Search results for: optimal price.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1898

Search results for: optimal price.

1868 Economic Forecasting Model in Practice Using the Regression Analysis: The Relationship of Price, Domestic Output, Gross National Product, and Trend Variable of Gas or Oil Production

Authors: Ashiquer Rahman, Ummey Salma, Afrin Jannat

Abstract:

Recently, oil has become more influential in almost every economic sector as a key material. As can be seen from the news, when there are some changes in an oil price or Organization of the Petroleum Exporting Countries (OPEC) announces a new strategy, its effect spreads to every part of the economy directly and indirectly. That’s a reason why people always observe the oil price and try to forecast the changes of it. The most important factor affecting the price is its supply which is determined by the number of wildcats drilled. Therefore, a study in relation between the number of wellheads and other economic variables may give us some understanding of the mechanism indicated the amount of oil supplies. In this paper, we will consider a relationship between the number of wellheads and three key factors: price of the wellhead, domestic output, and Gross National Product (GNP) constant dollars. We also add trend variables in the models because the consumption of oil varies from time to time. Moreover, this paper will use an econometrics method to estimate parameters in the model, apply some tests to verify the result we acquire, and then conclude the model.

Keywords: Price, domestic output, GNP, trend variable, wildcat activity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36
1867 Price Quoting Method for Contract Manufacturer

Authors: S. Homrossukon, W. Parinyasart

Abstract:

This is an applied research to propose the method for price quotation for a contract electronics manufacturer. It has had a precise price quoting method but such method could not quickly provide a result as the customer required. This reduces the ability of company to compete in this kind of business. In this case, the cause of long time quotation process was analyzed. A lot of product features have been demanded by customer. By checking routine processes, it was found that high fraction of quoting time was used for production time estimating which has effected to the manufacturing or production cost. Then the historical data of products including types, number of components, assembling method, and their assembling time were used to analyze the key components affecting to production time. The price quoting model then was proposed. The implementation of proposed model was able to remarkably reduce quoting time with an acceptable required precision.

Keywords: Price quoting, Contract manufacturer, Stepwise technique, Best subset technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4431
1866 The Optimal Placement of Capacitor in Order to Reduce Losses and the Profile of Distribution Network Voltage with GA, SA

Authors: Limouzade E., Joorabian M.

Abstract:

Most of the losses in a power system relate to the distribution sector which always has been considered. From the important factors which contribute to increase losses in the distribution system is the existence of radioactive flows. The most common way to compensate the radioactive power in the system is the power to use parallel capacitors. In addition to reducing the losses, the advantages of capacitor placement are the reduction of the losses in the release peak of network capacity and improving the voltage profile. The point which should be considered in capacitor placement is the optimal placement and specification of the amount of the capacitor in order to maximize the advantages of capacitor placement. In this paper, a new technique has been offered for the placement and the specification of the amount of the constant capacitors in the radius distribution network on the basis of Genetic Algorithm (GA). The existing optimal methods for capacitor placement are mostly including those which reduce the losses and voltage profile simultaneously. But the retaliation cost and load changes have not been considered as influential UN the target function .In this article, a holistic approach has been considered for the optimal response to this problem which includes all the parameters in the distribution network: The price of the phase voltage and load changes. So, a vast inquiry is required for all the possible responses. So, in this article, we use Genetic Algorithm (GA) as the most powerful method for optimal inquiry.

Keywords: Genetic Algorithm (GA), capacitor placement, voltage profile, network losses, Simulating Annealing (SA), distribution network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1536
1865 Determination of a Fair Price for Blood Transportation by Applying the Vehicle Routing Problem: A Case for National Blood Center, Thailand

Authors: S. Pathomsiri, P. Sukaboon

Abstract:

The National Blood Center, Thai Red Cross Society is responsible for providing blood to hospitals all over the country. When any hospital needs blood, it will have to send the vehicle to pick up at the NBC. There are a lot of vehicles to pick up blood at the NBC every day. Each vehicle is usually empty for inbound trip and a little loaded for outbound. The NBC realized such waste or loss and there have been the third party offered to distribute blood and charge for fee. This paper proposes to apply the vehicle routing problem (VRP) for estimating the fair price. The idea is tested with the real data during seven-day period of 6 – 12 July 2010 to estimate the fair price for transporting blood in Bangkok Metropolitan Region.

Keywords: Blood Supply Chain, Vehicle Routing Problem, Heuristic, Saving Algorithm, Fair Price.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2041
1864 Stock Movement Prediction Using Price Factor and Deep Learning

Authors: Hy Dang, Bo Mei

Abstract:

The development of machine learning methods and techniques has opened doors for investigation in many areas such as medicines, economics, finance, etc. One active research area involving machine learning is stock market prediction. This research paper tries to consider multiple techniques and methods for stock movement prediction using historical price or price factors. The paper explores the effectiveness of some deep learning frameworks for forecasting stock. Moreover, an architecture (TimeStock) is proposed which takes the representation of time into account apart from the price information itself. Our model achieves a promising result that shows a potential approach for the stock movement prediction problem.

Keywords: Classification, machine learning, time representation, stock prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1154
1863 Understanding the Influence of Sensory Attributes on Wine Price: Case study of Pinot Noir Wines

Authors: Jingxian An, Wei Yu

Abstract:

The commercial value (retail price) of wine is mostly determined by the wine quality, ageing potential, and oak influence. This paper reveals that wine quality, ageing potential, and oak influence are favourably correlated, hence positively influencing the commercial value of Pinot noir wines. Oak influence is the most influential of these three sensory attributes on the price set by wine traders and estimated by experienced customers. In the meanwhile, this study gives winemakers with chemical instructions for raising total phenolics, which can improve wine quality, ageing potential, and oak influence, all of which can increase a wine’s economic worth.

Keywords: Retail price, ageing potential, wine quality, oak influence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 409
1862 Optimal Compensation of Reactive Power in the Restructured Distribution Network

Authors: Atefeh Pourshafie, Mohsen. Saniei, S. S. Mortazavi, A. Saeedian

Abstract:

In this paper optimal capacitor placement problem has been formulated in a restructured distribution network. In this scenario the distribution network operator can consider reactive energy also as a service that can be sold to transmission system. Thus search for optimal location, size and number of capacitor banks with the objective of loss reduction, maximum income from selling reactive energy to transmission system and return on investment for capacitors, has been performed. Results is influenced with economic value of reactive energy, therefore problem has been solved for various amounts of it. The implemented optimization technique is genetic algorithm. For any value of reactive power economic value, when reverse of investment index increase and change from zero or negative values to positive values, the threshold value of selling reactive power has been obtained. This increasing price of economic parameter is reasonable until the network losses is less than loss before compensation.

Keywords: capacitor placement, deregulated electric market, distribution network optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2123
1861 Forecasting Stock Price Manipulation in Capital Market

Authors: F. Rahnamay Roodposhti, M. Falah Shams, H. Kordlouie

Abstract:

The aim of the article is extending and developing econometrics and network structure based methods which are able to distinguish price manipulation in Tehran stock exchange. The principal goal of the present study is to offer model for approximating price manipulation in Tehran stock exchange. In order to do so by applying separation method a sample consisting of 397 companies accepted at Tehran stock exchange were selected and information related to their price and volume of trades during years 2001 until 2009 were collected and then through performing runs test, skewness test and duration correlative test the selected companies were divided into 2 sets of manipulated and non manipulated companies. In the next stage by investigating cumulative return process and volume of trades in manipulated companies, the date of starting price manipulation was specified and in this way the logit model, artificial neural network, multiple discriminant analysis and by using information related to size of company, clarity of information, ratio of P/E and liquidity of stock one year prior price manipulation; a model for forecasting price manipulation of stocks of companies present in Tehran stock exchange were designed. At the end the power of forecasting models were studied by using data of test set. Whereas the power of forecasting logit model for test set was 92.1%, for artificial neural network was 94.1% and multi audit analysis model was 90.2%; therefore all of the 3 aforesaid models has high power to forecast price manipulation and there is no considerable difference among forecasting power of these 3 models.

Keywords: Price Manipulation, Liquidity, Size of Company, Floating Stock, Information Clarity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2853
1860 Determination of Q and R Matrices for Optimal Pitch Aircraft Control

Authors: N. Popovich, P. Yan

Abstract:

In this paper, the process of obtaining Q and R matrices for optimal pitch aircraft control system has been described. Since the innovation of optimal control method, the determination of Q and R matrices for such system has not been fully specified. The value of Q and R for optimal pitch aircraft control application, have been simulated and calculated. The suitable results for Q and R have been observed through the performance index (PI). If the PI is small “enough", we would say the Q & R values are suitable for that certain type of optimal control system. Moreover, for the same value of PI, we could have different Q and R sets. Due to the rule-free determination of Q and R matrices, a specific method is brought to find out the rough value of Q and R referring to rather small value of PI.

Keywords: Aircraft, control, digital, optimal, Q and R matrices

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1743
1859 Areas of Lean Manufacturing for Productivity Improvement in a Manufacturing Unit

Authors: Hudli Mohd. Rameez, K.H.Inamdar

Abstract:

Many organisations are nowadays interested to adopt lean manufacturing strategy that would enable them to compete in this competitive globalisation market. In this respect, it is necessary to assess the implementation of lean manufacturing in different organisations so that the important best practices can be identified. This paper describes the development of key areas which will be used to assess the adoption and implementation of lean manufacturing practices. There are some key areas developed to evaluate and reduce the most optimal projects so as to enhance their production efficiency and increase the purpose of the economic benefits of the manufacturing unit. Lean manufacturing is becoming lean enterprise by treating its customers and suppliers as partners. This gives the extra edge in today-s cost and time competitive markets. The organisation is becoming strong in all the conventional competition points. They are Price, Quality and Delivery. Lean enterprise owners can deliver high quality products quickly, with low price.

Keywords: Competitive points, implementation, Leanmanufacturing, tools and techniques

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3316
1858 Prediction on Housing Price Based on Deep Learning

Authors: Li Yu, Chenlu Jiao, Hongrun Xin, Yan Wang, Kaiyang Wang

Abstract:

In order to study the impact of various factors on the housing price, we propose to build different prediction models based on deep learning to determine the existing data of the real estate in order to more accurately predict the housing price or its changing trend in the future. Considering that the factors which affect the housing price vary widely, the proposed prediction models include two categories. The first one is based on multiple characteristic factors of the real estate. We built Convolution Neural Network (CNN) prediction model and Long Short-Term Memory (LSTM) neural network prediction model based on deep learning, and logical regression model was implemented to make a comparison between these three models. Another prediction model is time series model. Based on deep learning, we proposed an LSTM-1 model purely regard to time series, then implementing and comparing the LSTM model and the Auto-Regressive and Moving Average (ARMA) model. In this paper, comprehensive study of the second-hand housing price in Beijing has been conducted from three aspects: crawling and analyzing, housing price predicting, and the result comparing. Ultimately the best model program was produced, which is of great significance to evaluation and prediction of the housing price in the real estate industry.

Keywords: Deep learning, convolutional neural network, LSTM, housing prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4990
1857 The Proof of Analogous Results for Martingales and Partial Differential Equations Options Price Valuation Formulas Using Stochastic Differential Equation Models in Finance

Authors: H. D. Ibrahim, H. C. Chinwenyi, A. H. Usman

Abstract:

Valuing derivatives (options, futures, swaps, forwards, etc.) is one uneasy task in financial mathematics. The two ways this problem can be effectively resolved in finance is by the use of two methods (Martingales and Partial Differential Equations (PDEs)) to obtain their respective options price valuation formulas. This research paper examined two different stochastic financial models which are Constant Elasticity of Variance (CEV) model and Black-Karasinski term structure model. Assuming their respective option price valuation formulas, we proved the analogous of the Martingales and PDEs options price valuation formulas for the two different Stochastic Differential Equation (SDE) models. This was accomplished by using the applications of Girsanov theorem for defining an Equivalent Martingale Measure (EMM) and the Feynman-Kac theorem. The results obtained show the systematic proof for analogous of the two (Martingales and PDEs) options price valuation formulas beginning with the Martingales option price formula and arriving back at the Black-Scholes parabolic PDEs and vice versa.

Keywords: Option price valuation, Martingales, Partial Differential Equations, PDEs, Equivalent Martingale Measure, Girsanov Theorem, Feyman-Kac Theorem, European Put Option.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 388
1856 Evaluating the Effect of Domestic Price on Rice Production in an African Setting: A Typical Evidence of the Sierra Leone Case

Authors: Alhaji M. H. Conteh, Xiangbin Yan, Alfred V Gborie

Abstract:

Rice, which is the staple food in Sierra Leone, is consumed on a daily basis. It is the most imperative food crop extensively grown by farmers across all ecologies in the country. Though much attention is now given to rice grain production through the small holder commercialization programme (SHCP), however, no attention has been given in investigating the limitations faced by rice producers. This paper will contribute to attempts to overcome the development challenges caused by food insecurity. The objective of this paper is thus, to analysis the relationship between rice production and the domestic retail price of rice. The study employed a log linear model in which, the quantity of rice produced is the dependent variable, quantity of rice imported, price of imported rice and price of domestic rice as explanatory variables. Findings showed that, locally produced rice is even more expensive than the imported rice per ton, and almost all the inhabitants in the capital city which hosts about 65% of the entire population of the country favor imported rice, as it is free from stones with other impurities. On the other hand, to control price and simultaneously increase rice production, the government should purchase the rice from the farmers and then sell to private retailers.

Keywords: Domestic price of rice, Econometric model, Rice production, Sierra Leone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2480
1855 A Multiple Linear Regression Model to Predict the Price of Cement in Nigeria

Authors: Kenneth M. Oba

Abstract:

This study investigated factors affecting the price of cement in Nigeria, and developed a mathematical model that can predict future cement prices. Cement is key in the Nigerian construction industry. The changes in price caused by certain factors could affect economic and infrastructural development; hence there is need for proper proactive planning. Secondary data were collected from published information on cement between 2014 and 2019. In addition, questionnaires were sent to some domestic cement retailers in Port Harcourt in Nigeria, to obtain the actual prices of cement between the same periods. The study revealed that the most critical factors affecting the price of cement in Nigeria are inflation rate, population growth rate, and Gross Domestic Product (GDP) growth rate. With the use of data from United Nations, International Monetary Fund, and Central Bank of Nigeria databases, amongst others, a Multiple Linear Regression model was formulated. The model was used to predict the price of cement for 2020-2025. The model was then tested with 95% confidence level, using a two-tailed t-test and an F-test, resulting in an R2 of 0.8428 and R2 (adj.) of 0.6069. The results of the tests and the correlation factors confirm the model to be fit and adequate. This study will equip researchers and stakeholders in the construction industry with information for planning, monitoring, and management of present and future construction projects that involve the use of cement.

Keywords: Cement price, multiple linear regression model, Nigerian Construction Industry, price prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 791
1854 Prediction-Based Midterm Operation Planning for Energy Management of Exhibition Hall

Authors: Doseong Eom, Jeongmin Kim, Kwang Ryel Ryu

Abstract:

Large exhibition halls require a lot of energy to maintain comfortable atmosphere for the visitors viewing inside. One way of reducing the energy cost is to have thermal energy storage systems installed so that the thermal energy can be stored in the middle of night when the energy price is low and then used later when the price is high. To minimize the overall energy cost, however, we should be able to decide how much energy to save during which time period exactly. If we can foresee future energy load and the corresponding cost, we will be able to make such decisions reasonably. In this paper, we use machine learning technique to obtain models for predicting weather conditions and the number of visitors on hourly basis for the next day. Based on the energy load thus predicted, we build a cost-optimal daily operation plan for the thermal energy storage systems and cooling and heating facilities through simulation-based optimization.

Keywords: Building energy management, machine learning, simulation-based optimization, operation planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 989
1853 Optimal Management of Internal Capital of Company

Authors: S. Sadallah

Abstract:

In this paper, dynamic programming is used to determine the optimal management of financial resources in company. Solution of the problem by consider into simpler substructures is constructed. The optimal management of internal capital of company are simulated. The tools applied in this development are based on graph theory. The software of given problems is built by using greedy algorithm. The obtained model and program maintenance enable us to define the optimal version of management of proper financial flows by using visual diagram on each level of investment.

Keywords: Management, software, optimal, greedy algorithm, graph-diagram.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1104
1852 A Zero-Cost Collar Option Applied to Materials Procurement Contracts to Reduce Price Fluctuation Risks in Construction

Authors: H. L. Yim, S. H. Lee, S. K. Yoo, J. J. Kim

Abstract:

This study proposes a materials procurement contracts model to which the zero-cost collar option is applied for heading price fluctuation risks in construction.The material contract model based on the collar option that consists of the call option striking zone of the construction company(the buyer) following the materials price increase andthe put option striking zone of the material vendor(the supplier) following a materials price decrease. This study first determined the call option strike price Xc of the construction company by a simple approach: it uses the predicted profit at the project starting point and then determines the strike price of put option Xp that has an identical option value, which completes the zero-cost material contract.The analysis results indicate that the cost saving of the construction company increased as Xc decreased. This was because the critical level of the steel materials price increasewas set at a low level. However, as Xc decreased, Xpof a put option that had an identical option value gradually increased. Cost saving increased as Xc decreased. However, as Xp gradually increased, the risk of loss from a construction company increased as the steel materials price decreased. Meanwhile, cost saving did not occur for the construction company, because of volatility. This result originated in the zero-cost features of the two-way contract of the collar option. In the case of the regular one-way option, the transaction cost had to be subtracted from the cost saving. The transaction cost originated from an option value that fluctuated with the volatility. That is, the cost saving of the one-way option was affected by the volatility. Meanwhile, even though the collar option with zero transaction cost cut the connection between volatility and cost saving, there was a risk of exercising the put option.

Keywords: Construction materials, Supply chain management, Procurement, Payment, Collar option

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2522
1851 Optimal Distributed Generator Sizing and Placement by Analytical Method and PSO Algorithm Considering Optimal Reactive Power Dispatch

Authors: Kyaw Myo Lin, Pyone Lai Swe, Khine Zin Oo

Abstract:

In this paper, an approach combining analytical method for the distributed generator (DG) sizing and meta-heuristic search for the optimal location of DG has been presented. The optimal size of DG on each bus is estimated by the loss sensitivity factor method while the optimal sites are determined by Particle Swarm Optimization (PSO) based optimal reactive power dispatch for minimizing active power loss. To confirm the proposed approach, it has been tested on IEEE-30 bus test system. The adjustments of operating constraints and voltage profile improvements have also been observed. The obtained results show that the allocation of DGs results in a significant loss reduction with good voltage profiles and the combined approach is competent in keeping the system voltages within the acceptable limits.

Keywords: Analytical approach, distributed generations, optimal size, optimal location, optimal reactive power dispatch, particle swarm optimization algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1172
1850 Perceived Quality of Regional Products in MS Region

Authors: M. Stoklasa, H. Starzyczna, K. Matusinska

Abstract:

This article deals with the perceived quality of regional products in the Moravian-Silesian region in the Czech Republic. Research was focused on finding out what do consumers perceive as a quality product and what characteristics make a quality product. The data were obtained by questionnaire survey andanalysed by IBM SPSS. From the thousands of respondents the representative sample of 719 for MS region was created based on demographic factors of gender, age, education and income. The research analysis disclosed that consumers in MS region are still price oriented and that the preference of quality over price does not depend on regional brand knowledge.

Keywords: Regional brands, quality products, characteristics of quality, quality over price.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1841
1849 Optimal Control Problem, Quasi-Assignment Problem and Genetic Algorithm

Authors: Omid S. Fard, Akbar H. Borzabadi

Abstract:

In this paper we apply one of approaches in category of heuristic methods as Genetic Algorithms for obtaining approximate solution of optimal control problems. The firs we convert optimal control problem to a quasi Assignment Problem by defining some usual characters as defined in Genetic algorithm applications. Then we obtain approximate optimal control function as an piecewise constant function. Finally the numerical examples are given.

Keywords: Optimal control, Integer programming, Genetic algorithm, Discrete approximation, Linear programming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1293
1848 Optimal Space Vector Control for Permanent Magnet Synchronous Motor based on Nonrecursive Riccati Equation

Authors: Marian Gaiceanu, Emil Rosu

Abstract:

In this paper the optimal control strategy for Permanent Magnet Synchronous Motor (PMSM) based drive system is presented. The designed full optimal control is available for speed operating range up to base speed. The optimal voltage space-vector assures input energy reduction and stator loss minimization, maintaining the output energy in the same limits with the conventional PMSM electrical drive. The optimal control with three components is based on the energetically criteria and it is applicable in numerical version, being a nonrecursive solution. The simulation results confirm the increased efficiency of the optimal PMSM drive. The properties of the optimal voltage space vector are shown.

Keywords: Matlab/Simulink, optimal control, permanent magnet synchronous motor, Riccati equation, space vector PWM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2025
1847 GenCos- Optimal Bidding Strategy Considering Market Power and Transmission Constraints: A Cournot-based Model

Authors: A. Badri

Abstract:

Restructured electricity markets may provide opportunities for producers to exercise market power maintaining prices in excess of competitive levels. In this paper an oligopolistic market is presented that all Generation Companies (GenCos) bid in a Cournot model. Genetic algorithm (GA) is applied to obtain generation scheduling of each GenCo as well as hourly market clearing prices (MCP). In order to consider network constraints a multiperiod framework is presented to simulate market clearing mechanism in which the behaviors of market participants are modelled through piecewise block curves. A mixed integer linear programming (MILP) is employed to solve the problem. Impacts of market clearing process on participants- characteristic and final market prices are presented. Consequently, a novel multi-objective model is addressed for security constrained optimal bidding strategy of GenCos. The capability of price-maker GenCos to alter MCP is evaluated through introducing an effective-supply curve. In addition, the impact of exercising market power on the variation of market characteristics as well as GenCos scheduling is studied.

Keywords: Optimal bidding strategy, Cournot equilibrium, market power, network constraints, market auction mechanism

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1652
1846 Scheduling Method for Electric Heater in HEMS Considering User’s Comfort

Authors: Yong-Sung Kim, Je-Seok Shin, Ho-Jun Jo Jin-O Kim

Abstract:

Home Energy Management System (HEMS), which makes the residential consumers, contribute to the demand response is attracting attention in recent years. An aim of HEMS is to minimize their electricity cost by controlling the use of their appliances according to electricity price. The use of appliances in HEMS may be affected by some conditions such as external temperature and electricity price. Therefore, the user’s usage pattern of appliances should be modeled according to the external conditions, and the resultant usage pattern is related to the user’s comfortability on use of each appliances. This paper proposes a methodology to model the usage pattern based on the historical data with the copula function. Through copula function, the usage range of each appliance can be obtained and is able to satisfy the appropriate user’s comfort according to the external conditions for next day. Within the usage range, an optimal scheduling for appliances would be conducted so as to minimize an electricity cost with considering user’s comfort. Among the home appliance, electric heater (EH) is a representative appliance, which is affected by the external temperature. In this paper, an optimal scheduling algorithm for an electric heater (EH) is addressed based on the method of branch and bound. As a result, scenarios for the EH usage are obtained according to user’s comfort levels and then the residential consumer would select the best scenario. The case study shows the effects of the proposed algorithm compared with the traditional operation of the EH, and it represents impacts of the comfort level on the scheduling result.

Keywords: Load scheduling, usage pattern, user’s comfort, copula function, branch, bound, electric heater.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2075
1845 Operations Research Applications in Audit Planning and Scheduling

Authors: Abdel-Aziz M. Mohamed

Abstract:

This paper presents a state-of-the-art survey of the operations research models developed for internal audit planning. Two alternative approaches have been followed in the literature for audit planning: (1) identifying the optimal audit frequency; and (2) determining the optimal audit resource allocation. The first approach identifies the elapsed time between two successive audits, which can be presented as the optimal number of audits in a given planning horizon, or the optimal number of transactions after which an audit should be performed. It also includes the optimal audit schedule. The second approach determines the optimal allocation of audit frequency among all auditable units in the firm. In our review, we discuss both the deterministic and probabilistic models developed for audit planning. In addition, game theory models are reviewed to find the optimal auditing strategy based on the interactions between the auditors and the clients.

Keywords: Operations research applications, audit frequency, audit planning, audit-staff scheduling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2933
1844 Electricity Price Forecasting: A Comparative Analysis with Shallow-ANN and DNN

Authors: Fazıl Gökgöz, Fahrettin Filiz

Abstract:

Electricity prices have sophisticated features such as high volatility, nonlinearity and high frequency that make forecasting quite difficult. Electricity price has a volatile and non-random character so that, it is possible to identify the patterns based on the historical data. Intelligent decision-making requires accurate price forecasting for market traders, retailers, and generation companies. So far, many shallow-ANN (artificial neural networks) models have been published in the literature and showed adequate forecasting results. During the last years, neural networks with many hidden layers, which are referred to as DNN (deep neural networks) have been using in the machine learning community. The goal of this study is to investigate electricity price forecasting performance of the shallow-ANN and DNN models for the Turkish day-ahead electricity market. The forecasting accuracy of the models has been evaluated with publicly available data from the Turkish day-ahead electricity market. Both shallow-ANN and DNN approach would give successful result in forecasting problems. Historical load, price and weather temperature data are used as the input variables for the models. The data set includes power consumption measurements gathered between January 2016 and December 2017 with one-hour resolution. In this regard, forecasting studies have been carried out comparatively with shallow-ANN and DNN models for Turkish electricity markets in the related time period. The main contribution of this study is the investigation of different shallow-ANN and DNN models in the field of electricity price forecast. All models are compared regarding their MAE (Mean Absolute Error) and MSE (Mean Square) results. DNN models give better forecasting performance compare to shallow-ANN. Best five MAE results for DNN models are 0.346, 0.372, 0.392, 0,402 and 0.409.

Keywords: Deep learning, artificial neural networks, energy price forecasting, Turkey.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1098
1843 Economic Factors Affecting Rice Export of Thailand

Authors: Somphoom Sawaengkun

Abstract:

The purpose of this study was primarily assessing how important economic factors namely: The Thai export price of white rice, the exchange rate, and the world rice consumption affect the overall Thai white rice export, using historical data during the period 1989-2013 from the Thai Rice Exporters Association, and Food and Agricultural Organization of the United Nations. The co-integration method, regression analysis, and error correction model were applied to investigate the econometric model. The findings indicated that in the long-run, the world rice consumption, the exchange rate, and the Thai export price of white rice were the important factors affecting the export quantity of Thai white rice respectively, as indicated by their significant coefficients. Meanwhile, the rice export price was an important factor affecting the export quantity of Thai white rice in the short-run. This information is useful in the business, export opportunities, price competitiveness, and policymaker in Thailand.

Keywords: Economic Factors, Rice Export, White Rice.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3496
1842 Utilizing Dutch Auction in an Agent-based Model E-commerce System

Authors: Costin Badica, Maria Ganzha, Maciej Gawinecki, Pawel Kobzdej, Marcin Paprzycki

Abstract:

Recently, we have presented an initial implementation of a model agent-based e-commerce system, which utilized a simple price negotiation mechanism–English Auction. In this note we discuss how a Dutch Auction involving multiple units of a product can be included in our system. We present UML diagrams of agents involved in price negotiations and briefly discuss rule-based mechanism exemplifying Dutch Auction.

Keywords: e-commerce, rule-based price negotiation mechanism, Dutch Auction, agent system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1741
1841 Crude Oil Price Prediction Using LSTM Networks

Authors: Varun Gupta, Ankit Pandey

Abstract:

Crude oil market is an immensely complex and dynamic environment and thus the task of predicting changes in such an environment becomes challenging with regards to its accuracy. A number of approaches have been adopted to take on that challenge and machine learning has been at the core in many of them. There are plenty of examples of algorithms based on machine learning yielding satisfactory results for such type of prediction. In this paper, we have tried to predict crude oil prices using Long Short-Term Memory (LSTM) based recurrent neural networks. We have tried to experiment with different types of models using different epochs, lookbacks and other tuning methods. The results obtained are promising and presented a reasonably accurate prediction for the price of crude oil in near future.

Keywords: Crude oil price prediction, deep learning, LSTM, recurrent neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3712
1840 Demand and Price Evolution Forecasting as Tools for Facilitating the RoadMapping Process of the Photonic Component Industry

Authors: T. Kamalakis, I. Neokosmidis, D. Varoutas, T. Sphicopoulos

Abstract:

The photonic component industry is a highly innovative industry with a large value chain. In order to ensure the growth of the industry much effort must be devoted to road mapping activities. In such activities demand and price evolution forecasting tools can prove quite useful in order to help in the roadmap refinement and update process. This paper attempts to provide useful guidelines in roadmapping of optical components and considers two models based on diffusion theory and the extended learning curve for demand and price evolution forecasting.

Keywords: Roadmapping, Photonic Components, Forecasting, Diffusion Theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1379
1839 Using Target Costing to Investigates Competitive Price

Authors: R. A. Sabir , X. Xinping , S.A. Sabr

Abstract:

This paper has presented research in progress concerning the contribution of target costing approach to achievement competitive price in the Iraqi firm. The title of the paper is one of the subjects that get large concerns in the finance and business world in the present time. That is because many competitive firms have appeared in the regional and global markets and the rapid changes that covered all fields of life. On the other hand, this paper concentrated on lack knowledge of the industrial firms, regarding the significant role of target cost for achieving the competitive prices. The paper depends on the main supposition, using the competitive price to get the target cost in the industrial firms. In order to achieve competitive advantage in business world the firms should rely on modern methods to manage cost and profit. From strategic perspective the target cost achieves a so powerful competitive advantage represented in cost reduction. Nevertheless the target cost does not exclude the calculation and survey of costs during the production process. Products- estimated costs are calculated and compared with the target costs.

Keywords: Target Costing, Competitive Price, Target Profit, Iraq Kurdistan Region.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3142