Search results for: triangular fuzzy number.
4452 Electricity Consumption Prediction Model using Neuro-Fuzzy System
Authors: Rahib Abiyev, Vasif H. Abiyev, C. Ardil
Abstract:
In this paper the development of neural network based fuzzy inference system for electricity consumption prediction is considered. The electricity consumption depends on number of factors, such as number of customers, seasons, type-s of customers, number of plants, etc. It is nonlinear process and can be described by chaotic time-series. The structure and algorithms of neuro-fuzzy system for predicting future values of electricity consumption is described. To determine the unknown coefficients of the system, the supervised learning algorithm is used. As a result of learning, the rules of neuro-fuzzy system are formed. The developed system is applied for predicting future values of electricity consumption of Northern Cyprus. The simulation of neuro-fuzzy system has been performed.
Keywords: Fuzzy logic, neural network, neuro-fuzzy system, neuro-fuzzy prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20114451 A New Approach of Fuzzy Methods for Evaluating of Hydrological Data
Authors: Nasser Shamskia, Seyyed Habib Rahmati, Hassan Haleh , Seyyedeh Hoda Rahmati
Abstract:
The main criteria of designing in the most hydraulic constructions essentially are based on runoff or discharge of water. Two of those important criteria are runoff and return period. Mostly, these measures are calculated or estimated by stochastic data. Another feature in hydrological data is their impreciseness. Therefore, in order to deal with uncertainty and impreciseness, based on Buckley-s estimation method, a new fuzzy method of evaluating hydrological measures are developed. The method introduces triangular shape fuzzy numbers for different measures in which both of the uncertainty and impreciseness concepts are considered. Besides, since another important consideration in most of the hydrological studies is comparison of a measure during different months or years, a new fuzzy method which is consistent with special form of proposed fuzzy numbers, is also developed. Finally, to illustrate the methods more explicitly, the two algorithms are tested on one simple example and a real case study.Keywords: Fuzzy Discharge, Fuzzy estimation, Fuzzy ranking method, Hydrological data
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17124450 Fuzzy Hierarchical Clustering Applied for Quality Estimation in Manufacturing System
Authors: Y. Q. Lv, C.K.M. Lee
Abstract:
This paper develops a quality estimation method with the application of fuzzy hierarchical clustering. Quality estimation is essential to quality control and quality improvement as a precise estimation can promote a right decision-making in order to help better quality control. Normally the quality of finished products in manufacturing system can be differentiated by quality standards. In the real life situation, the collected data may be vague which is not easy to be classified and they are usually represented in term of fuzzy number. To estimate the quality of product presented by fuzzy number is not easy. In this research, the trapezoidal fuzzy numbers are collected in manufacturing process and classify the collected data into different clusters so as to get the estimation. Since normal hierarchical clustering methods can only be applied for real numbers, fuzzy hierarchical clustering is selected to handle this problem based on quality standards.Keywords: Quality Estimation, Fuzzy Quality Mean, Fuzzy Hierarchical Clustering, Fuzzy Number, Manufacturing system
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16674449 Sensitizing Rules for Fuzzy Control Charts
Authors: N. Pekin Alakoç, A. Apaydın
Abstract:
Quality control charts indicate out of control conditions if any nonrandom pattern of the points is observed or any point is plotted beyond the control limits. Nonrandom patterns of Shewhart control charts are tested with sensitizing rules. When the processes are defined with fuzzy set theory, traditional sensitizing rules are insufficient for defining all out of control conditions. This is due to the fact that fuzzy numbers increase the number of out of control conditions. The purpose of the study is to develop a set of fuzzy sensitizing rules, which increase the flexibility and sensitivity of fuzzy control charts. Fuzzy sensitizing rules simplify the identification of out of control situations that results in a decrease in the calculation time and number of evaluations in fuzzy control chart approach.Keywords: Fuzzy set theory, Quality control charts, Run Rules, Unnatural patterns.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35404448 Using Swarm Intelligence for Improving Accuracy of Fuzzy Classifiers
Authors: Hassan M. Elragal
Abstract:
This paper discusses a method for improving accuracy of fuzzy-rule-based classifiers using particle swarm optimization (PSO). Two different fuzzy classifiers are considered and optimized. The first classifier is based on Mamdani fuzzy inference system (M_PSO fuzzy classifier). The second classifier is based on Takagi- Sugeno fuzzy inference system (TS_PSO fuzzy classifier). The parameters of the proposed fuzzy classifiers including premise (antecedent) parameters, consequent parameters and structure of fuzzy rules are optimized using PSO. Experimental results show that higher classification accuracy can be obtained with a lower number of fuzzy rules by using the proposed PSO fuzzy classifiers. The performances of M_PSO and TS_PSO fuzzy classifiers are compared to other fuzzy based classifiersKeywords: Fuzzy classifier, Optimization of fuzzy systemparameters, Particle swarm optimization, Pattern classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23444447 Economic Dispatch Fuzzy Linear Regression and Optimization
Authors: A. K. Al-Othman
Abstract:
This study presents a new approach based on Tanaka's fuzzy linear regression (FLP) algorithm to solve well-known power system economic load dispatch problem (ELD). Tanaka's fuzzy linear regression (FLP) formulation will be employed to compute the optimal solution of optimization problem after linearization. The unknowns are expressed as fuzzy numbers with a triangular membership function that has middle and spread value reflected on the unknowns. The proposed fuzzy model is formulated as a linear optimization problem, where the objective is to minimize the sum of the spread of the unknowns, subject to double inequality constraints. Linear programming technique is employed to obtain the middle and the symmetric spread for every unknown (power generation level). Simulation results of the proposed approach will be compared with those reported in literature.Keywords: Economic Dispatch, Fuzzy Linear Regression (FLP)and Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22934446 Ranking Fuzzy Numbers Based On Epsilon-Deviation Degree
Authors: Vincent F. Yu, Ha Thi Xuan Chi
Abstract:
Nejad and Mashinchi (2011) proposed a revision for ranking fuzzy numbers based on the areas of the left and the right sides of a fuzzy number. However, this method still has some shortcomings such as lack of discriminative power to rank similar fuzzy numbers and no guarantee the consistency between the ranking of fuzzy numbers and the ranking of their images. To overcome these drawbacks, we propose an epsilon-deviation degree method based on the left area and the right area of a fuzzy number, and the concept of the centroid point. The main advantage of the new approach is the development of an innovative index value which can be used to consistently evaluate and rank fuzzy numbers. Numerical examples are presented to illustrate the efficiency and superiority of the proposed method.
Keywords: Ranking fuzzy numbers, Centroid, Deviation degree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15854445 Genetic Algorithm with Fuzzy Genotype Values and Its Application to Neuroevolution
Authors: Hidehiko Okada
Abstract:
The author proposes an extension of genetic algorithm (GA) for solving fuzzy-valued optimization problems. In the proposed GA, values in the genotypes are not real numbers but fuzzy numbers. Evolutionary processes in GA are extended so that GA can handle genotype instances with fuzzy numbers. The proposed method is applied to evolving neural networks with fuzzy weights and biases. Experimental results showed that fuzzy neural networks evolved by the fuzzy GA could model hidden target fuzzy functions well despite the fact that no training data was explicitly provided.
Keywords: Evolutionary algorithm, genetic algorithm, fuzzy number, neural network, neuroevolution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23024444 Optimization of a Triangular Fin with Variable Fin Base Thickness
Authors: Hyung Suk Kang
Abstract:
A triangular fin with variable fin base thickness is analyzed and optimized using a two-dimensional analytical method. The influence of fin base height and fin base thickness on the temperature in the fin is listed. For the fixed fin volumes, the maximum heat loss, the corresponding optimum fin effectiveness, fin base height and fin tip length as a function of the fin base thickness, convection characteristic number and dimensionless fin volume are represented. One of the results shows that the optimum heat loss increases whereas the corresponding optimum fin effectiveness decreases with the increase of fin volume.Keywords: A triangular fin, Convection characteristic number, Heat loss, Fin base thickness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 41234443 Closed Loop Control of Bridgeless Cuk Converter Using Fuzzy Logic Controller for PFC Applications
Authors: Nesapriya. P., S. Rajalaxmi
Abstract:
This paper is based on the bridgeless single-phase Ac–Dc Power Factor Correction (PFC) converters with Fuzzy Logic Controller. High frequency isolated Cuk converters are used as a modular dc-dc converter in Discontinuous Conduction Mode (DCM) of operation of Power Factor Correction. The aim of this paper is to simplify the program complexity of the controller by reducing the number of fuzzy sets of the Membership Functions (MFs) and to improve the efficiency and to eliminate the power quality problems. The output of Fuzzy controller is compared with High frequency triangular wave to generate PWM gating signals of Cuk converter. The proposed topologies are designed to work in Discontinuous Conduction Mode (DCM) to achieve a unity power factor and low total harmonic distortion of the input current. The Fuzzy Logic Controller gives additional advantages such as accurate result, uncertainty and imprecision and automatic control circuitry. Performance comparisons between the proposed and conventional controllers and circuits are performed based on circuit simulations.
Keywords: Fuzzy Logic Controller (FLC), Bridgeless rectifier, Cuk converter, Pulse Width Modulation (PWM), Power Factor Correction, Total Harmonic Distortion (THD).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40614442 Determination of Adequate Fuzzy Inequalities for their Usage in Fuzzy Query Languages
Authors: Marcel Shirvanian, Wolfram Lippe
Abstract:
Although the usefulness of fuzzy databases has been pointed out in several works, they are not fully developed in numerous domains. A task that is mostly disregarded and which is the topic of this paper is the determination of suitable inequalities for fuzzy sets in fuzzy query languages. This paper examines which kinds of fuzzy inequalities exist at all. Afterwards, different procedures are presented that appear theoretically appropriate. By being applied to various examples, their strengths and weaknesses are revealed. Furthermore, an algorithm for an efficient computation of the selected fuzzy inequality is shown.Keywords: Fuzzy Databases, Fuzzy Inequalities, Fuzzy QueryLanguages, Fuzzy Ranking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13574441 Fuzzy EOQ Models for Deteriorating Items with Stock Dependent Demand and Non-Linear Holding Costs
Authors: G. C. Mahata, A. Goswami
Abstract:
This paper deals with infinite time horizon fuzzy Economic Order Quantity (EOQ) models for deteriorating items with stock dependent demand rate and nonlinear holding costs by taking deterioration rate θ0 as a triangular fuzzy number (θ0 −δ 1, θ0, θ0 +δ 2), where 1 2 0 0 <δ ,δ <θ are fixed real numbers. The traditional parameters such as unit cost and ordering cost have been kept constant but holding cost is considered to vary. Two possibilities of variations in the holding cost function namely, a non-linear function of the length of time for which the item is held in stock and a non-linear function of the amount of on-hand inventory have been used in the models. The approximate optimal solution for the fuzzy cost functions in both these cases have been obtained and the effect of non-linearity in holding costs is studied with the help of a numerical example.
Keywords: Inventory Model, Deterioration, Holding Cost, Fuzzy Total Cost, Extension Principle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18144440 Fuzzy Estimation of Parameters in Statistical Models
Authors: A. Falsafain, S. M. Taheri, M. Mashinchi
Abstract:
Using a set of confidence intervals, we develop a common approach, to construct a fuzzy set as an estimator for unknown parameters in statistical models. We investigate a method to derive the explicit and unique membership function of such fuzzy estimators. The proposed method has been used to derive the fuzzy estimators of the parameters of a Normal distribution and some functions of parameters of two Normal distributions, as well as the parameters of the Exponential and Poisson distributions.Keywords: Confidence interval. Fuzzy number. Fuzzy estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22714439 Effective Cooling of Photovoltaic Solar Cells by Inserting Triangular Ribs: A Numerical Study
Authors: S. Saadi, S. Benissaad, S. Poncet, Y. Kabar
Abstract:
In photovoltaic (PV) cells, most of the absorbed solar radiation cannot be converted into electricity. A large amount of solar radiation is converted to heat, which should be dissipated by any cooling techniques. In the present study, the cooling is achieved by inserting triangular ribs in the duct. A comprehensive two-dimensional thermo-fluid model for the effective cooling of PV cells has been developed. It has been first carefully validated against experimental and numerical results available in the literature. A parametric analysis was then carried out about the influence of the number and size of the ribs, wind speed, solar irradiance and inlet fluid velocity on the average solar cell and outlet air temperatures as well as the thermal and electrical efficiencies of the module. Results indicated that the use of triangular ribbed channels is a very effective cooling technique, which significantly reduces the average temperature of the PV cell, especially when increasing the number of ribs.
Keywords: Effective cooling, numerical modeling, photovoltaic cell, triangular ribs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11034438 Stock Price Forecast by Using Neuro-Fuzzy Inference System
Authors: Ebrahim Abbasi, Amir Abouec
Abstract:
In this research, the researchers have managed to design a model to investigate the current trend of stock price of the "IRAN KHODRO corporation" at Tehran Stock Exchange by utilizing an Adaptive Neuro - Fuzzy Inference system. For the Longterm Period, a Neuro-Fuzzy with two Triangular membership functions and four independent Variables including trade volume, Dividend Per Share (DPS), Price to Earning Ratio (P/E), and also closing Price and Stock Price fluctuation as an dependent variable are selected as an optimal model. For the short-term Period, a neureo – fuzzy model with two triangular membership functions for the first quarter of a year, two trapezoidal membership functions for the Second quarter of a year, two Gaussian combination membership functions for the third quarter of a year and two trapezoidal membership functions for the fourth quarter of a year were selected as an optimal model for the stock price forecasting. In addition, three independent variables including trade volume, price to earning ratio, closing Stock Price and a dependent variable of stock price fluctuation were selected as an optimal model. The findings of the research demonstrate that the trend of stock price could be forecasted with the lower level of error.Keywords: Stock Price forecast, membership functions, Adaptive Neuro-Fuzzy Inference System, trade volume, P/E, DPS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26134437 Simplex Method for Solving Linear Programming Problems with Fuzzy Numbers
Authors: S. H. Nasseri, E. Ardil, A. Yazdani, R. Zaefarian
Abstract:
The fuzzy set theory has been applied in many fields, such as operations research, control theory, and management sciences, etc. In particular, an application of this theory in decision making problems is linear programming problems with fuzzy numbers. In this study, we present a new method for solving fuzzy number linear programming problems, by use of linear ranking function. In fact, our method is similar to simplex method that was used for solving linear programming problems in crisp environment before.Keywords: Fuzzy number linear programming, rankingfunction, simplex method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35264436 Intuitionistic Fuzzy Points in Semigroups
Authors: Sujit Kumar Sardar Manasi Mandal Samit Kumar Majumder
Abstract:
The notion of intuitionistic fuzzy sets was introduced by Atanassov as a generalization of the notion of fuzzy sets. Y.B. Jun and S.Z. Song introduced the notion of intuitionistic fuzzy points. In this paper we find some relations between the intuitionistic fuzzy ideals of a semigroup S and the set of all intuitionistic fuzzy points of S.Keywords: Semigroup, Regular(intra-regular) semigroup, Intuitionistic fuzzy point, Intuitionistic fuzzy subsemigroup, Intuitionistic fuzzy ideal, Intuitionistic fuzzy interior ideal, Intuitionistic fuzzy semiprime ideal, Intuitionistic fuzzy prime ideal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18474435 More on Gaussian Quadratures for Fuzzy Functions
Authors: Shu-Xin Miao
Abstract:
In this paper, the Gaussian type quadrature rules for fuzzy functions are discussed. The errors representation and convergence theorems are given. Moreover, four kinds of Gaussian type quadrature rules with error terms for approximate of fuzzy integrals are presented. The present paper complements the theoretical results of the paper by T. Allahviranloo and M. Otadi [T. Allahviranloo, M. Otadi, Gaussian quadratures for approximate of fuzzy integrals, Applied Mathematics and Computation 170 (2005) 874-885]. The obtained results are illustrated by solving some numerical examples.
Keywords: Guassian quadrature rules, fuzzy number, fuzzy integral, fuzzy solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14384434 On Fuzzy Weakly-Closed Sets
Authors: J. Mahanta, P.K. Das
Abstract:
A new class of fuzzy closed sets, namely fuzzy weakly closed set in a fuzzy topological space is introduced and it is established that this class of fuzzy closed sets lies between fuzzy closed sets and fuzzy generalized closed sets. Alongwith the study of fundamental results of such closed sets, we define and characterize fuzzy weakly compact space and fuzzy weakly closed space.
Keywords: Fuzzy weakly-closed set, fuzzy weakly-closed space, fuzzy weakly-compactness, MSC: 54A40, 54D30.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17754433 Simplex Method for Fuzzy Variable Linear Programming Problems
Authors: S.H. Nasseri, E. Ardil
Abstract:
Fuzzy linear programming is an application of fuzzy set theory in linear decision making problems and most of these problems are related to linear programming with fuzzy variables. A convenient method for solving these problems is based on using of auxiliary problem. In this paper a new method for solving fuzzy variable linear programming problems directly using linear ranking functions is proposed. This method uses simplex tableau which is used for solving linear programming problems in crisp environment before.
Keywords: Fuzzy variable linear programming, fuzzy number, ranking function, simplex method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33504432 Optimizing of Fuzzy C-Means Clustering Algorithm Using GA
Authors: Mohanad Alata, Mohammad Molhim, Abdullah Ramini
Abstract:
Fuzzy C-means Clustering algorithm (FCM) is a method that is frequently used in pattern recognition. It has the advantage of giving good modeling results in many cases, although, it is not capable of specifying the number of clusters by itself. In FCM algorithm most researchers fix weighting exponent (m) to a conventional value of 2 which might not be the appropriate for all applications. Consequently, the main objective of this paper is to use the subtractive clustering algorithm to provide the optimal number of clusters needed by FCM algorithm by optimizing the parameters of the subtractive clustering algorithm by an iterative search approach and then to find an optimal weighting exponent (m) for the FCM algorithm. In order to get an optimal number of clusters, the iterative search approach is used to find the optimal single-output Sugenotype Fuzzy Inference System (FIS) model by optimizing the parameters of the subtractive clustering algorithm that give minimum least square error between the actual data and the Sugeno fuzzy model. Once the number of clusters is optimized, then two approaches are proposed to optimize the weighting exponent (m) in the FCM algorithm, namely, the iterative search approach and the genetic algorithms. The above mentioned approach is tested on the generated data from the original function and optimal fuzzy models are obtained with minimum error between the real data and the obtained fuzzy models.Keywords: Fuzzy clustering, Fuzzy C-Means, Genetic Algorithm, Sugeno fuzzy systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32564431 An Adaptive Fuzzy Clustering Approach for the Network Management
Authors: Amal Elmzabi, Mostafa Bellafkih, Mohammed Ramdani
Abstract:
The Chiu-s method which generates a Takagi-Sugeno Fuzzy Inference System (FIS) is a method of fuzzy rules extraction. The rules output is a linear function of inputs. In addition, these rules are not explicit for the expert. In this paper, we develop a method which generates Mamdani FIS, where the rules output is fuzzy. The method proceeds in two steps: first, it uses the subtractive clustering principle to estimate both the number of clusters and the initial locations of a cluster centers. Each obtained cluster corresponds to a Mamdani fuzzy rule. Then, it optimizes the fuzzy model parameters by applying a genetic algorithm. This method is illustrated on a traffic network management application. We suggest also a Mamdani fuzzy rules generation method, where the expert wants to classify the output variables in some fuzzy predefined classes.
Keywords: Fuzzy entropy, fuzzy inference systems, genetic algorithms, network management, subtractive clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18834430 Application of Adaptive Neuro-Fuzzy Inference System in the Prediction of Economic Crisis Periods in USA
Authors: Eleftherios Giovanis
Abstract:
In this paper discrete choice models, Logit and Probit are examined in order to predict the economic recession or expansion periods in USA. Additionally we propose an adaptive neuro-fuzzy inference system with triangular membership function. We examine the in-sample period 1947-2005 and we test the models in the out-of sample period 2006-2009. The forecasting results indicate that the Adaptive Neuro-fuzzy Inference System (ANFIS) model outperforms significant the Logit and Probit models in the out-of sample period. This indicates that neuro-fuzzy model provides a better and more reliable signal on whether or not a financial crisis will take place.Keywords: ANFIS, discrete choice models, financial crisis, USeconomy
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16104429 Normalization and Constrained Optimization of Measures of Fuzzy Entropy
Authors: K.C. Deshmukh, P.G. Khot, Nikhil
Abstract:
In the literature of information theory, there is necessity for comparing the different measures of fuzzy entropy and this consequently, gives rise to the need for normalizing measures of fuzzy entropy. In this paper, we have discussed this need and hence developed some normalized measures of fuzzy entropy. It is also desirable to maximize entropy and to minimize directed divergence or distance. Keeping in mind this idea, we have explained the method of optimizing different measures of fuzzy entropy.Keywords: Fuzzy set, Uncertainty, Fuzzy entropy, Normalization, Membership function
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14724428 Evolving a Fuzzy Rule-Base for Image Segmentation
Abstract:
A new method for color image segmentation using fuzzy logic is proposed in this paper. Our aim here is to automatically produce a fuzzy system for color classification and image segmentation with least number of rules and minimum error rate. Particle swarm optimization is a sub class of evolutionary algorithms that has been inspired from social behavior of fishes, bees, birds, etc, that live together in colonies. We use comprehensive learning particle swarm optimization (CLPSO) technique to find optimal fuzzy rules and membership functions because it discourages premature convergence. Here each particle of the swarm codes a set of fuzzy rules. During evolution, a population member tries to maximize a fitness criterion which is here high classification rate and small number of rules. Finally, particle with the highest fitness value is selected as the best set of fuzzy rules for image segmentation. Our results, using this method for soccer field image segmentation in Robocop contests shows 89% performance. Less computational load is needed when using this method compared with other methods like ANFIS, because it generates a smaller number of fuzzy rules. Large train dataset and its variety, makes the proposed method invariant to illumination noiseKeywords: Comprehensive learning Particle Swarmoptimization, fuzzy classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19564427 Design of Gain Scheduled Fuzzy PID Controller
Authors: Leehter Yao, Chin-Chin Lin
Abstract:
An adaptive fuzzy PID controller with gain scheduling is proposed in this paper. The structure of the proposed gain scheduled fuzzy PID (GS_FPID) controller consists of both fuzzy PI-like controller and fuzzy PD-like controller. Both of fuzzy PI-like and PD-like controllers are weighted through adaptive gain scheduling, which are also determined by fuzzy logic inference. A modified genetic algorithm called accumulated genetic algorithm is designed to learn the parameters of fuzzy inference system. In order to learn the number of fuzzy rules required for the TSK model, the fuzzy rules are learned in an accumulated way. In other words, the parameters learned in the previous rules are accumulated and updated along with the parameters in the current rule. It will be shown that the proposed GS_FPID controllers learned by the accumulated GA perform well for not only the regular linear systems but also the higher order and time-delayed systems.
Keywords: Gain scheduling, fuzzy PID controller, adaptive control, genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40614426 Numerical Solving of General Fuzzy Linear Systems by Huang's Method
Authors: S. J. Hosseini Ghoncheh, M. Paripour
Abstract:
In this paper the Huang-s method for solving a m×n fuzzy linear system when, m≤ n, is considered. The method in detail is discussed and illustrated by solving some numerical examples.
Keywords: Fuzzy number, fuzzy linear systems, Huang's method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12914425 Anti-Homomorphism in Fuzzy Ideals
Authors: K. Chandrasekhara Rao, V. Swaminathan
Abstract:
The anti-homomorphic image of fuzzy ideals, fuzzy ideals of near-rings and anti ideals are discussed in this note. A necessary and sufficient condition has been established for near-ring anti ideal to be characteristic.Keywords: Fuzzy Ideals, Anti fuzzy subgroup, Anti fuzzy ideals, Anti homomorphism, Lower α level cut.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23114424 Modeling of PZ in Haunch Connections Systems
Authors: Peyman Shadman Heidari, Roohollah Ahmady Jazany, Mahmood Reza Mehran, Pouya Shadman Heidari, Mohammad khorasani
Abstract:
Modeling of Panel Zone (PZ) seismic behavior, because of its role in overall ductility and lateral stiffness of steel moment frames, has been considered a challenge for years. There are some studies regarding the effects of different doubler plates thicknesses and geometric properties of PZ on its seismic behavior. However, there is not much investigation on the effects of number of provided continuity plates in case of presence of one triangular haunch, two triangular haunches and rectangular haunch (T shape haunches) for exterior columns. In this research first detailed finite element models of 12tested connection of SAC joint venture were created and analyzed then obtained cyclic behavior backbone curves of these models besides other FE models for similar tests were used for neural network training. Then seismic behavior of these data is categorized according to continuity plate-s arrangements and differences in type of haunches. PZ with one-sided haunches have little plastic rotation. As the number of continuity plates increases due to presence of two triangular haunches (four continuity plate), there will be no plastic rotation, in other words PZ behaves in its elastic range. In the case of rectangular haunch, PZ show more plastic rotation in comparison with one-sided triangular haunch and especially double-sided triangular haunches. Moreover, the models that will be presented in case of triangular one-sided and double- sided haunches and rectangular haunches as a result of this study seem to have a proper estimation of PZ seismic behavior.Keywords: Continuity plate, FE models, Neural network, Panel zone, Plastic rotation, Rectangular haunch, Seismic behavior
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20074423 Some Results on Interval-Valued Fuzzy BG-Algebras
Authors: Arsham Borumand Saeid
Abstract:
In this note the notion of interval-valued fuzzy BG-algebras (briefly, i-v fuzzy BG-algebras), the level and strong level BG-subalgebra is introduced. Then we state and prove some theorems which determine the relationship between these notions and BG-subalgebras. The images and inverse images of i-v fuzzy BG-subalgebras are defined, and how the homomorphic images and inverse images of i-v fuzzy BG-subalgebra becomes i-v fuzzy BG-algebras are studied.
Keywords: BG-algebra, fuzzy BG-subalgebra, interval-valued fuzzy set, interval-valued fuzzy BG-subalgebra.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1682