Search results for: Relative Self-Localization Posture
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 768

Search results for: Relative Self-Localization Posture

738 On the Multiplicity of Discriminants of Relative Quadratic Extensions of Quintic Fields

Authors: Schehrazad Selmane

Abstract:

According to Hermite there exists only a finite number of number fields having a given degree, and a given value of the discriminant, nevertheless this number is not known generally. The determination of a maximum number of number fields of degree 10 having a given discriminant that contain a subfield of degree 5 having a fixed class number, narrow class number and Galois group is the purpose of this work. The constructed lists of the first coincidences of 52 (resp. 50, 40, 48, 22, 6) nonisomorphic number fields with same discriminant of degree 10 of signature (6,2) (resp. (4,3), (8,1), (2,4), (0,5), (10,0)) containing a quintic field. For each field in the lists, we indicate its discriminant, the discriminant of its subfield, a relative polynomial generating the field over its quintic field and its relative discriminant, the corresponding polynomial over Q and its Galois closure are presented with concluding remarks.

Keywords: Discriminant, nonisomorphic fields, quintic fields, relative quadratic extensions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1445
737 Effect of Relative Permeability on Well Testing Behavior of Naturally Fractured Lean Gas Condensate Reservoirs

Authors: G.H. Montazeri, Z. Dastkhan, H. Aliabadi

Abstract:

Gas condensate Reservoirs show complicated thermodynamic behavior when their pressure reduces to under dew point pressure. Condensate blockage around the producing well cause significant reduction of production rate as well bottom-hole pressure drops below saturation pressure. The main objective of this work was to examine the well test analysis of naturally fractured lean gas condensate reservoir and investigate the effect of condensate formed around the well-bore on behavior of single phase pseudo pressure and its derivative curves. In this work a naturally fractured lean gas condensate reservoir is simulated with compositional simulator. Different sensitivity analysis done on Corry parameters and result of simulator is feed to analytical well testing software. For consideration of these phenomena eighteen compositional models with Capillary number effect are constructed. Matrix relative permeability obeys Corry relative permeability and relative permeability in fracture is linear. Well testing behavior of these models are studied and interpreted. Results show different sensitivity analysis on relative permeability of matrix does not have strong effect on well testing behavior even most part of the matrix around the well is occupied with condensate.

Keywords: Lean gas, fractured condensate reservoir, capillary number, well testing analysis, relative permeability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2939
736 Comparing Spontaneous Hydrolysis Rates of Activated Models of DNA and RNA

Authors: Mohamed S. Sasi, Adel M. Mlitan, Abdulfattah M. Alkherraz

Abstract:

This research project aims to investigate difference in relative rates concerning phosphoryl transfer relevant to biological catalysis of DNA and RNA in the pH-independent reactions. Activated Models of DNA and RNA for alkyl-aryl phosphate diesters (with 4-nitrophenyl as a good leaving group) have successfully been prepared to gather kinetic parameters. Eyring plots for the pH– independent hydrolysis of 1 and 2 were established at different temperatures in the range 100–160 °C. These measurements have been used to provide a better estimate for the difference in relative rates between the reactivity of DNA and RNA cleavage. Eyring plot gave an extrapolated rate of kH2O = 1 × 10-10 s -1 for 1 (RNA model) and 2 (DNA model) at 25°C. Comparing the reactivity of RNA model and DNA model shows that the difference in relative rates in the pH-independent reactions is surprisingly very similar at 25°. This allows us to obtain chemical insights into how biological catalysts such as enzymes may have evolved to perform their current functions.

Keywords: DNA & RNA Models, Relative Rates, Reactivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2373
735 Analysis of Lower Extremity Muscle Flexibility among Indian Classical Bharathnatyam Dancers

Authors: V. Anbarasi, David V Rajan, K. Adalarasu

Abstract:

Musculoskeletal problems are common in high performance dance population. This study attempts to identify lower extremity muscle flexibility parameters prevailing among bharatanatyam dancers and analyze if there is any significant difference exist between normal and injured dancers in flexibility parameters. Four hundred and one female dancers and 17 male dancers were participated in this study. Flexibility parameters (hamstring tightness, hip internal and external rotation and tendoachilles in supine and sitting posture) were measured using goniometer. Results of our study it is evident that injured female bharathnatyam dancers had significantly (p < 0.05) high hamstring tightness on left side lower extremity compared to normal female dancers. The range of motion for left tendoachilles was significantly (p < 0.05) high for the normal female group when compared to injured dancers during supine lying posture. Majority of the injured dancers had high hamstring tightness that could be a possible reason for pain and MSDs.

Keywords: External rotation (ER), Internal rotation (IR), Musculoskeletal disorder (MSD), Range of motion (ROM)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5121
734 FPGA based Relative Distance Measurement using Stereo Vision Technology

Authors: Manasi Pathade, Prachi Kadam, Renuka Kulkarni, Tejas Teredesai

Abstract:

In this paper, we propose a novel concept of relative distance measurement using Stereo Vision Technology and discuss its implementation on a FPGA based real-time image processor. We capture two images using two CCD cameras and compare them. Disparity is calculated for each pixel using a real time dense disparity calculation algorithm. This algorithm is based on the concept of indexed histogram for matching. Disparity being inversely proportional to distance (Proved Later), we can thus get the relative distances of objects in front of the camera. The output is displayed on a TV screen in the form of a depth image (optionally using pseudo colors). This system works in real time on a full PAL frame rate (720 x 576 active pixels @ 25 fps).

Keywords: Stereo Vision, Relative Distance Measurement, Indexed Histogram, Real time FPGA Image Processor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2978
733 The Study of the Variability of Anticipatory Postural Adjustments in Recurrent Non-specific LBP Patients

Authors: Rosita Hedayati , Sedighe Kahrizi , Mohammad Parnianpour , Fariba Bahrami , Anoshirvan Kazemnejad

Abstract:

The study of the variability of the postural strategies in low back pain patients, as a criterion in evaluation of the adaptability of this system to the environmental demands is the purpose of this study. A cross-sectional case-control study was performed on 21 recurrent non-specific low back pain patients and 21 healthy volunteers. The electromyography activity of Deltoid, External Oblique (EO), Transverse Abdominis/Internal Oblique (TrA/IO) and Erector Spine (ES) muscles of each person was recorded in 75 rapid arm flexion with maximum acceleration. Standard deviation of trunk muscles onset relative to deltoid muscle onset were statistically analyzed by MANOVA . The results show that chronic low back pain patients exhibit less variability in their anticipatory postural adjustments (APAs) in comparison with the control group. There is a decrease in variability of postural control system of recurrent non-specific low back pain patients that can result in the persistence of pain and chronicity by decreasing the adaptability to environmental demands.

Keywords: EMG Onset Latency, Variability, Posture, Non - specific Low Back Pain

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1977
732 Real-Time Fitness Monitoring with MediaPipe

Authors: Chandra Prayaga, Lakshmi Prayaga, Aaron Wade, Kyle Rank, Gopi Shankar Mallu, Sri Satya Harsha Pola

Abstract:

In today's tech-driven world, where connectivity shapes our daily lives, maintaining physical and emotional health is crucial. Athletic trainers play a vital role in optimizing athletes' performance and preventing injuries. However, a shortage of trainers impacts the quality of care. This study introduces a vision-based exercise monitoring system leveraging Google's MediaPipe library for precise tracking of bicep curl exercises and simultaneous posture monitoring. We propose a three-stage methodology: landmark detection, side detection, and angle computation. Our system calculates angles at the elbow, wrist, neck, and torso to assess exercise form. Experimental results demonstrate the system's effectiveness in distinguishing between good and partial repetitions and evaluating body posture during exercises, providing real-time feedback for precise fitness monitoring.

Keywords: Physical health, athletic trainers, fitness monitoring, technology driven solutions, Google's MediaPipe, landmark detection, angle computation, real-time feedback.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18
731 Flow Discharge Determination in Straight Compound Channels Using ANNs

Authors: A. Zahiri, A. A. Dehghani

Abstract:

Although many researchers have studied the flow hydraulics in compound channels, there are still many complicated problems in determination of their flow rating curves. Many different methods have been presented for these channels but extending them for all types of compound channels with different geometrical and hydraulic conditions is certainly difficult. In this study, by aid of nearly 400 laboratory and field data sets of geometry and flow rating curves from 30 different straight compound sections and using artificial neural networks (ANNs), flow discharge in compound channels was estimated. 13 dimensionless input variables including relative depth, relative roughness, relative width, aspect ratio, bed slope, main channel side slopes, flood plains side slopes and berm inclination and one output variable (flow discharge), have been used in ANNs. Comparison of ANNs model and traditional method (divided channel method-DCM) shows high accuracy of ANNs model results. The results of Sensitivity analysis showed that the relative depth with 47.6 percent contribution, is the most effective input parameter for flow discharge prediction. Relative width and relative roughness have 19.3 and 12.2 percent of importance, respectively. On the other hand, shape parameter, main channel and flood plains side slopes with 2.1, 3.8 and 3.8 percent of contribution, have the least importance.

Keywords: ANN model, compound channels, divided channel method (DCM), flow rating curve

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2537
730 The Influence of the Inlet Conditions on the Airside Heat Transfer Performance of Plain Finned Evaporator

Authors: Abdenour Bourabaa, Mohamed Saighi, Ibrahim Belal

Abstract:

A numerical study has been conducted to investigate the influence of fin pitch and relative humidity on the heat transfer performance of the fin-and-tube heat exchangers having plain fin geometry under dehumidifying conditions. The analysis is done using the ratio between the heat transfer coefficients in totally wet conditions and those in totally dry conditions using the appropriate correlations for both dry and wet conditions. For a constant relative humidity, it is found that the heat transfer coefficient increases with the increase of the air frontal velocity. By contrast, the fin efficiency decreases when the face velocity is increased. Apparently, this phenomenon is attributed to the path of condensate drainage. For the influence of relative humidity, the results showed an increase in heat transfer performance and a decrease in wet fin efficiency when relative humidity increases. This is due to the higher amount of mass transfer encountered at higher relative humidity. However, it is found that the effect of fin pitch on the heat transfer performance depends strongly on the face velocity. At lower frontal velocity the heat transfer increases with fin pitch. Conversely, an increase in fin pitch gives lower heat transfer coefficients when air velocity is increased.

Keywords: Dehumidifying conditions, Fin efficiency, Heat andmass transfer, Heat exchangers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2310
729 Real-Time Recognition of Dynamic Hand Postures on a Neuromorphic System

Authors: Qian Liu, Steve Furber

Abstract:

To explore how the brain may recognise objects in its general,accurate and energy-efficient manner, this paper proposes the use of a neuromorphic hardware system formed from a Dynamic Video Sensor (DVS) silicon retina in concert with the SpiNNaker real-time Spiking Neural Network (SNN) simulator. As a first step in the exploration on this platform a recognition system for dynamic hand postures is developed, enabling the study of the methods used in the visual pathways of the brain. Inspired by the behaviours of the primary visual cortex, Convolutional Neural Networks (CNNs) are modelled using both linear perceptrons and spiking Leaky Integrate-and-Fire (LIF) neurons. In this study’s largest configuration using these approaches, a network of 74,210 neurons and 15,216,512 synapses is created and operated in real-time using 290 SpiNNaker processor cores in parallel and with 93.0% accuracy. A smaller network using only 1/10th of the resources is also created, again operating in real-time, and it is able to recognise the postures with an accuracy of around 86.4% - only 6.6% lower than the much larger system. The recognition rate of the smaller network developed on this neuromorphic system is sufficient for a successful hand posture recognition system, and demonstrates a much improved cost to performance trade-off in its approach.

Keywords: Spiking neural network (SNN), convolutional neural network (CNN), posture recognition, neuromorphic system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2024
728 RP-ADAS: Relative Position-Advanced Drive Assistant System based on VANET (GNSS)

Authors: Hun-Jung Lim, Tai-Myoung Chung

Abstract:

Few decades ago, electronic and sensor technologies are merged into vehicles as the Advanced Driver Assistance System(ADAS). However, sensor-based ADASs have limitations about weather interference and a line-of-sight nature problem. In our project, we investigate a Relative Position based ADAS(RP-ADAS). We divide the RP-ADAS into four main research areas: GNSS, VANET, Security/Privacy, and Application. In this paper, we research the GNSS technologies and determine the most appropriate one. With the performance evaluation, we figure out that the C/A code based GPS technologies are inappropriate for 'which lane-level' application. However, they can be used as a 'which road-level' application.

Keywords: Relative Positioning, VANET, GNSS, ADAS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2365
727 Categorization and Estimation of Relative Connectivity of Genes from Meta-OFTEN Network

Authors: U. Kairov, T. Karpenyuk, E. Ramanculov, A. Zinovyev

Abstract:

The most common result of analysis of highthroughput data in molecular biology represents a global list of genes, ranked accordingly to a certain score. The score can be a measure of differential expression. Recent work proposed a new method for selecting a number of genes in a ranked gene list from microarray gene expression data such that this set forms the Optimally Functionally Enriched Network (OFTEN), formed by known physical interactions between genes or their products. Here we present calculation results of relative connectivity of genes from META-OFTEN network and tentative biological interpretation of the most reproducible signal. The relative connectivity and inbetweenness values of genes from META-OFTEN network were estimated.

Keywords: Microarray, META-OFTEN, gene network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1601
726 Effect of Sensory Manipulations on Human Joint Stiffness Strategy and Its Adaptation for Human Dynamic Stability

Authors: Aizreena Azaman, Mai Ishibashi, Masanori Ishizawa, Shin-Ichiroh Yamamoto

Abstract:

Sensory input plays an important role to human posture control system to initiate strategy in order to counterpart any unbalance condition and thus, prevent fall. In previous study, joint stiffness was observed able to describe certain issues regarding to movement performance. But, correlation between balance ability and joint stiffness is still remains unknown. In this study, joint stiffening strategy at ankle and hip were observed under different sensory manipulations and its correlation with conventional clinical test (Functional Reach Test) for balance ability was investigated. In order to create unstable condition, two different surface perturbations (tilt up-tilt (TT) down and forward-backward (FB)) at four different frequencies (0.2, 0.4, 0.6 and 0.8 Hz) were introduced. Furthermore, four different sensory manipulation conditions (include vision and vestibular system) were applied to the subject and they were asked to maintain their position as possible. The results suggested that joint stiffness were high during difficult balance situation. Less balance people generated high average joint stiffness compared to balance people. Besides, adaptation of posture control system under repetitive external perturbation also suggested less during sensory limited condition. Overall, analysis of joint stiffening response possible to predict unbalance situation faced by human

Keywords: Balance ability, joint stiffness, sensory, adaptation, dynamic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1931
725 Electroencephalography Activity during Sensory Organization Balance Test

Authors: Tariq Ali Gujar, Anita Hökelmann

Abstract:

Postural balance plays essential role throughout life in daily activities. Somatosensory, visual and vestibular inputs play the fundamental role in maintaining body equilibrium to balance the posture. The aim of this study was to find out electroencephalography (EEG) responses during balance activity of young people during Sensory Organization Balance Test. The outcome of this study will help to create the fitness and neurorehabilitation plan. 25 young people (25 ± 3.1 years) have been analyzed on Balance Master NeuroCom® with the coupling of Brain Vision 32 electrode wireless EEG system during the Sensory Organization Test. From the results it has been found that the balance score of samples is significantly higher under the influence of somatosensory input as compared to visual and vestibular input (p < 0.05). The EEG between somatosensory and visual input to balance the posture showed significantly higher (p < 0.05) alpha and beta activities during somatosensory input in somatosensory, attention and visual functions of the cortex whereas executive and motor functions of the cerebral cortex showed significantly higher (p < 0.05) alpha EEG activity during the visual input. The results suggest that somatosensory and attention function of the cerebral cortex has alpha and beta activity, respectively high during somatosensory and vestibular input in maintaining balance. In patients with balance impairments both physical and cognitive training, including neurofeedback will be helpful to improve balance abilities.

Keywords: Balance, electroencephalography activity, somatosensory, visual, vestibular.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 567
724 Investigation of Water Vapour Transport Properties of Gypsum Using Genetic Algorithm

Authors: Z. Pavlík, J. Žumár, M. Pavlíková, J. Kočí, R. Černý

Abstract:

Water vapour transport properties of gypsum block are studied in dependence on relative humidity using inverse analysis based on genetic algorithm. The computational inverse analysis is performed for the relative humidity profiles measured along the longitudinal axis of a rod sample. Within the performed transient experiment, the studied sample is exposed to two environments with different relative humidity, whereas the temperature is kept constant. For the basic gypsum characterisation and for the assessment of input material parameters necessary for computational application of genetic algorithm, the basic material properties of gypsum are measured as well as its thermal and water vapour storage parameters. On the basis of application of genetic algorithm, the relative humidity dependent water vapour diffusion coefficient and water vapour diffusion resistance factor are calculated.

Keywords: Water vapour transport, gypsum block, transient experiment, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1638
723 Climatic Factors Affecting Influenza Cases in Southern Thailand

Authors: S. Youthao, M. Jaroensutasinee, K. Jaroensutasinee

Abstract:

This study investigated climatic factors associated with influenza cases in Southern Thailand. The main aim for use regression analysis to investigate possible causual relationship of climatic factors and variability between the border of the Andaman Sea and the Gulf of Thailand. Southern Thailand had the highest Influenza incidences among four regions (i.e. north, northeast, central and southern Thailand). In this study, there were 14 climatic factors: mean relative humidity, maximum relative humidity, minimum relative humidity, rainfall, rainy days, daily maximum rainfall, pressure, maximum wind speed, mean wind speed, sunshine duration, mean temperature, maximum temperature, minimum temperature, and temperature difference (i.e. maximum – minimum temperature). Multiple stepwise regression technique was used to fit the statistical model. The results indicated that the mean wind speed and the minimum relative humidity were positively associated with the number of influenza cases on the Andaman Sea side. The maximum wind speed was positively associated with the number of influenza cases on the Gulf of Thailand side.

Keywords: Influenza, Climatic Factor, Relative Humidity, Rainfall, Pressure, Wind Speed, sunshine duration, Temperature, Andaman Sea, Gulf of Thailand, Southern Thailand.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1598
722 Temperature Dependence of Relative Permittivity: A Measurement Technique Using Split Ring Resonators

Authors: Sreedevi P. Chakyar, Jolly Andrews, V. P. Joseph

Abstract:

A compact method for measuring the relative permittivity of a dielectric material at different temperatures using a single circular Split Ring Resonator (SRR) metamaterial unit working as a test probe is presented in this paper. The dielectric constant of a material is dependent upon its temperature and the LC resonance of the SRR depends on its dielectric environment. Hence, the temperature of the dielectric material in contact with the resonator influences its resonant frequency. A single SRR placed between transmitting and receiving probes connected to a Vector Network Analyser (VNA) is used as a test probe. The dependence of temperature between 30 oC and 60 oC on resonant frequency of SRR is analysed. Relative permittivities ‘ε’ of test samples for different temperatures are extracted from a calibration graph drawn between the relative permittivity of samples of known dielectric constant and their corresponding resonant frequencies. This method is found to be an easy and efficient technique for analysing the temperature dependent permittivity of different materials.

Keywords: Metamaterials, negative permeability, permittivity measurement techniques, split ring resonators, temperature dependent dielectric constant.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2552
721 Using Lagrange Equations to Study the Relative Motion of a Mechanism

Authors: R. A. Petre, S. E. Nichifor, A. Craifaleanu, I. Stroe

Abstract:

The relative motion of a robotic arm formed by homogeneous bars of different lengths and masses, hinged to each other is investigated. The first bar of the mechanism is articulated on a platform, considered initially fixed on the surface of the Earth, while for the second case the platform is considered to be in rotation with respect to the Earth. For both analyzed cases the motion equations are determined using the Lagrangian formalism, applied in its traditional form, valid with respect to an inertial reference system, conventionally considered as fixed. However, in the second case, a generalized form of the formalism valid with respect to a non-inertial reference frame will also be applied. The numerical calculations were performed using a MATLAB program.

Keywords: Lagrange equations, relative motion, inertial or non-inertial reference frame.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 543
720 Role and Relative Effectiveness of Immune System for Combating Small Pox and AIDS

Authors: A. Taqaddas

Abstract:

The human body has a complex system of innate and adaptive mechanisms for combating infection. This article discusses the role and relative effectiveness of these mechanisms in relation to small pox and AIDS.

Keywords: AIDS, Immune System, Small Pox, Viral Infections.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2042
719 The Applications of Quantum Mechanics Simulation for Solvent Selection in Chemicals Separation

Authors: Attapong T., Hong-Ming Ku, Nakarin M., Narin L., Alisa L, Jirut W.

Abstract:

The quantum mechanics simulation was applied for calculating the interaction force between 2 molecules based on atomic level. For the simple extractive distillation system, it is ternary components consisting of 2 closed boiling point components (A,lower boiling point and B, higher boiling point) and solvent (S). The quantum mechanics simulation was used to calculate the intermolecular force (interaction force) between the closed boiling point components and solvents consisting of intermolecular between A-S and B-S. The requirement of the promising solvent for extractive distillation is that solvent (S) has to form stronger intermolecular force with only one component than the other component (A or B). In this study, the systems of aromatic-aromatic, aromatic-cycloparaffin, and paraffindiolefin systems were selected as the demonstration for solvent selection. This study defined new term using for screening the solvents called relative interaction force which is calculated from the quantum mechanics simulation. The results showed that relative interaction force gave the good agreement with the literature data (relative volatilities from the experiment). The reasons are discussed. Finally, this study suggests that quantum mechanics results can improve the relative volatility estimation for screening the solvents leading to reduce time and money consuming

Keywords: Extractive distillation, Interaction force, Quamtum mechanic, Relative volatility, Solvent extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1575
718 Exergy Based Performance Analysis of a Gas Turbine Unit at Various Ambient Conditions

Authors: Idris A. Elfeituri

Abstract:

This paper studies the effect of ambient conditions on the performance of a 285 MW gas turbine unit using the exergy concept. Based on the available exergy balance models developed, a computer program has been constructed to investigate the performance of the power plant under varying ambient temperature and relative humidity conditions. The variations of ambient temperature range from zero to 50 ºC and the relative humidity ranges from zero to 100%, while the unit load kept constant at 100% of the design load. The exergy destruction ratio and exergy efficiency are determined for each component and for the entire plant. The results show a moderate increase in the total exergy destruction ratio of the plant from 62.05% to 65.20%, while the overall exergy efficiency decrease from 38.2% to 34.8% as the ambient temperature increases from zero to 50 ºC at all relative humidity values. Furthermore, an increase of 1 ºC in ambient temperature leads to 0.063% increase in the total exergy destruction ratio and 0.07% decrease in the overall exergy efficiency. The relative humidity has a remarkable influence at higher ambient temperature values on the exergy destruction ratio of combustion chamber and on exergy loss ratio of the exhaust gas but almost no effect on the total exergy destruction ratio and overall exergy efficiency. At 50 ºC ambient temperature, the exergy destruction ratio of the combustion chamber increases from 30% to 52% while the exergy loss ratio of the exhaust gas decreases from 28% to 8% as the relative humidity increases from zero to 100%. In addition, exergy analysis reveals that the combustion chamber and exhaust gas are the main source of irreversibility in the gas turbine unit. It is also identified that the exergy efficiency and exergy destruction ratio are considerably dependent on the variations in the ambient air temperature and relative humidity. Therefore, the incorporation of the existing gas turbine plant with inlet air cooling and humidifier technologies should be considered seriously.

Keywords: Destruction, exergy, gas turbine, irreversibility, performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 880
717 Effects of Rarefaction and Compressibility on Fluid Flow at Slip Flow Regime by Direct Simulation of Roughness

Authors: M. Hakak Khadem, M. Shams, S. Hossainpour

Abstract:

A two dimensional numerical simulation has been performed for incompressible and compressible fluid flow through microchannels in slip flow regime. The Navier-Stokes equations have been solved in conjunction with Maxwell slip conditions for modeling flow field associated with slip flow regime. The wall roughness is simulated with triangular microelements distributed on wall surfaces to study the effects of roughness on fluid flow. Various Mach and Knudsen numbers are used to investigate the effects of rarefaction as well as compressibility. It is found that rarefaction has more significant effect on flow field in microchannels with higher relative roughness. It is also found that compressibility has more significant effects on Poiseuille number when relative roughness increases. In addition, similar to incompressible models the increase in average fRe is more significant at low Knudsen number flows but the increase of Poiseuille number duo to relative roughness is sharper for compressible models. The numerical results have also validated with some available theoretical and experimental relations and good agreements have been seen.

Keywords: Relative roughness, slip flow, Poiseuille number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1385
716 Durability Study Partially Saturated Fly Ash Blended Cement Concrete

Authors: N. Shafiq, M. F. Nuruddin, S. C. Chin

Abstract:

This paper presents the experimental results of the investigation of various properties related to the durability and longterm performance of mortars made of Fly Ash blended cement, FA and Ordinary Portland cement, OPC. The properties that were investigated in an experimental program include; equilibration of specimen in different relative humidity, determination of total porosity, compressive strength, chloride permeability index, and electrical resistivity. Fly Ash blended cement mortar specimens exhibited 10% to 15% lower porosity when measured at equilibrium conditions in different relative humidities as compared to the specimens made of OPC mortar, which resulted in 6% to 8% higher compressive strength of FA blended cement mortar specimens. The effects of ambient relative humidity during sample equilibration on porosity and strength development were also studied. For specimens equilibrated in higher relative humidity conditions, such as 75%, the total porosity of different mortar specimens was between 35% to 50% less than the porosity of samples equilibrated in 12% relative humidity, consequently leading to higher compressive strengths of these specimens.A valid statistical correlation between values of compressive strength, porosity and the degree of saturation was obtained. Measured values of chloride permeability index of fly ash blended cement mortar were obtained as one fourth to one sixth of those measured for OPC mortar specimens, which indicates high resistance against chloride ion penetration in FA blended cement specimens, hence resulting in a highly durable mortar.

Keywords: chloride permeability index, equilibrium condition, electrical resistivity, fly ash

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1917
715 Heat Transfer and Friction Factor Study for Triangular Duct Solar Air Heater Having Discrete V-Shaped Ribs

Authors: Varun

Abstract:

Solar energy is a good option among renewable energy resources due to its easy availability and abundance. The simplest and most efficient way to utilize solar energy is to convert it into thermal energy and this can be done with the help of solar collectors. The thermal performance of such collectors is poor due to less heat transfer from the collector surface to air. In this work, experimental investigations of single pass solar air heater having triangular duct and provided with roughness element on the underside of the absorber plate. V-shaped ribs are used for investigation having three different values of relative roughness pitch (p/e) ranges from 4- 16 for a fixed value of angle of attack (α), relative roughness height (e/Dh) and a relative gap distance (d/x) values are 60°, 0.044 and 0.60 respectively. Result shows that considerable augmentation in heat transfer has been obtained by providing roughness.

Keywords: Artificial roughness, Solar Air heater, Triangular duct, V-Shaped Ribs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2883
714 Study of Water Relations, Chlorophyll and their Correlations with Grain Yield in Wheat(Triticum aestivum L.) Genotypes

Authors: Mokhtar Ghobadi, Saeed Khosravi, Danial Kahrizi, Firooz Shirvani

Abstract:

The objective of this experiment was to study of water relations and chlorophyll in different wheat genotypes and their correlations with grain and biological yields. 21 genotypes of bread wheat were compared in a field experiment as randomized complete blocks design with four replications. The results showed that relative water deficit, relative water loss, excised leaf water retention, cell membrane stability, chlorophyll-a, chlorophyll-b, total chlorophyll, grain yield and biological yield were different significantly among wheat genotypes, but SPAD-chlorophyll index, relative water content and chlorophyll florescence were not. Significant correlations were not observed among above mentioned water relations and chlorophyll characteristics with grain yield, but there was a positive and significant correlation between biological yield and grain yield.

Keywords: Wheat, water relations, chlorophyll, yield

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2393
713 Experimental Characterization of a Thermoacoustic Travelling-Wave Refrigerator

Authors: M. Pierens, J.-P. Thermeau, T. Le Pollès, P. Duthil

Abstract:

The performances of a thermoacoustic travelling-wave refrigerator are presented. Developed in the frame of the European project called THATEA, it is designed for providing 600 W at a temperature of 233 K with an efficiency of 40 % relative to the Carnot efficiency. This paper presents the device and the results of the first measurements. For a cooling power of 210 W, a coefficient of performance relative to Carnot of 30 % is achieved when the refrigerator is coupled with an existing standing-wave engine.

Keywords: Refrigeration, sustainable energy, thermoacoustics, travelling-wave type heat pump

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1606
712 Preserved Relative Differences between Regions of Different Thermal Scans

Authors: Tahir Majeed, Michael Handschuh, René Meier

Abstract:

Rheumatoid Arthritis patients have swelling and pain in joints of the hand. The regions where the patient feels pain also show increased body temperature. Thermal cameras can be used to detect the rise in temperature of the affected regions. To monitor the progression of Rheumatoid Arthritis, patients must visit the clinic regularly for scanning and examination. After scanning and evaluation, the dosage of the medicine is regulated accordingly. To monitor the disease progression over time, the correlation of the images between different visits must be established. It has been observed that the thermal measurements do not remain the same over time, even within a single scanning, when low-cost thermal cameras are used. In some situations, temperatures can vary as much as 2◦C within the same scanning sequence. In this paper, it has been shown that although the absolute temperature varies over time, the relative difference between different regions remains similar. Results have been computed over four scanning sequences and are presented.

Keywords: Relative thermal difference, rheumatoid arthritis, thermal imaging, thermal sensors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 470
711 Heat transfer Characteristics of Fin-and-Tube heat Exchanger under Condensing Conditions

Authors: Abdenour Bourabaa, Mohamed Saighi, Said El Metenani

Abstract:

In the present work an investigation of the effects of the air frontal velocity, relative humidity and dry air temperature on the heat transfer characteristics of plain finned tube evaporator has been conducted. Using an appropriate correlation for the air side heat transfer coefficient the temperature distribution along the fin surface was calculated using a dimensionless temperature distribution. For a constant relative humidity and bulb temperature, it is found that the temperature distribution decreases with increasing air frontal velocity. Apparently, it is attributed to the condensate water film flowing over the fin surface. When dry air temperature and face velocity are being kept constant, the temperature distribution decreases with the increase of inlet relative humidity. An increase in the inlet relative humidity is accompanied by a higher amount of moisture on the fin surface. This results in a higher amount of latent heat transfer which involves higher fin surface temperature. For the influence of dry air temperature, the results here show an increase in the dimensionless temperature parameter with a decrease in bulb temperature. Increasing bulb temperature leads to higher amount of sensible and latent heat transfer when other conditions remain constant.

Keywords: Fin efficiency, heat and mass transfer, dehumidifying conditions, finned tube heat exchangers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2166
710 Implementation of the Personal Emergency Response System

Authors: Ah-young Jeon, In-cheol Kim, Jae-hee Jung, Soo-young Ye, Jae-hyung Kim, Ki-gon Nam, Seoung-wan Baik, Jung-hoon Ro, Gye-rok Jeon

Abstract:

The aged are faced with increasing risk for falls. The aged have the easily fragile bones than others. When falls have occurred, it is important to detect this emergency state because such events often lead to more serious illness or even death. A implementation of PDA system, for detection of emergency situation, was developed using 3-axis accelerometer in this paper as follows. The signals were acquired from the 3-axis accelerometer, and then transmitted to the PDA through Bluetooth module. This system can classify the human activity, and also detect the emergency state like falls. When the fall occurs, the system generates the alarm on the PDA. If a subject does not respond to the alarm, the system determines whether the current situation is an emergency state or not, and then sends some information to the emergency center in the case of urgent situation. Three different studies were conducted on 12 experimental subjects, with results indicating a good accuracy. The first study was performed to detect the posture change of human daily activity. The second study was performed to detect the correct direction of fall. The third study was conducted to check the classification of the daily physical activity. Each test was lasted at least 1 min. in third study. The output of acceleration signal was compared and evaluated by changing a various posture after attaching a 3-axis accelerometer module on the chest. The newly developed system has some important features such as portability, convenience and low cost. One of the main advantages of this system is that it is available at home healthcare environment. Another important feature lies in low cost to manufacture device. The implemented system can detect the fall accurately, so will be widely used in emergency situation.

Keywords: Alarm System, Ambulatory monitoring, Emergency detection, Classification of activity, and 3-axis accelerometer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1572
709 Estimation of Relative Subsidence of Collapsible Soils Using Electromagnetic Measurements

Authors: Henok Hailemariam, Frank Wuttke

Abstract:

Collapsible soils are weak soils that appear to be stable in their natural state, normally dry condition, but rapidly deform under saturation (wetting), thus generating large and unexpected settlements which often yield disastrous consequences for structures unwittingly built on such deposits. In this study, a prediction model for the relative subsidence of stressed collapsible soils based on dielectric permittivity measurement is presented. Unlike most existing methods for soil subsidence prediction, this model does not require moisture content as an input parameter, thus providing the opportunity to obtain accurate estimation of the relative subsidence of collapsible soils using dielectric measurement only. The prediction model is developed based on an existing relative subsidence prediction model (which is dependent on soil moisture condition) and an advanced theoretical frequency and temperature-dependent electromagnetic mixing equation (which effectively removes the moisture content dependence of the original relative subsidence prediction model). For large scale sub-surface soil exploration purposes, the spatial sub-surface soil dielectric data over wide areas and high depths of weak (collapsible) soil deposits can be obtained using non-destructive high frequency electromagnetic (HF-EM) measurement techniques such as ground penetrating radar (GPR). For laboratory or small scale in-situ measurements, techniques such as an open-ended coaxial line with widely applicable time domain reflectometry (TDR) or vector network analysers (VNAs) are usually employed to obtain the soil dielectric data. By using soil dielectric data obtained from small or large scale non-destructive HF-EM investigations, the new model can effectively predict the relative subsidence of weak soils without the need to extract samples for moisture content measurement. Some of the resulting benefits are the preservation of the undisturbed nature of the soil as well as a reduction in the investigation costs and analysis time in the identification of weak (problematic) soils. The accuracy of prediction of the presented model is assessed by conducting relative subsidence tests on a collapsible soil at various initial soil conditions and a good match between the model prediction and experimental results is obtained.

Keywords: Collapsible soil, relative subsidence, dielectric permittivity, moisture content.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1092