Search results for: trees
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 181

Search results for: trees

151 Decision Trees for Predicting Risk of Mortality using Routinely Collected Data

Authors: Tessy Badriyah, Jim S. Briggs, Dave R. Prytherch

Abstract:

It is well known that Logistic Regression is the gold standard method for predicting clinical outcome, especially predicting risk of mortality. In this paper, the Decision Tree method has been proposed to solve specific problems that commonly use Logistic Regression as a solution. The Biochemistry and Haematology Outcome Model (BHOM) dataset obtained from Portsmouth NHS Hospital from 1 January to 31 December 2001 was divided into four subsets. One subset of training data was used to generate a model, and the model obtained was then applied to three testing datasets. The performance of each model from both methods was then compared using calibration (the χ2 test or chi-test) and discrimination (area under ROC curve or c-index). The experiment presented that both methods have reasonable results in the case of the c-index. However, in some cases the calibration value (χ2) obtained quite a high result. After conducting experiments and investigating the advantages and disadvantages of each method, we can conclude that Decision Trees can be seen as a worthy alternative to Logistic Regression in the area of Data Mining.

Keywords: Decision Trees, Logistic Regression, clinical outcome, risk of mortality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2523
150 Data Mining in Medicine Domain Using Decision Trees and Vector Support Machine

Authors: Djamila Benhaddouche, Abdelkader Benyettou

Abstract:

In this paper, we used data mining to extract biomedical knowledge. In general, complex biomedical data collected in studies of populations are treated by statistical methods, although they are robust, they are not sufficient in themselves to harness the potential wealth of data. For that you used in step two learning algorithms: the Decision Trees and Support Vector Machine (SVM). These supervised classification methods are used to make the diagnosis of thyroid disease. In this context, we propose to promote the study and use of symbolic data mining techniques.

Keywords: A classifier, Algorithms decision tree, knowledge extraction, Support Vector Machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1870
149 Energy Consumption, Emission Absorption and Carbon Emission Reduction on Semarang State University Campus

Authors: Dewi Liesnoor Setyowati, Puji Hardati, Tri Marhaeni Puji Astuti, Muhammad Amin

Abstract:

Universitas Negeri Semarang (UNNES) is a university with a vision of conservation. The impact of the UNNES conservation is the existence of a positive response from the community for the effort of greening the campus and the planting of conservation value in the academic community. But in reality,  energy consumption in UNNES campus tends to increase. The objectives of the study were to analyze the energy consumption in the campus area, to analyze the absorption of emissions by trees and the awareness of UNNES citizens in reducing emissions. Research focuses on energy consumption, carbon emissions, and awareness of citizens in reducing emissions. Research subjects in this study are UNNES citizens (lecturers, students and employees). The research area covers 6 faculties and one administrative center building. Data collection is done by observation, interview and documentation. The research used a quantitative descriptive method to analyze the data. The number of trees in UNNES is 10,264. Total emission on campus UNNES is 7.862.281.56 kg/year, the tree absorption is 6,289,250.38 kg/year. In UNNES campus area there are still 1,575,031.18 kg/year of emissions, not yet absorbed by trees. There are only two areas of the faculty whose trees are capable of absorbing emissions. The awareness of UNNES citizens in reducing energy consumption is seen in change the habit of: using energy-saving equipment (65%); reduce energy consumption per unit (68%); do energy literacy for UNNES citizens (74%). UNNES leaders always provide motivation to the citizens of UNNES, to reduce and change patterns of energy consumption.

Keywords: Energy consumption, carbon emission absorption, emission reduction, energy literation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 844
148 Pruning Method of Belief Decision Trees

Authors: Salsabil Trabelsi, Zied Elouedi, Khaled Mellouli

Abstract:

The belief decision tree (BDT) approach is a decision tree in an uncertain environment where the uncertainty is represented through the Transferable Belief Model (TBM), one interpretation of the belief function theory. The uncertainty can appear either in the actual class of training objects or attribute values of objects to classify. In this paper, we develop a post-pruning method of belief decision trees in order to reduce size and improve classification accuracy on unseen cases. The pruning of decision tree has a considerable intention in the areas of machine learning.

Keywords: machine learning, uncertainty, belief function theory, belief decision tree, pruning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1910
147 Improving Carbon Sequestration in Concrete: A Literature Review

Authors: Adedokun D. A., Ndambuki J. M., Salim R. W.

Abstract:

Due to urbanization, trees and plants which covered a great land mass of the earth and are an excellent carbon dioxide (CO2) absorber through photosynthesis are being replaced by several concrete based structures. It is therefore important to have these cement based structures absorb the large volume of carbon dioxide which the trees would have removed from the atmosphere during their useful lifespan. Hence the need for these cement based structures to be designed to serve other useful purposes in addition to shelter. This paper reviews the properties of Sodium carbonate and sugar as admixtures in concrete with respect to improving carbon sequestration in concrete.

Keywords: Carbon sequestration, Sodium carbonate, Sugar, concrete, Carbon dioxide.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2762
146 Fixed Point Equations Related to Motion Integrals in Renormalization Hopf Algebra

Authors: Ali Shojaei-Fard

Abstract:

In this paper we consider quantum motion integrals depended on the algebraic reconstruction of BPHZ method for perturbative renormalization in two different procedures. Then based on Bogoliubov character and Baker-Campbell-Hausdorff (BCH) formula, we show that how motion integral condition on components of Birkhoff factorization of a Feynman rules character on Connes- Kreimer Hopf algebra of rooted trees can determine a family of fixed point equations.

Keywords: Birkhoff Factorization, Connes-Kreimer Hopf Algebra of Rooted Trees, Integral Renormalization, Lax Pair Equation, Rota- Baxter Algebras.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1442
145 Building and Tree Detection Using Multiscale Matched Filtering

Authors: Abdullah H. Özcan, Dilara Hisar, Yetkin Sayar, Cem Ünsalan

Abstract:

In this study, an automated building and tree detection method is proposed using DSM data and true orthophoto image. A multiscale matched filtering is used on DSM data. Therefore, first watershed transform is applied. Then, Otsu’s thresholding method is used as an adaptive threshold to segment each watershed region. Detected objects are masked with NDVI to separate buildings and trees. The proposed method is able to detect buildings and trees without entering any elevation threshold. We tested our method on ISPRS semantic labeling dataset and obtained promising results.

Keywords: Building detection, tree detection, matched filtering, multiscale, local maximum filtering, watershed segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 549
144 Pattern Matching Based on Regular Tree Grammars

Authors: Riad S. Jabri

Abstract:

Pattern matching based on regular tree grammars have been widely used in many areas of computer science. In this paper, we propose a pattern matcher within the framework of code generation, based on a generic and a formalized approach. According to this approach, parsers for regular tree grammars are adapted to a general pattern matching solution, rather than adapting the pattern matching according to their parsing behavior. Hence, we first formalize the construction of the pattern matches respective to input trees drawn from a regular tree grammar in a form of the so-called match trees. Then, we adopt a recently developed generic parser and tightly couple its parsing behavior with such construction. In addition to its generality, the resulting pattern matcher is characterized by its soundness and efficient implementation. This is demonstrated by the proposed theory and by the derived algorithms for its implementation. A comparison with similar and well-known approaches, such as the ones based on tree automata and LR parsers, has shown that our pattern matcher can be applied to a broader class of grammars, and achieves better approximation of pattern matches in one pass. Furthermore, its use as a machine code selector is characterized by a minimized overhead, due to the balanced distribution of the cost computations into static ones, during parser generation time, and into dynamic ones, during parsing time.

Keywords: Bottom-up automata, Code selection, Pattern matching, Regular tree grammars, Match trees.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1269
143 Application of a Similarity Measure for Graphs to Web-based Document Structures

Authors: Matthias Dehmer, Frank Emmert Streib, Alexander Mehler, Jürgen Kilian, Max Mühlhauser

Abstract:

Due to the tremendous amount of information provided by the World Wide Web (WWW) developing methods for mining the structure of web-based documents is of considerable interest. In this paper we present a similarity measure for graphs representing web-based hypertext structures. Our similarity measure is mainly based on a novel representation of a graph as linear integer strings, whose components represent structural properties of the graph. The similarity of two graphs is then defined as the optimal alignment of the underlying property strings. In this paper we apply the well known technique of sequence alignments for solving a novel and challenging problem: Measuring the structural similarity of generalized trees. In other words: We first transform our graphs considered as high dimensional objects in linear structures. Then we derive similarity values from the alignments of the property strings in order to measure the structural similarity of generalized trees. Hence, we transform a graph similarity problem to a string similarity problem for developing a efficient graph similarity measure. We demonstrate that our similarity measure captures important structural information by applying it to two different test sets consisting of graphs representing web-based document structures.

Keywords: Graph similarity, hierarchical and directed graphs, hypertext, generalized trees, web structure mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1892
142 Inferring Hierarchical Pronunciation Rules from a Phonetic Dictionary

Authors: Erika Pigliapoco, Valerio Freschi, Alessandro Bogliolo

Abstract:

This work presents a new phonetic transcription system based on a tree of hierarchical pronunciation rules expressed as context-specific grapheme-phoneme correspondences. The tree is automatically inferred from a phonetic dictionary by incrementally analyzing deeper context levels, eventually representing a minimum set of exhaustive rules that pronounce without errors all the words in the training dictionary and that can be applied to out-of-vocabulary words. The proposed approach improves upon existing rule-tree-based techniques in that it makes use of graphemes, rather than letters, as elementary orthographic units. A new linear algorithm for the segmentation of a word in graphemes is introduced to enable outof- vocabulary grapheme-based phonetic transcription. Exhaustive rule trees provide a canonical representation of the pronunciation rules of a language that can be used not only to pronounce out-of-vocabulary words, but also to analyze and compare the pronunciation rules inferred from different dictionaries. The proposed approach has been implemented in C and tested on Oxford British English and Basic English. Experimental results show that grapheme-based rule trees represent phonetically sound rules and provide better performance than letter-based rule trees.

Keywords: Automatic phonetic transcription, pronunciation rules, hierarchical tree inference.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1925
141 Automatic Sleep Stage Scoring with Wavelet Packets Based on Single EEG Recording

Authors: Luay A. Fraiwan, Natheer Y. Khaswaneh, Khaldon Y. Lweesy

Abstract:

Sleep stage scoring is the process of classifying the stage of the sleep in which the subject is in. Sleep is classified into two states based on the constellation of physiological parameters. The two states are the non-rapid eye movement (NREM) and the rapid eye movement (REM). The NREM sleep is also classified into four stages (1-4). These states and the state wakefulness are distinguished from each other based on the brain activity. In this work, a classification method for automated sleep stage scoring based on a single EEG recording using wavelet packet decomposition was implemented. Thirty two ploysomnographic recording from the MIT-BIH database were used for training and validation of the proposed method. A single EEG recording was extracted and smoothed using Savitzky-Golay filter. Wavelet packets decomposition up to the fourth level based on 20th order Daubechies filter was used to extract features from the EEG signal. A features vector of 54 features was formed. It was reduced to a size of 25 using the gain ratio method and fed into a classifier of regression trees. The regression trees were trained using 67% of the records available. The records for training were selected based on cross validation of the records. The remaining of the records was used for testing the classifier. The overall correct rate of the proposed method was found to be around 75%, which is acceptable compared to the techniques in the literature.

Keywords: Features selection, regression trees, sleep stagescoring, wavelet packets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2329
140 Enhanced Character Based Algorithm for Small Parsimony

Authors: Parvinder Singh Sandhu, Sumeet Kaur Sehra, Karmjit Kaur

Abstract:

Phylogenetic tree is a graphical representation of the evolutionary relationship among three or more genes or organisms. These trees show relatedness of data sets, species or genes divergence time and nature of their common ancestors. Quality of a phylogenetic tree requires parsimony criterion. Various approaches have been proposed for constructing most parsimonious trees. This paper is concerned about calculating and optimizing the changes of state that are needed called Small Parsimony Algorithms. This paper has proposed enhanced small parsimony algorithm to give better score based on number of evolutionary changes needed to produce the observed sequence changes tree and also give the ancestor of the given input.

Keywords: Phylogenetic Analysis, Small Parsimony, EnhancedFitch Algorithm, Enhanced Sakoff Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1349
139 Fruit Growing in Romania and Its Role for Rural Communities’ Development

Authors: Maria Toader, Gheorghe Valentin Roman

Abstract:

The importance of fruit trees and bushes growing for Romania is due the concordance that exists between the different ecological conditions in natural basins, and the requirements of different species and varieties. There are, in Romania, natural areas dedicated to the main trees species: plum, apple, pear, cherry, sour cherry, finding optimal conditions for harnessing the potential of fruitfulness, making fruit quality both in terms of ratio commercial, and content in active principles. The share of fruits crops in the world economy of agricultural production is due primarily to the role of fruits in nourishment for human, and in the prevention and combating of diseases, in increasing the national income of cultivator countries and to improve comfort for human life. For Romania, the perspectives of the sector are positive, and are due to European funding opportunities, which provide farmers a specialized program that meets the needs of development and modernization of fruit growing industry, cultivation technology and equipment, organization and grouping of producers, creating storage facilities, conditioning, marketing and the joint use of fresh fruit. This paper shows the evolution of fruit growing, in Romania compared to other states. The document presents the current situation of the main tree species both in terms of surface but also of the productions and the role that this activity may have for the development of rural communities.

Keywords: Fruit growing, fruits trees, productivity, rural development.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1387
138 Ranking Genes from DNA Microarray Data of Cervical Cancer by a local Tree Comparison

Authors: Frank Emmert-Streib, Matthias Dehmer, Jing Liu, Max Muhlhauser

Abstract:

The major objective of this paper is to introduce a new method to select genes from DNA microarray data. As criterion to select genes we suggest to measure the local changes in the correlation graph of each gene and to select those genes whose local changes are largest. More precisely, we calculate the correlation networks from DNA microarray data of cervical cancer whereas each network represents a tissue of a certain tumor stage and each node in the network represents a gene. From these networks we extract one tree for each gene by a local decomposition of the correlation network. The interpretation of a tree is that it represents the n-nearest neighbor genes on the n-th level of a tree, measured by the Dijkstra distance, and, hence, gives the local embedding of a gene within the correlation network. For the obtained trees we measure the pairwise similarity between trees rooted by the same gene from normal to cancerous tissues. This evaluates the modification of the tree topology due to tumor progression. Finally, we rank the obtained similarity values from all tissue comparisons and select the top ranked genes. For these genes the local neighborhood in the correlation networks changes most between normal and cancerous tissues. As a result we find that the top ranked genes are candidates suspected to be involved in tumor growth. This indicates that our method captures essential information from the underlying DNA microarray data of cervical cancer.

Keywords: Graph similarity, generalized trees, graph alignment, DNA microarray data, cervical cancer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1753
137 Development of the Academic Model to Predict Student Success at VUT-FSASEC Using Decision Trees

Authors: Langa Hendrick Musawenkosi, Twala Bhekisipho

Abstract:

The success or failure of students is a concern for every academic institution, college, university, governments and students themselves. Several approaches have been researched to address this concern. In this paper, a view is held that when a student enters a university or college or an academic institution, he or she enters an academic environment. The academic environment is unique concept used to develop the solution for making predictions effectively. This paper presents a model to determine the propensity of a student to succeed or fail in the French South African Schneider Electric Education Center (FSASEC) at the Vaal University of Technology (VUT). The Decision Tree algorithm is used to implement the model at FSASEC.

Keywords: Academic environment model, decision trees, FSASEC, K-nearest neighbor, machine learning, popularity index, support vector machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1137
136 UB-Tree Indexing for Semantic Query Optimization of Range Queries

Authors: S. Housseno, A. Simonet, M. Simonet

Abstract:

Semantic query optimization consists in restricting the search space in order to reduce the set of objects of interest for a query. This paper presents an indexing method based on UB-trees and a static analysis of the constraints associated to the views of the database and to any constraint expressed on attributes. The result of the static analysis is a partitioning of the object space into disjoint blocks. Through Space Filling Curve (SFC) techniques, each fragment (block) of the partition is assigned a unique identifier, enabling the efficient indexing of fragments by UB-trees. The search space corresponding to a range query is restricted to a subset of the blocks of the partition. This approach has been developed in the context of a KB-DBMS but it can be applied to any relational system.

Keywords: Index, Range query, UB-tree, Space Filling Curve, Query optimization, Views, Database, Integrity Constraint, Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1500
135 Study of the Glucidic Fraction of Celtis Australis L, Crataegus Azarolus L, Crataegus Monogyna Jacq., Elaeagnus Angustifolia L. and Zizyphus Lotus L. Fruits

Authors: Saadoudi Mouni, Hamebaba Leila, Abdeddaim Mohamed

Abstract:

In Algeria, some fruit trees produce fruits in free nature. Such trees are Celtis australis, Crataegus azarolus, Crataegus monogyna and Zizyphus lotus. In spite of their appreciable consumption, their nutritional value remains unknown. The objective of this study is the determination of sugars in the pulpe and almond of the above fruits. The biochemical analysis shows that these fruits present interesting contents of soluble sugars which confers significant caloric intakes to them. As well as significant fibres which give them therapeutic and industrial benefits? The analysis of the almonds shows that it contains considerable contents of sugars which enable them to be an energetic food.

Keywords: Celtis australis, Crataegus azarolus, Crataegus monogyna, Zizyphus lotus, Fibres, Soluble sugars.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2112
134 DWT Based Image Steganalysis

Authors: Indradip Banerjee, Souvik Bhattacharyya, Gautam Sanyal

Abstract:

‘Steganalysis’ is one of the challenging and attractive interests for the researchers with the development of information hiding techniques. It is the procedure to detect the hidden information from the stego created by known steganographic algorithm. In this paper, a novel feature based image steganalysis technique is proposed. Various statistical moments have been used along with some similarity metric. The proposed steganalysis technique has been designed based on transformation in four wavelet domains, which include Haar, Daubechies, Symlets and Biorthogonal. Each domain is being subjected to various classifiers, namely K-nearest-neighbor, K* Classifier, Locally weighted learning, Naive Bayes classifier, Neural networks, Decision trees and Support vector machines. The experiments are performed on a large set of pictures which are available freely in image database. The system also predicts the different message length definitions.

Keywords: Steganalysis, Moments, Wavelet Domain, KNN, K*, LWL, Naive Bayes Classifier, Neural networks, Decision trees, SVM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2571
133 A Relative Analysis of Carbon and Dust Uptake by Important Tree Species in Tehran, Iran

Authors: Sahar Elkaee Behjati

Abstract:

Air pollution, particularly with dust, is one of the biggest issues Tehran is dealing with, and the city's green space which consists of trees has a critical role in absorption of it. The question this study aimed to investigate was which tree species the highest uptake capacity of the dust and carbon have suspended in the air. On this basis, 30 samples of trees from two different districts in Tehran were collected, and after washing and centrifuging, the samples were oven dried. The results of the study revealed that Ulmus minor had the highest amount of deposited dust in both districts. In addition, it was found that in Chamran district Ailanthus altissima and in Gandi district Ulmus minor has had the highest absorption of deposited carbon. Therefore, it could be argued that decision making on the selection of species for urban green spaces should take the above-mentioned parameters into account.

Keywords: Dust, leaves, uptake total carbon, tehran, tree species.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 731
132 Tree-on-DAG for Data Aggregation in Sensor Networks

Authors: Prakash G L, Thejaswini M, S H Manjula, K R Venugopal, L M Patnaik

Abstract:

Computing and maintaining network structures for efficient data aggregation incurs high overhead for dynamic events where the set of nodes sensing an event changes with time. Moreover, structured approaches are sensitive to the waiting time that is used by nodes to wait for packets from their children before forwarding the packet to the sink. An optimal routing and data aggregation scheme for wireless sensor networks is proposed in this paper. We propose Tree on DAG (ToD), a semistructured approach that uses Dynamic Forwarding on an implicitly constructed structure composed of multiple shortest path trees to support network scalability. The key principle behind ToD is that adjacent nodes in a graph will have low stretch in one of these trees in ToD, thus resulting in early aggregation of packets. Based on simulations on a 2,000-node Mica2- based network, we conclude that efficient aggregation in large-scale networks can be achieved by our semistructured approach.

Keywords: Aggregation, Packet Merging, Query Processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1931
131 A Decision Boundary based Discretization Technique using Resampling

Authors: Taimur Qureshi, Djamel A Zighed

Abstract:

Many supervised induction algorithms require discrete data, even while real data often comes in a discrete and continuous formats. Quality discretization of continuous attributes is an important problem that has effects on speed, accuracy and understandability of the induction models. Usually, discretization and other types of statistical processes are applied to subsets of the population as the entire population is practically inaccessible. For this reason we argue that the discretization performed on a sample of the population is only an estimate of the entire population. Most of the existing discretization methods, partition the attribute range into two or several intervals using a single or a set of cut points. In this paper, we introduce a technique by using resampling (such as bootstrap) to generate a set of candidate discretization points and thus, improving the discretization quality by providing a better estimation towards the entire population. Thus, the goal of this paper is to observe whether the resampling technique can lead to better discretization points, which opens up a new paradigm to construction of soft decision trees.

Keywords: Bootstrap, discretization, resampling, soft decision trees.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1434
130 Identification of Healthy and BSR-Infected Oil Palm Trees Using Color Indices

Authors: Siti Khairunniza-Bejo, Yusnida Yusoff, Nik Salwani Nik Yusoff, Idris Abu Seman, Mohamad Izzuddin Anuar

Abstract:

Most of the oil palm plantations have been threatened by Basal Stem Rot (BSR) disease which causes serious economic impact. This study was conducted to identify the healthy and BSRinfected oil palm tree using thirteen color indices. Multispectral and thermal camera was used to capture 216 images of the leaves taken from frond number 1, 9 and 17. Indices of normalized difference vegetation index (NDVI), red (R), green (G), blue (B), near infrared (NIR), green – blue (GB), green/blue (G/B), green – red (GR), green/red (G/R), hue (H), saturation (S), intensity (I) and thermal index (T) were used. From this study, it can be concluded that G index taken from frond number 9 is the best index to differentiate between the healthy and BSR-infected oil palm trees. It not only gave high value of correlation coefficient (R=-0.962), but also high value of separation between healthy and BSR-infected oil palm tree. Furthermore, power and S model developed using G index gave the highest R2 value which is 0.985.

Keywords: Oil palm, image processing, disease, leaves.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2960
129 A Detailed Timber Harvest Simulator Coupled with 3-D Visualization

Authors: Jürgen Roßmann, Gerrit Alves

Abstract:

In today-s world, the efficient utilization of wood resources comes more and more to the mind of forest owners. It is a very complex challenge to ensure an efficient harvest of the wood resources. This is one of the scopes the project “Virtual Forest II" addresses. Its core is a database with data about forests containing approximately 260 million trees located in North Rhine-Westphalia (NRW). Based on this data, tree growth simulations and wood mobilization simulations can be conducted. This paper focuses on the latter. It describes a discrete-event-simulation with an attached 3-D real time visualization which simulates timber harvest using trees from the database with different crop resources. This simulation can be displayed in 3-D to show the progress of the wood crop. All the data gathered during the simulation is presented as a detailed summary afterwards. This summary includes cost-benefit calculations and can be compared to those of previous runs to optimize the financial outcome of the timber harvest by exchanging crop resources or modifying their parameters.

Keywords: Timber harvest, simulation, 3-D, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1381
128 Phytoremediation of Cd and Pb by Four Tropical Timber Species Grown on an Ex-tin Mine in Peninsular Malaysia

Authors: Lai Hoe Ang, Lai Kuen Tang, Wai Mun Ho, Ting Fui Hui, Gary W. Theseira

Abstract:

Contamination of heavy metals in tin tailings has caused an interest in the scientific approach of their remediation. One of the approaches is through phytoremediation, which is using tree species to extract the heavy metals from the contaminated soils. Tin tailings comprise of slime and sand tailings. This paper reports only on the finding of the four timber species namely Acacia mangium, Hopea odorata, Intsia palembanica and Swietenia macrophylla on the removal of cadmium (Cd) and lead (Pb) from the slime tailings. The methods employed for sampling and soil analysis are established methods. Six trees of each species were randomly selected from a 0.25 ha plot for extraction and determination of their heavy metals. The soil samples were systematically collected according to 5 x 5 m grid from each plot. Results showed that the concentration of heavy metals in soils and trees varied according to species. Higher concentration of heavy metals was found in the stem than the primary roots of all the species. A. Mangium accumulated the highest total amount of Pb per hectare basis.

Keywords: Cd, Pb, Phytoremediation of slimetailings, timber species.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2752
127 The Design of English Materials to communication the Identity of Amphawa District, Samut Songkram Province, for Sustainable Tourism

Authors: K. Praraththajariya

Abstract:

The main purpose of this research was to study how to communicate the identity of the Amphawa district, Samut Songkram province for sustainable tourism. The qualitative data was collected through studying related materials, exploring the area, in-depth interviews with three groups of people: three directly responsible officers who were key informants of the district, twenty foreign tourists and five Thai tourist guides. A content analysis was used to analyze the qualitative data. The two main findings of the study were as follows: 1. The identity of the Amphawa District, Samut Songkram province is the area controlled by Amphawa sub district (submunicipality). The working unit which runs and looks after Amphawa sub district administration is known as the Amphawa mayor. This establishment was built to be a resort for normal people and tourists visiting the Amphawa district near the Maekong River consisting of rest accommodations. Along the river there is a restaurant where food and drinks are served, rich mangrove forests, a learning center, fireflies and cork trees. The Amphawa district was built to honor and commemorate King Rama II and is where the greatest number of fireflies and cork trees can be seen in Thailand from May to October each year. 2. The communication of the identity of Amphawa District, Samut Songkram Province which the researcher could find and design to present in English materials can be summed up in 5 items: 1) The history of the Amphawa District, Samut Songkram province 2) The history of King Rama II Memorial Park 3) The identity of Amphawa Floating Market 4) The Learning center of Ecosystem: Fireflies and Cork Trees 5) How to keep Amphawa District, Samut Songkram Province for sustainable tourism.

Keywords: Foreigner tourists, signified, semiotics, sustainable tourism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1790
126 Determination of Water Pollution and Water Quality with Decision Trees

Authors: Çiğdem Bakır, Mecit Yüzkat

Abstract:

With the increasing emphasis on water quality worldwide, the search for and expanding the market for new and intelligent monitoring systems has increased. The current method is the laboratory process, where samples are taken from bodies of water, and tests are carried out in laboratories. This method is time-consuming, a waste of manpower and uneconomical. To solve this problem, we used machine learning methods to detect water pollution in our study. We created decision trees with the Orange3 software used in the study and tried to determine all the factors that cause water pollution. An automatic prediction model based on water quality was developed by taking many model inputs such as water temperature, pH, transparency, conductivity, dissolved oxygen, and ammonia nitrogen with machine learning methods. The proposed approach consists of three stages: Preprocessing of the data used, feature detection and classification. We tried to determine the success of our study with different accuracy metrics and the results were presented comparatively. In addition, we achieved approximately 98% success with the decision tree.

Keywords: Decision tree, water quality, water pollution, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 260
125 Architectural Stratification and Woody Species Diversity of a Subtropical Forest Grown in a Limestone Habitat in Okinawa Island, Japan

Authors: S. M. Feroz, K. Yoshimura, A. Hagihara

Abstract:

The forest stand consisted of four layers. The species composition between the third and the bottom layers was almost similar, whereas it was almost exclusive between the top and the lower three layers. The values of Shannon-s index H' and Pielou-s index J ' tended to increase from the bottom layer upward, except for H' -value of the top layer. The values of H' and J ' were 4.21 bit and 0.73, respectively, for the total stand. High woody species diversity of the forest depended on large trees in the upper layers, which trend was different from a subtropical evergreen broadleaf forest grown in silicate habitat in the northern part of Okinawa Island. The spatial distribution of trees was overlapped between the third and the bottom layers, whereas it was independent or slightly exclusive between the top and the lower three layers. Mean tree weight of each layer decreased from the top toward the bottom layer, whereas the corresponding tree density increased from the top downward. This relationship was analogous to the process of self-thinning plant populations.

Keywords: Canopy multi-layering, limestone habitat, mean tree weight-density relationship, species diversity, subtropical forest.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1227
124 Predicting Protein-Protein Interactions from Protein Sequences Using Phylogenetic Profiles

Authors: Omer Nebil Yaveroglu, Tolga Can

Abstract:

In this study, a high accuracy protein-protein interaction prediction method is developed. The importance of the proposed method is that it only uses sequence information of proteins while predicting interaction. The method extracts phylogenetic profiles of proteins by using their sequence information. Combining the phylogenetic profiles of two proteins by checking existence of homologs in different species and fitting this combined profile into a statistical model, it is possible to make predictions about the interaction status of two proteins. For this purpose, we apply a collection of pattern recognition techniques on the dataset of combined phylogenetic profiles of protein pairs. Support Vector Machines, Feature Extraction using ReliefF, Naive Bayes Classification, K-Nearest Neighborhood Classification, Decision Trees, and Random Forest Classification are the methods we applied for finding the classification method that best predicts the interaction status of protein pairs. Random Forest Classification outperformed all other methods with a prediction accuracy of 76.93%

Keywords: Protein Interaction Prediction, Phylogenetic Profile, SVM , ReliefF, Decision Trees, Random Forest Classification

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1613
123 Predictive Analysis for Big Data: Extension of Classification and Regression Trees Algorithm

Authors: Ameur Abdelkader, Abed Bouarfa Hafida

Abstract:

Since its inception, predictive analysis has revolutionized the IT industry through its robustness and decision-making facilities. It involves the application of a set of data processing techniques and algorithms in order to create predictive models. Its principle is based on finding relationships between explanatory variables and the predicted variables. Past occurrences are exploited to predict and to derive the unknown outcome. With the advent of big data, many studies have suggested the use of predictive analytics in order to process and analyze big data. Nevertheless, they have been curbed by the limits of classical methods of predictive analysis in case of a large amount of data. In fact, because of their volumes, their nature (semi or unstructured) and their variety, it is impossible to analyze efficiently big data via classical methods of predictive analysis. The authors attribute this weakness to the fact that predictive analysis algorithms do not allow the parallelization and distribution of calculation. In this paper, we propose to extend the predictive analysis algorithm, Classification And Regression Trees (CART), in order to adapt it for big data analysis. The major changes of this algorithm are presented and then a version of the extended algorithm is defined in order to make it applicable for a huge quantity of data.

Keywords: Predictive analysis, big data, predictive analysis algorithms. CART algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1075
122 An Enhanced Distributed System to improve theTime Complexity of Binary Indexed Trees

Authors: Ahmed M. Elhabashy, A. Baes Mohamed, Abou El Nasr Mohamad

Abstract:

Distributed Computing Systems are usually considered the most suitable model for practical solutions of many parallel algorithms. In this paper an enhanced distributed system is presented to improve the time complexity of Binary Indexed Trees (BIT). The proposed system uses multi-uniform processors with identical architectures and a specially designed distributed memory system. The analysis of this system has shown that it has reduced the time complexity of the read query to O(Log(Log(N))), and the update query to constant complexity, while the naive solution has a time complexity of O(Log(N)) for both queries. The system was implemented and simulated using VHDL and Verilog Hardware Description Languages, with xilinx ISE 10.1, as the development environment and ModelSim 6.1c, similarly as the simulation tool. The simulation has shown that the overhead resulting by the wiring and communication between the system fragments could be fairly neglected, which makes it applicable to practically reach the maximum speed up offered by the proposed model.

Keywords: Binary Index Tree (BIT), Least Significant Bit (LSB), Parallel Adder (PA), Very High Speed Integrated Circuits HardwareDescription Language (VHDL), Distributed Parallel Computing System(DPCS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1770