Search results for: WSNs
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 58

Search results for: WSNs

28 Clustering in WSN Based on Minimum Spanning Tree Using Divide and Conquer Approach

Authors: Uttam Vijay, Nitin Gupta

Abstract:

Due to heavy energy constraints in WSNs clustering is an efficient way to manage the energy in sensors. There are many methods already proposed in the area of clustering and research is still going on to make clustering more energy efficient. In our paper we are proposing a minimum spanning tree based clustering using divide and conquer approach. The MST based clustering was first proposed in 1970’s for large databases. Here we are taking divide and conquer approach and implementing it for wireless sensor networks with the constraints attached to the sensor networks. This Divide and conquer approach is implemented in a way that we don’t have to construct the whole MST before clustering but we just find the edge which will be the part of the MST to a corresponding graph and divide the graph in clusters there itself if that edge from the graph can be removed judging on certain constraints and hence saving lot of computation.

Keywords: Algorithm, Clustering, Edge-Weighted Graph, Weighted-LEACH.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2477
27 Construction Of Decentralized Lifetime Maximizing Tree for Data Aggregation in Wireless Sensor Networks

Authors: Deepali Virmani , Satbir Jain

Abstract:

To meet the demands of wireless sensor networks (WSNs) where data are usually aggregated at a single source prior to transmitting to any distant user, there is a need to establish a tree structure inside any given event region. In this paper , a novel technique to create one such tree is proposed .This tree preserves the energy and maximizes the lifetime of event sources while they are constantly transmitting for data aggregation. The term Decentralized Lifetime Maximizing Tree (DLMT) is used to denote this tree. DLMT features in nodes with higher energy tend to be chosen as data aggregating parents so that the time to detect the first broken tree link can be extended and less energy is involved in tree maintenance. By constructing the tree in such a way, the protocol is able to reduce the frequency of tree reconstruction, minimize the amount of data loss ,minimize the delay during data collection and preserves the energy.

Keywords: branch energy, decentralized, energy level , lifetime, tree energy, wireless sensor networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1488
26 Soft Computing Based Cluster Head Selection in Wireless Sensor Network Using Bacterial Foraging Optimization Algorithm

Authors: A. Rajagopal, S. Somasundaram, B. Sowmya, T. Suguna

Abstract:

Wireless Sensor Networks (WSNs) enable new applications and need non-conventional paradigms for the protocol because of energy and bandwidth constraints, In WSN, sensor node’s life is a critical parameter. Research on life extension is based on Low-Energy Adaptive Clustering Hierarchy (LEACH) scheme, which rotates Cluster Head (CH) among sensor nodes to distribute energy consumption over all network nodes. CH selection in WSN affects network energy efficiency greatly. This study proposes an improved CH selection for efficient data aggregation in sensor networks. This new algorithm is based on Bacterial Foraging Optimization (BFO) incorporated in LEACH.

Keywords: Bacterial Foraging Optimization (BFO), Cluster Head (CH), Data-aggregation protocols, Low-Energy Adaptive Clustering Hierarchy (LEACH).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3480
25 Performance Evaluation of XMAC and BMAC Routing Protocol under Static and Mobility Scenarios in Wireless Sensor Network

Authors: M. V. Ramana Rao, T. Adilakshmi

Abstract:

Based on application requirements, nodes are static or mobile in Wireless Sensor Networks (WSNs). Mobility poses challenges in protocol design, especially at the link layer requiring mobility adaptation algorithms to localize mobile nodes and predict link quality to be established with them. This study implements XMAC and Berkeley Media Access Control (BMAC) routing protocols to evaluate performance under WSN’s static and mobility conditions. This paper gives a comparative study of mobility-aware MAC protocols. Routing protocol performance, based on Average End to End Delay, Average Packet Delivery Ratio, Average Number of hops, and Jitter is evaluated.

Keywords: Wireless Sensor Network (WSN), Medium Access Control (MAC), Berkeley Media Access Control (BMAC), mobility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2382
24 Establishing Pairwise Keys Using Key Predistribution Schemes for Sensor Networks

Authors: Y. Harold Robinson, M. Rajaram

Abstract:

Designing cost-efficient, secure network protocols for Wireless Sensor Networks (WSNs) is a challenging problem because sensors are resource-limited wireless devices. Security services such as authentication and improved pairwise key establishment are critical to high efficient networks with sensor nodes. For sensor nodes to correspond securely with each other efficiently, usage of cryptographic techniques is necessary. In this paper, two key predistribution schemes that enable a mobile sink to establish a secure data-communication link, on the fly, with any sensor nodes. The intermediate nodes along the path to the sink are able to verify the authenticity and integrity of the incoming packets using a predicted value of the key generated by the sender’s essential power. The proposed schemes are based on the pairwise key with the mobile sink, our analytical results clearly show that our schemes perform better in terms of network resilience to node capture than existing schemes if used in wireless sensor networks with mobile sinks.

Keywords: Wireless Sensor Networks, predistribution scheme, cryptographic techniques.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1589
23 Handling Mobility using Virtual Grid in Static Wireless Sensor Networks

Authors: T.P. Sharma

Abstract:

Querying a data source and routing data towards sink becomes a serious challenge in static wireless sensor networks if sink and/or data source are mobile. Many a times the event to be observed either moves or spreads across wide area making maintenance of continuous path between source and sink a challenge. Also, sink can move while query is being issued or data is on its way towards sink. In this paper, we extend our already proposed Grid Based Data Dissemination (GBDD) scheme which is a virtual grid based topology management scheme restricting impact of movement of sink(s) and event(s) to some specific cells of a grid. This obviates the need for frequent path modifications and hence maintains continuous flow of data while minimizing the network energy consumptions. Simulation experiments show significant improvements in network energy savings and average packet delay for a packet to reach at sink.

Keywords: Mobility in WSNs, virtual grid, GBDD, clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1550
22 Design of Wireless Sensor Networks for Environmental Monitoring Using LoRa

Authors: Shathya Duobiene, Gediminas Račiukaitis

Abstract:

Wireless Sensor Networks (WSNs) are an emerging technology that opens up a new field of research. The significant advance in WSN leads to an increasing prevalence of various monitoring applications and real-time assistance in labs and factories. Selective surface activation induced by laser (SSAIL) is a promising technology that adapts to the WSN design freedom of shape, dimensions, and material. This article proposes and implements a WSN-based temperature and humidity monitoring system, and its deployed architectures made for the monitoring task are discussed. Experimental results of developed sensor nodes implemented in university campus laboratories are shown. Then, the simulation and the implementation results obtained through monitoring scenarios are displayed. At last, a convenient solution to keep the WSN alive and functional as long as possible is proposed. Unlike other existing models, on success, the node is self-powered and can utilize minimal power consumption for sensing and data transmission to the base station.

Keywords: Internet of Things, IoT, network formation, sensor nodes, SSAIL technology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 385
21 Solar-Inducted Cluster Head Relocation Algorithm

Authors: Goran Djukanovic, Goran Popovic

Abstract:

A special area in the study of Wireless Sensor Networks (WSNs) is how to move sensor nodes, as it expands the scope of application of wireless sensors and provides new opportunities to improve network performance. On the other side, it opens a set of new problems, especially if complete clusters are mobile. Node mobility can prolong the network lifetime. In such WSN, some nodes are possibly moveable or nomadic (relocated periodically), while others are static. This paper presents an idea of mobile, solar-powered CHs that relocate themselves inside clusters in such a way that the total energy consumption in the network reduces, and the lifetime of the network extends. Positioning of CHs is made in each round based on selfish herd hypothesis, where leader retreats to the center of gravity. Based on this idea, an algorithm, together with its modified version, has been presented and tested in this paper. Simulation results show that both algorithms have benefits in network lifetime, and prolongation of network stability period duration.

Keywords: CH-active algorithm, mobile cluster head, sensors, wireless sensor network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1038
20 REDD: Reliable Energy-Efficient Data Dissemination in Wireless Sensor Networks with Multiple Mobile Sinks

Authors: K. Singh, T. P. Sharma

Abstract:

In wireless sensor network (WSN) the use of mobile sink has been attracting more attention in recent times. Mobile sinks are more effective means of balancing load, reducing hotspot problem and elongating network lifetime. The sensor nodes in WSN have limited power supply, computational capability and storage and therefore for continuous data delivery reliability becomes high priority in these networks. In this paper, we propose a Reliable Energy-efficient Data Dissemination (REDD) scheme for WSNs with multiple mobile sinks. In this strategy, sink first determines the location of source and then directly communicates with the source using geographical forwarding. Every forwarding node (FN) creates a local zone comprising some sensor nodes that can act as representative of FN when it fails. Analytical and simulation study reveals significant improvement in energy conservation and reliable data delivery in comparison to existing schemes.

Keywords: Energy Efficient, REED, Sink Mobility, WSN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1939
19 Discussing Embedded versus Central Machine Learning in Wireless Sensor Networks

Authors: Anne-Lena Kampen, Øivind Kure

Abstract:

Machine learning (ML) can be implemented in Wireless Sensor Networks (WSNs) as a central solution or distributed solution where the ML is embedded in the nodes. Embedding improves privacy and may reduce prediction delay. In addition, the number of transmissions is reduced. However, quality factors such as prediction accuracy, fault detection efficiency and coordinated control of the overall system suffer. Here, we discuss and highlight the trade-offs that should be considered when choosing between embedding and centralized ML, especially for multihop networks. In addition, we present estimations that demonstrate the energy trade-offs between embedded and centralized ML. Although the total network energy consumption is lower with central prediction, it makes the network more prone for partitioning due to the high forwarding load on the one-hop nodes. Moreover, the continuous improvements in the number of operations per joule for embedded devices will move the energy balance toward embedded prediction.

Keywords: Central ML, embedded machine learning, energy consumption, local ML, Wireless Sensor Networks, WSN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 828
18 Energy Efficient In-Network Data Processing in Sensor Networks

Authors: Prakash G L, Thejaswini M, S H Manjula, K R Venugopal, L M Patnaik

Abstract:

The Sensor Network consists of densely deployed sensor nodes. Energy optimization is one of the most important aspects of sensor application design. Data acquisition and aggregation techniques for processing data in-network should be energy efficient. Due to the cross-layer design, resource-limited and noisy nature of Wireless Sensor Networks(WSNs), it is challenging to study the performance of these systems in a realistic setting. In this paper, we propose optimizing queries by aggregation of data and data redundancy to reduce energy consumption without requiring all sensed data and directed diffusion communication paradigm to achieve power savings, robust communication and processing data in-network. To estimate the per-node power consumption POWERTossim mica2 energy model is used, which provides scalable and accurate results. The performance analysis shows that the proposed methods overcomes the existing methods in the aspects of energy consumption in wireless sensor networks.

Keywords: Data Aggregation, Directed Diffusion, Partial Aggregation, Packet Merging, Query Plan.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1833
17 Practical Applications and Connectivity Algorithms in Future Wireless Sensor Networks

Authors: Mohamed K. Watfa

Abstract:

Like any sentient organism, a smart environment relies first and foremost on sensory data captured from the real world. The sensory data come from sensor nodes of different modalities deployed on different locations forming a Wireless Sensor Network (WSN). Embedding smart sensors in humans has been a research challenge due to the limitations imposed by these sensors from computational capabilities to limited power. In this paper, we first propose a practical WSN application that will enable blind people to see what their neighboring partners can see. The challenge is that the actual mapping between the input images to brain pattern is too complex and not well understood. We also study the connectivity problem in 3D/2D wireless sensor networks and propose distributed efficient algorithms to accomplish the required connectivity of the system. We provide a new connectivity algorithm CDCA to connect disconnected parts of a network using cooperative diversity. Through simulations, we analyze the connectivity gains and energy savings provided by this novel form of cooperative diversity in WSNs.

Keywords: Wireless Sensor Networks, Pervasive Computing, Eye Vision Application, 3D Connectivity, Clusters, Energy Efficient, Cooperative diversity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1627
16 Data Collection with Bounded-Sized Messages in Wireless Sensor Networks

Authors: Min Kyung An

Abstract:

In this paper, we study the data collection problem in Wireless Sensor Networks (WSNs) adopting the two interference models: The graph model and the more realistic physical interference model known as Signal-to-Interference-Noise-Ratio (SINR). The main issue of the problem is to compute schedules with the minimum number of timeslots, that is, to compute the minimum latency schedules, such that data from every node can be collected without any collision or interference to a sink node. While existing works studied the problem with unit-sized and unbounded-sized message models, we investigate the problem with the bounded-sized message model, and introduce a constant factor approximation algorithm. To the best known of our knowledge, our result is the first result of the data collection problem with bounded-sized model in both interference models.

Keywords: Data collection, collision-free, interference-free, physical interference model, SINR, approximation, bounded-sized message model, wireless sensor networks, WSN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1220
15 Cooperative Sensing for Wireless Sensor Networks

Authors: Julien Romieux, Fabio Verdicchio

Abstract:

Wireless Sensor Networks (WSNs), which sense environmental data with battery-powered nodes, require multi-hop communication. This power-demanding task adds an extra workload that is unfairly distributed across the network. As a result, nodes run out of battery at different times: this requires an impractical individual node maintenance scheme. Therefore we investigate a new Cooperative Sensing approach that extends the WSN operational life and allows a more practical network maintenance scheme (where all nodes deplete their batteries almost at the same time). We propose a novel cooperative algorithm that derives a piecewise representation of the sensed signal while controlling approximation accuracy. Simulations show that our algorithm increases WSN operational life and spreads communication workload evenly. Results convey a counterintuitive conclusion: distributing workload fairly amongst nodes may not decrease the network power consumption and yet extend the WSN operational life. This is achieved as our cooperative approach decreases the workload of the most burdened cluster in the network.

Keywords: Cooperative signal processing, power management, signal representation, signal approximation, wireless sensor networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1786
14 On Simulation based WSN Multi-Parametric Performance Analysis

Authors: Ch. Antonopoulos, Th. Kapourniotis, V. Triantafillou

Abstract:

Optimum communication and performance in Wireless Sensor Networks, constitute multi-facet challenges due to the specific networking characteristics as well as the scarce resource availability. Furthermore, it is becoming increasingly apparent that isolated layer based approaches often do not meet the demands posed by WSNs applications due to omission of critical inter-layer interactions and dependencies. As a counterpart, cross-layer is receiving high interest aiming to exploit these interactions and increase network performance. However, in order to clearly identify existing dependencies, comprehensive performance studies are required evaluating the effect of different critical network parameters on system level performance and behavior.This paper-s main objective is to address the need for multi-parametric performance evaluations considering critical network parameters using a well known network simulator, offering useful and practical conclusions and guidelines. The results reveal strong dependencies among considered parameters which can be utilized by and drive future research efforts, towards designing and implementing highly efficient protocols and architectures.

Keywords: Wireless sensor network, Communication Systems, cross-layer architectures, simulation based performance evaluation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1525
13 Secure and Efficient Transmission of Aggregated Data for Mobile Wireless Sensor Networks

Authors: A. Krishna Veni, R.Geetha

Abstract:

Wireless Sensor Networks (WSNs) are suitable for many scenarios in the real world. The retrieval of data is made efficient by the data aggregation techniques. Many techniques for the data aggregation are offered and most of the existing schemes are not energy efficient and secure. However, the existing techniques use the traditional clustering approach where there is a delay during the packet transmission since there is no proper scheduling. The presented system uses the Velocity Energy-efficient and Link-aware Cluster-Tree (VELCT) scheme in which there is a Data Collection Tree (DCT) which improves the lifetime of the network. The VELCT scheme and the construction of DCT reduce the delay and traffic. The network lifetime can be increased by avoiding the frequent change in cluster topology. Secure and Efficient Transmission of Aggregated data (SETA) improves the security of the data transmission via the trust value of the nodes prior the aggregation of data. Since SETA considers the data only from the trustworthy nodes for aggregation, it is more secure in transmitting the data thereby improving the accuracy of aggregated data.

Keywords: Aggregation, lifetime, network security, wireless sensor network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1217
12 Optimized Energy Scheduling Algorithm for Energy Efficient Wireless Sensor Networks

Authors: S. Arun Rajan, S. Bhavani

Abstract:

Wireless sensor networks can be tiny, low cost, intelligent sensors connected with advanced communication systems. WSNs have pulled in significant consideration as a matter of fact that, industrial as well as medical solicitations employ these in monitoring targets, conservational observation, obstacle exposure, movement regulator etc. In these applications, sensor hubs are thickly sent in the unattended environment with little non-rechargeable batteries. This constraint requires energy-efficient systems to drag out the system lifetime. There are redundancies in data sent over the network. To overcome this, multiple virtual spine scheduling has been presented. Such networks problems are called Maximum Lifetime Backbone Scheduling (MLBS) problems. Though this sleep wake cycle reduces radio usage, improvement can be made in the path in which the group heads stay selected. Cluster head selection with emphasis on geometrical relation of the system will enhance the load sharing among the nodes. Also the data are analyzed to reduce redundant transmission. Multi-hop communication will facilitate lighter loads on the network.

Keywords: WSN, wireless sensor networks, MLBS, maximum lifetime backbone scheduling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 878
11 Energy Efficient Reliable Cooperative Multipath Routing in Wireless Sensor Networks

Authors: Gergely Treplan, Long Tran-Thanh, Janos Levendovszky

Abstract:

In this paper, a reliable cooperative multipath routing algorithm is proposed for data forwarding in wireless sensor networks (WSNs). In this algorithm, data packets are forwarded towards the base station (BS) through a number of paths, using a set of relay nodes. In addition, the Rayleigh fading model is used to calculate the evaluation metric of links. Here, the quality of reliability is guaranteed by selecting optimal relay set with which the probability of correct packet reception at the BS will exceed a predefined threshold. Therefore, the proposed scheme ensures reliable packet transmission to the BS. Furthermore, in the proposed algorithm, energy efficiency is achieved by energy balancing (i.e. minimizing the energy consumption of the bottleneck node of the routing path) at the same time. This work also demonstrates that the proposed algorithm outperforms existing algorithms in extending longevity of the network, with respect to the quality of reliability. Given this, the obtained results make possible reliable path selection with minimum energy consumption in real time.

Keywords: wireless sensor networks, reliability, cooperativerouting, Rayleigh fading model, energy balancing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1610
10 Real Time Approach for Data Placement in Wireless Sensor Networks

Authors: Sanjeev Gupta, Mayank Dave

Abstract:

The issue of real-time and reliable report delivery is extremely important for taking effective decision in a real world mission critical Wireless Sensor Network (WSN) based application. The sensor data behaves differently in many ways from the data in traditional databases. WSNs need a mechanism to register, process queries, and disseminate data. In this paper we propose an architectural framework for data placement and management. We propose a reliable and real time approach for data placement and achieving data integrity using self organized sensor clusters. Instead of storing information in individual cluster heads as suggested in some protocols, in our architecture we suggest storing of information of all clusters within a cell in the corresponding base station. For data dissemination and action in the wireless sensor network we propose to use Action and Relay Stations (ARS). To reduce average energy dissipation of sensor nodes, the data is sent to the nearest ARS rather than base station. We have designed our architecture in such a way so as to achieve greater energy savings, enhanced availability and reliability.

Keywords: Cluster head, data reliability, real time communication, wireless sensor networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1815
9 Perception-Oriented Model Driven Development for Designing Data Acquisition Process in Wireless Sensor Networks

Authors: K. Indra Gandhi

Abstract:

Wireless Sensor Networks (WSNs) have always been characterized for application-specific sensing, relaying and collection of information for further analysis. However, software development was not considered as a separate entity in this process of data collection which has posed severe limitations on the software development for WSN. Software development for WSN is a complex process since the components involved are data-driven, network-driven and application-driven in nature. This implies that there is a tremendous need for the separation of concern from the software development perspective. A layered approach for developing data acquisition design based on Model Driven Development (MDD) has been proposed as the sensed data collection process itself varies depending upon the application taken into consideration. This work focuses on the layered view of the data acquisition process so as to ease the software point of development. A metamodel has been proposed that enables reusability and realization of the software development as an adaptable component for WSN systems. Further, observing users perception indicates that proposed model helps in improving the programmer's productivity by realizing the collaborative system involved.

Keywords: Model-driven development, wireless sensor networks, data acquisition, separation of concern, layered design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 958
8 Enhancing the Performance of Wireless Sensor Networks Using Low Power Design

Authors: N. Mahendran, R. Madhuranthi

Abstract:

Wireless sensor networks (WSNs), are constantly in demand to process information more rapidly with less energy and area cost. Presently, processor based solutions have difficult to achieve high processing speed with low-power consumption. This paper presents a simple and accurate data processing scheme for low power wireless sensor node, based on reduced number of processing element (PE). The presented model provides a simple recursive structure (SRS) to process the sampled data in the wireless sensor environment and to reduce the power consumption in wireless sensor node. Based on this model, to process the incoming samples and produce a smaller amount of data sufficient to reconstruct the original signal. The ModelSim simulator used to simulate SRS structure. Functional simulation is carried out for the validation of the presented architecture. Xilinx Power Estimator (XPE) tool is used to measure the power consumption. The experimental results show the average power consumption of 91 mW; this is 42% improvement compared to the folded tree architecture.

Keywords: Power consumption, energy efficiency, low power WSN node, recursive structure, sleep/wake scheduling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1015
7 A Virtual Grid Based Energy Efficient Data Gathering Scheme for Heterogeneous Sensor Networks

Authors: Siddhartha Chauhan, Nitin Kumar Kotania

Abstract:

Traditional Wireless Sensor Networks (WSNs) generally use static sinks to collect data from the sensor nodes via multiple forwarding. Therefore, network suffers with some problems like long message relay time, bottle neck problem which reduces the performance of the network.

Many approaches have been proposed to prevent this problem with the help of mobile sink to collect the data from the sensor nodes, but these approaches still suffer from the buffer overflow problem due to limited memory size of sensor nodes. This paper proposes an energy efficient scheme for data gathering which overcomes the buffer overflow problem. The proposed scheme creates virtual grid structure of heterogeneous nodes. Scheme has been designed for sensor nodes having variable sensing rate. Every node finds out its buffer overflow time and on the basis of this cluster heads are elected. A controlled traversing approach is used by the proposed scheme in order to transmit data to sink. The effectiveness of the proposed scheme is verified by simulation.

Keywords: Buffer overflow problem, Mobile sink, Virtual grid, Wireless sensor networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1826
6 Dominating Set Algorithm and Trust Evaluation Scheme for Secured Cluster Formation and Data Transferring

Authors: Y. Harold Robinson, M. Rajaram, E. Golden Julie, S. Balaji

Abstract:

This paper describes the proficient way of choosing the cluster head based on dominating set algorithm in a wireless sensor network (WSN). The algorithm overcomes the energy deterioration problems by this selection process of cluster heads. Clustering algorithms such as LEACH, EEHC and HEED enhance scalability in WSNs. Dominating set algorithm keeps the first node alive longer than the other protocols previously used. As the dominating set of cluster heads are directly connected to each node, the energy of the network is saved by eliminating the intermediate nodes in WSN. Security and trust is pivotal in network messaging. Cluster head is secured with a unique key. The member can only connect with the cluster head if and only if they are secured too. The secured trust model provides security for data transmission in the dominated set network with the group key. The concept can be extended to add a mobile sink for each or for no of clusters to transmit data or messages between cluster heads and to base station. Data security id preferably high and data loss can be prevented. The simulation demonstrates the concept of choosing cluster heads by dominating set algorithm and trust evaluation using DSTE. The research done is rationalized.

Keywords: Wireless Sensor Networks, LEECH, EEHC, HEED, DSTE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1406
5 Sleep Scheduling Schemes Based on Location of Mobile User in Sensor-Cloud

Authors: N. Mahendran, R. Priya

Abstract:

The mobile cloud computing (MCC) with wireless sensor networks (WSNs) technology gets more attraction by research scholars because its combines the sensors data gathering ability with the cloud data processing capacity. This approach overcomes the limitation of data storage capacity and computational ability of sensor nodes. Finally, the stored data are sent to the mobile users when the user sends the request. The most of the integrated sensor-cloud schemes fail to observe the following criteria: 1) The mobile users request the specific data to the cloud based on their present location. 2) Power consumption since most of them are equipped with non-rechargeable batteries. Mostly, the sensors are deployed in hazardous and remote areas. This paper focuses on above observations and introduces an approach known as collaborative location-based sleep scheduling (CLSS) scheme. Both awake and asleep status of each sensor node is dynamically devised by schedulers and the scheduling is done purely based on the of mobile users’ current location; in this manner, large amount of energy consumption is minimized at WSN. CLSS work depends on two different methods; CLSS1 scheme provides lower energy consumption and CLSS2 provides the scalability and robustness of the integrated WSN.

Keywords: Sleep scheduling, mobile cloud computing, wireless sensor network, integration, location, network lifetime.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 976
4 Tree Based Data Fusion Clustering Routing Algorithm for Illimitable Network Administration in Wireless Sensor Network

Authors: Y. Harold Robinson, M. Rajaram, E. Golden Julie, S. Balaji

Abstract:

In wireless sensor networks, locality and positioning information can be captured using Global Positioning System (GPS). This message can be congregated initially from spot to identify the system. Users can retrieve information of interest from a wireless sensor network (WSN) by injecting queries and gathering results from the mobile sink nodes. Routing is the progression of choosing optimal path in a mobile network. Intermediate node employs permutation of device nodes into teams and generating cluster heads that gather the data from entity cluster’s node and encourage the collective data to base station. WSNs are widely used for gathering data. Since sensors are power-constrained devices, it is quite vital for them to reduce the power utilization. A tree-based data fusion clustering routing algorithm (TBDFC) is used to reduce energy consumption in wireless device networks. Here, the nodes in a tree use the cluster formation, whereas the elevation of the tree is decided based on the distance of the member nodes to the cluster-head. Network simulation shows that this scheme improves the power utilization by the nodes, and thus considerably improves the lifetime.

Keywords: WSN, TBDFC, LEACH, PEGASIS, TREEPSI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1116
3 An Energy Aware Data Aggregation in Wireless Sensor Network Using Connected Dominant Set

Authors: M. Santhalakshmi, P Suganthi

Abstract:

Wireless Sensor Networks (WSNs) have many advantages. Their deployment is easier and faster than wired sensor networks or other wireless networks, as they do not need fixed infrastructure. Nodes are partitioned into many small groups named clusters to aggregate data through network organization. WSN clustering guarantees performance achievement of sensor nodes. Sensor nodes energy consumption is reduced by eliminating redundant energy use and balancing energy sensor nodes use over a network. The aim of such clustering protocols is to prolong network life. Low Energy Adaptive Clustering Hierarchy (LEACH) is a popular protocol in WSN. LEACH is a clustering protocol in which the random rotations of local cluster heads are utilized in order to distribute energy load among all sensor nodes in the network. This paper proposes Connected Dominant Set (CDS) based cluster formation. CDS aggregates data in a promising approach for reducing routing overhead since messages are transmitted only within virtual backbone by means of CDS and also data aggregating lowers the ratio of responding hosts to the hosts existing in virtual backbones. CDS tries to increase networks lifetime considering such parameters as sensors lifetime, remaining and consumption energies in order to have an almost optimal data aggregation within networks. Experimental results proved CDS outperformed LEACH regarding number of cluster formations, average packet loss rate, average end to end delay, life computation, and remaining energy computation.

Keywords: Wireless sensor network, connected dominant set, clustering, data aggregation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1129
2 Maximization of Lifetime for Wireless Sensor Networks Based on Energy Efficient Clustering Algorithm

Authors: Frodouard Minani

Abstract:

Since last decade, wireless sensor networks (WSNs) have been used in many areas like health care, agriculture, defense, military, disaster hit areas and so on. Wireless Sensor Networks consist of a Base Station (BS) and more number of wireless sensors in order to monitor temperature, pressure, motion in different environment conditions. The key parameter that plays a major role in designing a protocol for Wireless Sensor Networks is energy efficiency which is a scarcest resource of sensor nodes and it determines the lifetime of sensor nodes. Maximizing sensor node’s lifetime is an important issue in the design of applications and protocols for Wireless Sensor Networks. Clustering sensor nodes mechanism is an effective topology control approach for helping to achieve the goal of this research. In this paper, the researcher presents an energy efficiency protocol to prolong the network lifetime based on Energy efficient clustering algorithm. The Low Energy Adaptive Clustering Hierarchy (LEACH) is a routing protocol for clusters which is used to lower the energy consumption and also to improve the lifetime of the Wireless Sensor Networks. Maximizing energy dissipation and network lifetime are important matters in the design of applications and protocols for wireless sensor networks. Proposed system is to maximize the lifetime of the Wireless Sensor Networks by choosing the farthest cluster head (CH) instead of the closest CH and forming the cluster by considering the following parameter metrics such as Node’s density, residual-energy and distance between clusters (inter-cluster distance). In this paper, comparisons between the proposed protocol and comparative protocols in different scenarios have been done and the simulation results showed that the proposed protocol performs well over other comparative protocols in various scenarios.

Keywords: Base station, clustering algorithm, energy efficient, wireless sensor networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 846
1 Identifying a Drug Addict Person Using Artificial Neural Networks

Authors: Mustafa Al Sukar, Azzam Sleit, Abdullatif Abu-Dalhoum, Bassam Al-Kasasbeh

Abstract:

Use and abuse of drugs by teens is very common and can have dangerous consequences. The drugs contribute to physical and sexual aggression such as assault or rape. Some teenagers regularly use drugs to compensate for depression, anxiety or a lack of positive social skills. Teen resort to smoking should not be minimized because it can be "gateway drugs" for other drugs (marijuana, cocaine, hallucinogens, inhalants, and heroin). The combination of teenagers' curiosity, risk taking behavior, and social pressure make it very difficult to say no. This leads most teenagers to the questions: "Will it hurt to try once?" Nowadays, technological advances are changing our lives very rapidly and adding a lot of technologies that help us to track the risk of drug abuse such as smart phones, Wireless Sensor Networks (WSNs), Internet of Things (IoT), etc. This technique may help us to early discovery of drug abuse in order to prevent an aggravation of the influence of drugs on the abuser. In this paper, we have developed a Decision Support System (DSS) for detecting the drug abuse using Artificial Neural Network (ANN); we used a Multilayer Perceptron (MLP) feed-forward neural network in developing the system. The input layer includes 50 variables while the output layer contains one neuron which indicates whether the person is a drug addict. An iterative process is used to determine the number of hidden layers and the number of neurons in each one. We used multiple experiment models that have been completed with Log-Sigmoid transfer function. Particularly, 10-fold cross validation schemes are used to access the generalization of the proposed system. The experiment results have obtained 98.42% classification accuracy for correct diagnosis in our system. The data had been taken from 184 cases in Jordan according to a set of questions compiled from Specialists, and data have been obtained through the families of drug abusers.

Keywords: Artificial Neural Network, Decision Support System, drug abuse, drug addiction, Multilayer Perceptron.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1682