords: Soybean, water deficit stress, Agronomic traits, Yield

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1654
2101 Numerical Investigation of the Optimal Spatial Domain Discretization for the 2-D Analysis of a Darrieus Vertical-Axis Water Turbine

Authors: M. Raciti Castelli, S. De Betta, E. Benini

Abstract:

The optimal grid spacing and turbulence model for the 2D numerical analysis of a vertical-axis water turbine (VAWaterT) operating in a 2 m/s freestream current has been investigated. The results of five different spatial domain discretizations and two turbulence models (k-ω SST and k-ε RNG) have been compared, in order to gain the optimal y+ parameter distribution along the blade walls during a full rotor revolution. The resulting optimal mesh has appeared to be quite similar to that obtained for the numerical analysis of a vertical-axis wind turbine.

Keywords: CFD, vertical axis water turbine, NACA 0025, blade y+.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2052
2100 Influence of Metakaolin and Cements Types on Compressive Strength and Transport Properties of Self-Consolidating Concrete

Authors: Kianoosh Samimi, Farhad Estakhr, Mahdi Mahdikhani, Faramaz Moodi

Abstract:

The self-consolidating concrete (SCC) performance over ordinary concrete is generally related to the ingredients used. The metakaolin can modify various properties of concrete, due to high pozzolanic reactions and also makes a denser microstructure. The objective of this paper is to examine the influence of three types of Portland cement and metakaolin on compressive strength and transport properties of SCC at early ages and up to 90 days. Six concrete mixtures were prepared with three types of different cements and substitution of 15% metakaolin. The results show that the highest value of compressive strength was achieved for Portland Slag Cement (PSC) and without any metakaolin at age of 90 days. Conversely, the lowest level of compressive strength at all ages of conservation was obtained for Pozzolanic Portland Cement (PPC) and containing 15% metakaolin. As can be seen in the results, compressive strength in SCC containing Portland cement type II with metakaolin is higher compared to that relative to SCC without metakaolin from 28 days of age. On the other hand, the samples containing PSC and PPC with metakaolin had a lower compressive strength than the plain samples. Therefore, it can be concluded that metakaolin has a negative effect on the compressive strength of SCC containing PSC and PPC. In addition, results show that metakaolin has enhanced chloride durability of SCCs and reduced capillary water absorption at 28, 90 days.

Keywords: SCC, metakaolin, cement type, compressive strength, chloride diffusion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 896
2099 Viability Analysis of the Use of Solar Energy for Water Heating in Brazil

Authors: E. T. L. Cöuras Ford, V. A. C.Vale, J. U. L Mendes

Abstract:

The sun is an inexhaustible source and harness its potential both for heating and power generation is one of the most promising and necessary alternatives, mainly due to environmental issues. However, it should be noted that this has always been present in the generation of energy on earth, only indirectly, since it is responsible for virtually all other energy sources, such as generating source of evaporation of the water cycle, allowing the impoundment and the consequent generation of electricity (hydroelectric power); winds are caused by atmospheric induction caused by large scale solar radiation; petroleum, coal and natural gas were generated from waste plants and animals that originally derived energy required for their development of solar radiation. This paper presents a study on the feasibility of using solar energy for water heating in homes. A simplified methodology developed for formulation of solar heating operation model of water in alternative systems of solar energy in Brazil, and compared it to that in the international market. Across this research, it was possible to create new paradigms for alternative applications to the use of solar energy.

Keywords: Solar energy, solar heating, solar project.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1088
2098 Barrier Properties of Starch - Ethylene Vinyl Alcohol Nanocomposites

Authors: Farid Amidi-Fazli, Neda Amidi-Fazli

Abstract:

Replacement of plastics used in the food industry seems to be a serious issue to overcome mainly the environmental problems in recent years. This study investigates the hydrophilicity and permeability properties of starch biopolymer which ethylene vinyl alcohol (EVOH) (0-10%) and nanocrystalline cellulose (NCC) (1-15%) were used to enhance its properties. Starch -EVOH nanocomposites were prepared by casting method in different formulations. NCC production by acid hydrolysis was confirmed by scanning electron microscopy. Solubility, water vapor permeability, water vapor transmission rate and moisture absorbance were measured on each of the nanocomposites. The results were analyzed by SAS software. The lowest moisture absorbance was measured in pure starch nanocomposite containing 8% NCC. The lowest permeability to water vapor belongs to starch nanocomposite containing 8% NCC and the sample containing 7.8% EVOH and 13% NCC. Also the lowest solubility was observed in the composite contains the highest amount of EVOH. Applied Process resulted in production of bio films which have good resistance to water vapor permeability and solubility in water. The use of NCC and EVOH leads to reduced moisture absorbance property of the biofilms.

Keywords: Starch, EVOH, nanocrystalline cellulose, Hydrophilicity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2997
2097 Assessing Nutrient Concentration and Trophic Status of Brahma Sarover at Kurukshetra, India

Authors: Shailendra Kumar Patidar

Abstract:

Eutrophication of surface water is one of the most widespread environmental problems at present. Large number of pilgrims and tourists visit sacred artificial tank known as “Brahma Sarover” located at Kurukshetra, India to take holy dip and perform religious ceremonies. The sources of pollutants include impurities in feed water, mass bathing, religious offerings and windblown particulate matter. Studies so far have focused mainly on assessing water quality for bathing purpose by using physico-chemical and bacteriological parameters. No effort has been made to assess nutrient concentration and trophic status of the tank to take more appropriate measures for improving water quality on long term basis. In the present study, total nitrogen, total phosphorous and chlorophyll a measurements have been done to assess the nutrient level and trophic status of the tank. The results show presence of high concentration of nutrients and Chlorophyll a indicating mesotrophic and eutrophic state of the tank. Phosphorous has been observed as limiting nutrient in the tank water.

Keywords: Brahma Sarover, eutrophication, nutrients, trophic status.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2050
2096 Numerical Investigation of the Chilling of Food Products by Air-Mist Spray

Authors: Roy J. Issa

Abstract:

Spray chilling using air-mist nozzles has received much attention in the food processing industry because of the benefits it has shown over forced air convection. These benefits include an increase in the heat transfer coefficient and a reduction in the water loss by the product during cooling. However, few studies have simulated the heat transfer and aerodynamics phenomena of the air-mist chilling process for optimal operating conditions. The study provides insight into the optimal conditions for spray impaction, heat transfer efficiency and control of surface flooding. A computational fluid dynamics model using a two-phase flow composed of water droplets injected with air is developed to simulate the air-mist chilling of food products. The model takes into consideration droplet-to-surface interaction, water-film accumulation and surface runoff. The results of this study lead to a better understanding of the heat transfer enhancement, water conservation, and to a clear direction for the optimal design of air-mist chilling systems that can be used in commercial applications in the food and meat processing industries.

Keywords: Droplets impaction efficiency, Droplet size, Heat transfer enhancement factor, Water runoff.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1955
2095 Evaluation of Groundwater Quality and Its Suitability for Drinking and Agricultural Purposes Using Self-Organizing Maps

Authors: L. Belkhiri, L. Mouni, A. Tiri, T.S. Narany

Abstract:

In the present study, the self-organizing map (SOM) clustering technique was applied to identify homogeneous clusters of hydrochemical parameters in El Milia plain, Algeria, to assess the quality of groundwater for potable and agricultural purposes. The visualization of SOM-analysis indicated that 35 groundwater samples collected in the study area were classified into three clusters, which showed progressive increase in electrical conductivity from cluster one to cluster three. Samples belonging to cluster one are mostly located in the recharge zone showing hard fresh water type, however, water type gradually changed to hard-brackish type in the discharge zone, including clusters two and three. Ionic ratio studies indicated the role of carbonate rock dissolution in increases on groundwater hardness, especially in cluster one. However, evaporation and evapotranspiration are the main processes increasing salinity in cluster two and three.

Keywords: Drinking water, groundwater quality, irrigation water, self-organizing maps.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1248
2094 The Influence of using Compost Leachate on Soil Reaction

Authors: Ali Gholami, Shahram Ahmadi

Abstract:

In the area where the high quality water is not available, unconventional water sources are used to irrigate. Household leachate is one of the sources which are used in dry and semi dry areas in order to water the barer trees and plants. It meets the plants needs and also has some effects on the soil, but at the same time it might cause some problems as well. This study in order to evaluate the effect of using Compost leachate on the density of soil iron in form of a statistical pattern called ''Split Plot'' by using two main treatments, one subsidiary treatment and three repetitions of the pattern in a three month period. The main N treatments include: irrigation using well water as a blank treatments and the main I treatments include: irrigation using leachate and well water concurrently. Some subsidiary treatments were DI (Drop Irrigation) and SDI (Sub Drop Irrigation). Then in the established plots, 36 biannual pine and cypress shrubs were randomly grown. Two months later the treatment begins. The results revealed that there was a significant variation between the main treatment and the instance regarding pH decline in the soil which was related to the amount of leachate injected into the soil. After some time and using leachate the pH level fell, as much as 0.46 and also increased due to the great amounts of leachate. The underneath drop irrigation ends in better results than sub drop irrigation since it keeps the soil texture fixed.

Keywords: Compost Leachate, Drop irrigation, Soil Reaction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1927
2093 Hydrogen Generation by Accelerating Aluminum Corrosion in Water with Alumina

Authors: J. Skrovan, A. Alfantazi, T. Troczynski

Abstract:

For relatively small particles of aluminum (<60 μm), a measurable percentage of the aluminum (>5%) is observed to corrode before passivation occurs at moderate temperatures (>50oC) in de-ionized water within one hour. Physical contact with alumina powder results in a significant increase in both the rate of corrosion and the extent of corrosion before passivation. Whereas the resulting release of hydrogen gas could be of commercial interest for portable hydrogen supply systems, the fundamental aspects of Al corrosion acceleration in presence of dispersed alumina particles are equally important. This paper investigates the effects of various amounts of alumina on the corrosion rate of aluminum powders in water and the effect of multiple additions of aluminum into a single reactor.

Keywords: Alumina, Aluminum, Corrosion, Hydrogen

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2991
2092 Validation of the Linear Trend Estimation Technique for Prediction of Average Water and Sewerage Charge Rate Prices in the Czech Republic

Authors: Aneta Oblouková, Eva Vítková

Abstract:

The article deals with the issue of water and sewerage charge rate prices in the Czech Republic. The research is specifically focused on the analysis of the development of the average prices of water and sewerage charge rate in the Czech Republic in 1994-2021 and on the validation of the chosen methodology relevant for the prediction of the development of the average prices of water and sewerage charge rate in the Czech Republic. The research is based on data collection. The data for this research were obtained from the Czech Statistical Office. The aim of the paper is to validate the relevance of the mathematical linear trend estimate technique for the calculation of the predicted average prices of water and sewerage charge rates. The real values of the average prices of water and sewerage charge rates in the Czech Republic in 1994-2018 were obtained from the Czech Statistical Office and were converted into a mathematical equation. The same type of real data was obtained from the Czech Statistical Office for 2019-2021. Prediction of the average prices of water and sewerage charge rates in the Czech Republic in 2019-2021 was also calculated using a chosen method – a linear trend estimation technique. The values obtained from the Czech Statistical Office and the values calculated using the chosen methodology were subsequently compared. The research result is a validation of the chosen mathematical technique to be a suitable technique for this research.

Keywords: Czech Republic, linear trend estimation, price prediction, water and sewerage charge rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 210
2091 Water Immersion Recovery for Swimmers in Hot Environments

Authors: Thanura Abeywardena

Abstract:

This study recognized the effectiveness of cold-water immersion recovery post short-term exhaustive exercise. The purpose of this study was to understand if 16-20 °C of cold-water immersion would be beneficial in a tropical environment to achieve an optimal recovery in sprint swim performance in comparison to 10-15 °C of water immersion. Two 100 m-sprint swim performance times were measured along with blood lactate (BLa), heart rate (HR) and rate of perceived exertion (RPE) in a 25 m swimming pool with full body head out horizontal water immersions of 10-15 °C, 16-20 °C and 29-32 °C (pool temperature) for 10 minutes followed by 5 minutes of seated passive rest outside; in between the two swim performances. 10 well-trained adult swimmers (5 male and 5 female) within the top twenty in the Sri Lankan nationals swimming championships in 100m Butterfly and Freestyle in the years 2020 & 2021 volunteered for this study. One-way ANOVA analysis (p < 0.05) suggested performance time, BLa and HR had no significant differences between the three conditions after the second sprint, however RPE was significantly different with p = 0.034 between 10-15 °C and 16-20 °C immersion conditions. The study suggested that the recovery post the two cold-water immersion conditions were similar in terms of performance and physiological factors however the 16-20 °C temperature had a better “feel good” factor post sprint 2. Further study is recommended as there was participant bias with the swimmers not reaching optimal levels in sprint 1. Therefore, they might have been possibly fully recovered before sprint 2 invalidating the physiological effect of recovery.

Keywords: Hydrotherapy, blood lactate, fatigue, recovery, sprint-performance, sprint-swimming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 259
2090 Performance of Partially Covered N Number of Photovoltaic Thermal (PVT) - Compound Parabolic Concentrator (CPC) Series Connected Water Heating System

Authors: Rohit Tripathi, Sumit Tiwari, G. N. Tiwari

Abstract:

In present study, an approach is adopted where photovoltaic thermal flat plate collector is integrated with compound parabolic concentrator. Analytical expression of temperature dependent electrical efficiency of N number of partially covered Photovoltaic Thermal (PVT) - Compound Parabolic Concentrator (CPC) water collector connected in series has been derived with the help of basic thermal energy balance equations. Analysis has been carried for winter weather condition at Delhi location, India. Energy and exergy performance of N - partially covered Photovoltaic Thermal (PVT) - Compound Parabolic Concentrator (CPC) Water collector system has been compared for two cases: (i) 25% area of water collector covered by PV module, (ii) 75% area of water collector covered by PV module. It is observed that case (i) has been best suited for thermal performance and case (ii) for electrical energy as well as overall exergy.

Keywords: Compound parabolic concentrator, Energy, Photovoltaic thermal, Temperature dependent electrical efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1625
2089 Adsorption Capacities of Activated Carbons Prepared from Bamboo by KOH Activation

Authors: Samorn Hirunpraditkoon, Nathaporn Tunthong, Anotai Ruangchai, Kamchai Nuithitikul

Abstract:

The production of activated carbon from low or zero cost of agricultural by-products or wastes has received great attention from academics and practitioners due to its economic and environmental benefits. In the production of bamboo furniture, a significant amount of bamboo waste is inevitably generated. Therefore, this research aimed to prepare activated carbons from bamboo furniture waste by chemical (KOH) activation and determine their properties and adsorption capacities for water treatment. The influence of carbonization time on the properties and adsorption capacities of activated carbons was also investigated. The finding showed that the bamboo-derived activated carbons had microporous characteristics. They exhibited high tendency for the reduction of impurities present in effluent water. Their adsorption capacities were comparable to the adsorption capacity of a commercial activated carbon regarding to the reduction in COD, TDS and turbidity of the effluent water.

Keywords: Activated carbon, Bamboo, Water treatment, Chemical activation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5136
2088 A Mathematical Model for Predicting Isothermal Soil Moisture Profiles Using Finite Difference Method

Authors: Kasthurirangan Gopalakrishnan, Anshu Manik

Abstract:

Subgrade moisture content varies with environmental and soil conditions and has significant influence on pavement performance. Therefore, it is important to establish realistic estimates of expected subgrade moisture contents to account for the effects of this variable on predicted pavement performance during the design stage properly. The initial boundary soil suction profile for a given pavement is a critical factor in determining expected moisture variations in the subgrade for given pavement and climatic and soil conditions. Several numerical models have been developed for predicting water and solute transport in saturated and unsaturated subgrade soils. Soil hydraulic properties are required for quantitatively describing water and chemical transport processes in soils by the numerical models. The required hydraulic properties are hydraulic conductivity, water diffusivity, and specific water capacity. The objective of this paper was to determine isothermal moisture profiles in a soil fill and predict the soil moisture movement above the ground water table using a simple one-dimensional finite difference model.

Keywords: Fill, Hydraulic Conductivity, Pavement, Subgrade.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1874
2087 Reliability-Based Maintenance Management Methodology to Minimise Life Cycle Cost of Water Supply Networks

Authors: Mojtaba Mahmoodian, Joshua Phelan, Mehdi Shahparvari

Abstract:

With a large percentage of countries’ total infrastructure expenditure attributed to water network maintenance, it is essential to optimise maintenance strategies to rehabilitate or replace underground pipes before failure occurs. The aim of this paper is to provide water utility managers with a maintenance management approach for underground water pipes, subject to external loading and material corrosion, to give the lowest life cycle cost over a predetermined time period. This reliability-based maintenance management methodology details the optimal years for intervention, the ideal number of maintenance activities to perform before replacement and specifies feasible renewal options and intervention prioritisation to minimise the life cycle cost. The study was then extended to include feasible renewal methods by determining the structural condition index and potential for soil loss, then obtaining the failure impact rating to assist in prioritising pipe replacement. A case study on optimisation of maintenance plans for the Melbourne water pipe network is considered in this paper to evaluate the practicality of the proposed methodology. The results confirm that the suggested methodology can provide water utility managers with a reliable systematic approach to determining optimum maintenance plans for pipe networks.

Keywords: Water pipe networks, maintenance management, reliability analysis, optimum maintenance plan.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1257
2086 Measurement and Estimation of Evaporation from Water Surfaces: Application to Dams in Arid and Semi Arid Areas in Algeria

Authors: Malika Fekih, Mohamed Saighi

Abstract:

Many methods exist for either measuring or estimating evaporation from free water surfaces. Evaporation pans provide one of the simplest, inexpensive, and most widely used methods of estimating evaporative losses. In this study, the rate of evaporation starting from a water surface was calculated by modeling with application to dams in wet, arid and semi arid areas in Algeria. We calculate the evaporation rate from the pan using the energy budget equation, which offers the advantage of an ease of use, but our results do not agree completely with the measurements taken by the National Agency of areas carried out using dams located in areas of different climates. For that, we develop a mathematical model to simulate evaporation. This simulation uses an energy budget on the level of a vat of measurement and a Computational Fluid Dynamics (Fluent). Our calculation of evaporation rate is compared then by the two methods and with the measures of areas in situ.

Keywords: Evaporation, Energy budget, Surface water temperature, CFD, Dams

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5753
2085 The Thermochemical Conversion of Lactic Acid in Subcritical and Supercritical Water

Authors: Shyh-Ming Chern, Hung-Chi Tu

Abstract:

One way to utilize biomass is to thermochemically convert it into gases and chemicals. For conversion of biomass, glucose is a particularly popular model compound for cellulose, or more generally for biomass. The present study takes a different approach by employing lactic acid as the model compound for cellulose. Since lactic acid and glucose have identical elemental composition, they are expected to produce similar results as they go through the conversion process. In the current study, lactic acid was thermochemically converted to assess its reactivity and reaction mechanism in subcritical and supercritical water, by using a 16-ml autoclave reactor. The major operating parameters investigated include: The reaction temperature, from 673 to 873 K, the reaction pressure, 10 and 25 MPa, the dosage of oxidizing agent, 0 and 0.5 chemical oxygen demand, and the concentration of lactic acid in the feed, 0.5 and 1.0 M. Gaseous products from the conversion were generally found to be comparable to those derived from the conversion of glucose.

Keywords: Lactic acid, subcritical water, supercritical water, thermochemical conversion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1089
2084 General Formula for Water Surface Profile over Side Weir in the Combined, Trapezoidal and Exponential, Channels

Authors: Abdulrahman Abdulrahman

Abstract:

A side weir is a hydraulic structure set into the side of a channel. This structure is used for water level control in channels, to divert flow from a main channel into a side channel when the water level in the main channel exceeds a specific limit and as storm overflows from urban sewerage system. Computation of water surface over the side weirs is essential to determine the flow rate of the side weir. Analytical solutions for water surface profile along rectangular side weir are available only for the special cases of rectangular and trapezoidal channels considering constant specific energy. In this paper, a rectangular side weir located in a combined (trapezoidal with exponential) channel was considered. Expanding binominal series of integer and fraction powers and the using of reduction formula of cosine function integrals, a general analytical formula was obtained for water surface profile along a side weir in a combined (trapezoidal with exponential) channel. Since triangular, rectangular, trapezoidal and parabolic cross-sections are special cases of the combined cross section, the derived formula, is applicable to triangular, rectangular, trapezoidal cross-sections as analytical solution and semi-analytical solution to parabolic cross-section with maximum relative error smaller than 0.76%. The proposed solution should be a useful engineering tool for the evaluation and design of side weirs in open channel.

Keywords: Analytical solution, combined channel, exponential channel, side weirs, trapezoidal channel, water surface profile.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 929
2083 Challenges of Irrigation Water Supply in Croplands of Arid Regions and their Environmental Consequences – A Case Study in the Dez and Moghan Command Areas of Iran

Authors: Lobat Taghavi, Najaf Hedayat

Abstract:

Renewable water resources are crucial production variables in arid and semi-arid regions where intensive agriculture is practiced to meet ever-increasing demand for food and fiber. This is crucial for the Dez and Moghan command areas where water delivery problems and adverse environmental issues are widespread. This paper aims to identify major problems areas using on-farm surveys of 200 farmers, agricultural extensionists and water suppliers which was complemented by secondary data and field observations during 2010- 2011 cultivating season. The SPSS package was used to analyze and synthesis data. Results indicated inappropriate canal operations in both schemes, though there was no unanimity about the underlying causes. Inequitable and inflexible distribution was found to be rooted in deficient hydraulic structures particularly in the main and secondary canals. The inadequacy and inflexibility of water scheduling regime was the underlying causes of recurring pest and disease spread which often led to the decline of crop yield and quality, although these were not disputed, the water suppliers were not prepared to link with the deficiencies in the operation of the main and secondary canals. They rather attributed these to the prevailing salinity; alkalinity, water table fluctuations and leaching of the valuable agro-chemical inputs from the plants- route zone with farreaching consequences. Examples of these include the pollution of ground and surface resources due to over-irrigation at the farm level which falls under the growers- own responsibility. Poor irrigation efficiency and adverse environmental problems were attributed to deficient and outdated farming practices that were in turn rooted in poor extension programs and irrational water charges.

Keywords: water delivery, inequity, inflexibility, conflicts, environmental impact, Dez and Moghan

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1526
2082 Structural and Optical Properties of Silver Sulfide-Reduced Graphene Oxide Nanocomposite

Authors: Oyugi Ngure Robert, Tabitha A. Amollo, Kallen Mulilo Nalyanya

Abstract:

Nanomaterials have attracted significant attention in research because of their exemplary properties, making them suitable for diverse applications. This paper reports the successful synthesis as well as the structural and optical properties of silver sulfide-reduced graphene oxide (Ag2S-rGO) nanocomposite. The nanocomposite was synthesized by the chemical reduction method. Scanning electron microscopy (SEM) showed that the reduced graphene oxide (rGO) sheets were intercalated within the Ag2S nanoparticles during the chemical reduction process. The SEM images also showed that Ag2S had the shape of nanowires. Further, SEM energy dispersive X-ray (SEM EDX) showed that Ag2S-rGO is mainly composed of C, Ag, O, and S. X-ray diffraction analysis manifested a high crystallinity for the nanowire-shaped Ag2S nanoparticles with a d-spacing ranging between 1.0 Å and 5.2 Å. Thermal gravimetric analysis (TGA) showed that rGO enhances the thermal stability of the nanocomposite. Ag2S-rGO nanocomposite exhibited strong optical absorption in the UV region. The formed nanocomposite is dispersible in polar and non-polar solvents, qualifying it for solution-based device processing. Thus, the surface plasmon resonance effect associated with metallic nanoparticles, strong optical absorption, thermal stability crystallinity and hydrophilicity of the nanocomposite suits it for solar energy conversion applications.

Keywords: Silver sulfide, reduced graphene oxide, nanocomposite, structural properties, optical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 46
2081 Effect of Fractional Flow Curves on the Heavy Oil and Light Oil Recoveries in Petroleum Reservoirs

Authors: Abdul Jamil Nazari, Shigeo Honma

Abstract:

This paper evaluates and compares the effect of fractional flow curves on the heavy oil and light oil recoveries in a petroleum reservoir. Fingering of flowing water is one of the serious problems of the oil displacement by water and another problem is the estimation of the amount of recover oil from a petroleum reservoir. To address these problems, the fractional flow of heavy oil and light oil are investigated. The fractional flow approach treats the multi-phases flow rate as a total mixed fluid and then describes the individual phases as fractional of the total flow. Laboratory experiments are implemented for two different types of oils, heavy oil, and light oil, to experimentally obtain relative permeability and fractional flow curves. Application of the light oil fractional curve, which exhibits a regular S-shape, to the water flooding method showed that a large amount of mobile oil in the reservoir is displaced by water injection. In contrast, the fractional flow curve of heavy oil does not display an S-shape because of its high viscosity. Although the advance of the injected waterfront is faster than in light oil reservoirs, a significant amount of mobile oil remains behind the waterfront.

Keywords: Fractional flow curve, oil recovery, relative permeability, water fingering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1476
2080 Water Quality Determination of River Systems in Antalya Basin by Biomonitoring

Authors: Hasan Kalyoncu, Füsun Kılçık, Hatice Gülboy Akyıldırım, Aynur Özen, Mehmet Acar, Nur Yoluk

Abstract:

For evaluation of water quality of the river systems in Antalya Basin, macrozoobenthos samples were taken from 22 determined stations by a hand net and identified at family level. Water quality of Antalya Basin was determined according to Biological Monitoring Working Party (BMWP) system, by using macrozoobenthic invertebrates and physicochemical parameters. As a result of the evaluation, while Aksu Stream was determined as the most polluted stream in Antalya Basin, Isparta Stream was determined as the most polluted tributary of Aksu Stream. Pollution level of the Isparta Stream was determined as quality class V and it is the extremely polluted part of stream. Pollution loads at the sources of the streams were determined in low levels in general. Due to some parts of the streams have passed through deep canyons and take their sources from nonresidential and non-arable regions, majority of the streams that take place in Antalya Basin are at high quality level. Waste water, which comes from agricultural and residential regions, affects the lower basins of the streams. Because of the waste water, lower parts of the stream basins exposed to the pollution under anthropogenic effects. However, in Aksu Stream, which differs by being exposed to domestic and industrial wastes of Isparta City, extreme pollution was determined, particularly in the Isparta Stream part.

Keywords: Antalya Basin, biomonitoring, BMWP, water quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1519