Role and Relative Effectiveness of Immune System for Combating Small Pox and AIDS
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33093
Role and Relative Effectiveness of Immune System for Combating Small Pox and AIDS

Authors: A. Taqaddas

Abstract:

The human body has a complex system of innate and adaptive mechanisms for combating infection. This article discusses the role and relative effectiveness of these mechanisms in relation to small pox and AIDS.

Keywords: AIDS, Immune System, Small Pox, Viral Infections.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1095925

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2060

References:


[1] J. Carter, and V. Saunders, Virology Principles and Applications, Chichester: John Wiley & Sons Ltd, 2007.
[2] C. Hare, "Clinical Overview of HIV disease”, Available at: http://hivinsite.ucsf.edu/InSite?page=kb-03-01-01#S6.3X. (Accessed 19/08/2014).
[3] J. Levy, J. Shimabukuro, T. McHugh, C. Casavant, D. Stites, and L. Oshiro, "AIDS-associated retroviruses (ARV) can productively infect other cells besides human T-helper cells”, Virology, 147:1985, 441
[4] M. Pope M, S. Gezelter, N. Gallo, L. Hoffman, and R. Steinman, "Low levels of HIV-1 infection in cutaneous dendritic cells promote extensive viral replication upon binding to memory CD4_ T cells”, The Journal of Experimental Medicine, 182:1995, 2045-56
[5] D. Kimbrell, and B. Beutler, "The Evolution and Genetics of Innate Immunity”, Nature Reviews Genetics, 2, 2001,256-267.
[6] M. Tosi, "Immune Responses to Infection”, Current Reviews of Allergy and Clinical Immunology, 116, 2005, 241-249. Available at:http://www.congrexswitzerland.com/2006/escmidschool2006/pdf/edu_mat_2006_20.pdf. (Accessed 19/08/2014).
[7] B. Doehle, and M. Gale, Innate Immune Evasion Strategies of HCV and HIV: Common Themes for Chronic viral Infection In Nucleic Acid Sensors and Antiviral Immunity. Available at: http://www.ncbi. nlm.nih.gov/books/NBK82973/. (Accessed 19/08/2014).
[8] M. Quaranata, B. Mattioli, and S. Vella, "Glances in Immunology of HIV and HCV Infection”, Advances in Virology, 2012, 2012, 434036. Available at: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3375159/. (Accessed 19/08/2014)
[9] R. Lehner, Y. Wang, J. Pido-Lopez, T. Whittall, L. Bergmeien, K. Babahmady, "The emerging role of innate Immunity in protecting against HIV-1 Infection”, Vaccines, 26, 2008, 2997-3001
[10] R. Medzhitov, and C. Janeway, "Innate Immunity: The Virtues of Nonclonal System of Recognition”, Cell, 91, 1997, 295-298.
[11] A. Abbas, A. Lichtman, and S. Pillai, Cellular and Molecular Immunology, Philadelphia: Elsevier Saunders, 2011.
[12] T. Mogensen, "Pathogen Recognition and Inflammatory Signaling In Innate Immune Defenses”, Clinical Microbiology Reviews, 22, 2009, 240-273. Available at; http://cmr.asm.org/content/22/2/240.full. (Accessed 20/08/2014).
[13] C. Agrati, G. D’ Offizi, M. Gougeon, M. Malkousky, A. Sacchi, R. Casetti, et al., "Innate Gamma/Delta T-cells during HIV Infection: Terra Relatively Incognita In Novel Vaccination Strategies”, AIDS Reviews, 13, 2011, 3-12.
[14] A. Sant, and A. McMichael, "Revealing the role of CD4+ T cells in viral immunity”, JEM, 2012. Available at: http://jem.rupress.org/ content/209/8/1391.full.pdf. (Accessed 20/08/2014).
[15] T. Mogensen, J. Melchjorsen, C. Larsen, and S. Paluden, "Innate Immune Recognition and Activation during HIV Infection”, Retrovirology, 7, 2010, 2-19. Available at: http://www.retrovirology.com/content/7/1/54. (Accessed 20/08/2014).
[16] T. Rodman, J. Sullivan, X. Bai, and R. Winston., "The human uniqueness of HIV: innate immunity and the viral Tat protein”, Human Immunology, 60, 1999, 631–639
[17] U. Holmskov, S. Thiel, and J. Jensenius, "Collections and ficolins: humoral lectins of the innate immune defense”, Annual review of Immunology, 21, 2003, 547-78.
[18] V. Soumelis V, I. Scott, Y. Liu, and J. Levy, "Natural Type 1 Interferon Producing Cells in HIV Infection”, Human Immunology, 63, 2002, 1206-1212.
[19] C. Biron C, "Activation and function of natural killer cell responses during viral infections”, Current Opinion in Immunology, 9, 1997, 24-34
[20] K. Hiroishi K, T. Tuting, and M. Lotz, "IFN-alpha-expressing tumor cells enhance generation and promote survival of tumor-specific CTLs”, Journal of Immunology, 164:2000, 567-572.
[21] P. Marrack P, J. Kappler, and T. Mitchell, "Type I interferons keep activated T cells alive”, The Journal of Experimental Medicine, 189, 1999, 21-530
[22] S. Sun, X. Zhang, D. Tough, and J. Sprent, "Type I interferon-mediated stimulation of T cells by CpG DNA”, The Journal of Experimental Medicine, 188, 1998, 2335-2342.
[23] V. Soumelis, I. Scott, F. Gheyas, D. Bouhour, G. Cozon, L. Cotte, L. Huang, J. Levy, and Y. Liu, "Depletion of circulating natural type 1 interferon-producing cells in HIV-infected AIDS patients”, Blood, 98, 2001, 906-912.
[24] J. Pacanowski, S. Kahi, M. Baillet, P. Lebon, C. Deveau, C. Goujard, L. Meyer, E. Okesenhendler, M. Sinet, and A. Hosmalin, "Reduced blood CD123+ (lymphoid) and CD11c+ (myeloid) dendritic cell numbers in Primary HIV-1 infection”, Blood, 98, 2001, 3016.
[25] C. Bogdan, "The function of Type 1 interferon in antimicrobial immunity”, Current Opinion in Immunology, 12, 2000, 419-424.
[26] H. Young, "Regulation of Interferon-Gamma Gene Expression”, Journal of Interferone and Cytokine Research, 16, 1996, 563-568
[27] E. Mack, L. Kallal, D. Demers, and C. Biron, "Type 1 Interferone induction of Natural Killer cell Gamma Interferon production for Defense during Lymphocytic Choriomeningitis Virus Infection”, mBio, 2, 2011, e00169—11. Available at: http://mbio.asm.org/ content/2/4/e00169-11.full. (Accessed 21/08/2014).
[28] McRae B., Semnani R., Hayes M., and van Seventer G., (1998) ‘Type I IFNs Inhibit Human Dendritic Cell IL-12 Production and Th1 Cell Development’ Journal of Immunology, 160, 4298-4304.
[29] J. Orange, and C. Biron, "Characterization of early IL-12, IFN-and TNF effects on antiviral state and NK cell responses during murine cytomegalovirus infection”, Journal of Immunology, 156, 1996, 4746-4756.
[30] A. Verani, G. Gras, and G. Pancino, "Macrophages and HIV-1: dangerous liaisons”, Molecular Immunology, 42, 2004, 195-212.
[31] Levy J. et al., "Controlling HIV pathogenesis: the role of noncytotoxic anti-HIV activity of CD8+ cells”, Immunology Today, 17, 1996, 217-224.
[32] E. Barker, C. Mackewicz, G. Reyes-Teran, A. Sato, S. Stranford, S. Fujimura, C. Christopherson, S. Chang, and J. Levy, "Virological and immunological features of long term human immunodeficiency virus infected individuals who have remained asymptomatic compared to those who have progressed to acquired immunodeficiency syndrome” Blood, 92, 1998, 3105-3114.
[33] L. Hussain, and T. Lehner, "Comparative investigation of Langerhans cells and potential receptors for HIV in oral, genitourinary and rectal epithelia”, Immunology, 85, 1995, 475-84.
[34] R. Medzhitov, and C. Janeway, "Innate immunity”, New England Journal of Medicine, 343, 2000, 338-44
[35] M. Wallace, S. Bartz, W. Chang, D. Mackenzie, C. Pauza, and M. Malkovsky, (1996) "γδ T lymphocyte responses to HIV2, Clinical and Experimental Immunology, 103, 1996, 177–184.
[36] R. Lehrer, "Primate defensins” National Reviews Microbiology, 2:2004, 727–738
[37] T. Ganz, "Defensins: antimicrobial peptides of innate immunity”, National Reviews Immunology, 3:2003, 710–720.
[38] L. Furci, F. Sironi, M. Tolazz, L. Vassena, and P. Lusso, "- defensins block the early steps of HIV-1 infection: interference with binding of gp120 to CD4”, Blood, 109, 2007, 2928-2935.
[39] A. Weinberg, M. Quinones Mateu, and M. Lederman, "Role of Human -definsins in HIV infection”, Advances in Dental Research, 19, 2006, 42-48.
[40] F. Siegel, and G. Spear, "Innate Immunity and HIV”, AIDS, 15, 2001, S127-S137
[41] G. Spear, "Interaction of non-antibody factors with HIV in plasma”, AIDS, 7, 1993, 1149-1157
[42] S. Moir, A. Malaspina, Y. Li, T. Chun, T. Lowe, J. Adelsberger, M. Baseler, L. Ehler, S. Liu, R. Davey, J. Mican, and A. Fauci, "B cells of HIV-1-infected patients bind virions through CD21-complement interactions and transmit infectious virus to activated T cells”, The Journal of Experimental Medicine, 192, 2000, 637-46
[43] B.Sullivan, E. Knopoff, M. Saifuddin, D. Takefman, M. Saarloos, B. Sha, and G. Spear, "Susceptibility of HIV-1 plasma virus to complement-mediated lysis. Evidence for a role in clearance of virus in vivo”, Journal of Immunology, 157, 1996, 1791-1798.
[44] M. Hundt, H.Heiken, and R. Schmidt, "Association of low mannose-binding lectin serum concentrations and bacterial pneumonia in HIV infection”, AIDS, 14, 2000, 1853-4.
[45] M. Cascalho, "Advantages and Disadvantages of cytidine Deamination”, The Journal of Immunology, 172, 2004, 6513-6518. Available at: http://www.jimmunol.org/content/172/11/6513.full. (Accessed 20/08/2014).
[46] J. Gonclaves, and M. Santa-Marta, "HIV-1, Vif and APOBEC3G: Multiple roads to one goal”, Retrovirology, 1, 2004, 28.
[47] P. Borrow, H. Lewicki, B. Hahn, G. Shaw, and M. Oldstone, "Virus-specific CD8+ cytotoxic T-lymphocyte activity associated with control of viremia in primary human immunodeficiency virus type 1 infection” Journal of Virology, 68:1994, 6103–10.
[48] R. Koup, J. Safrit, Y. Cao, C. Andrews, G. Mcleod, G. Borkowsky, C. Farthing, and D. Ho, "Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome”, Journal of Virology, 68: 1994, 4650–5.
[49] V. Piguet, and D. Trono, "Living in oblivion: HIV immune evasion”, Seminars in Immunology, 13, 2001, 51-57.
[50] B. Bettinger, "Are you Immune to HIV and Small Pox”, The Genetic Genealogist, 2007. Available online: http://www.thegeneticgenealogist.com/2007/03/29/are-you-immune-to-hiv-and-smallpox/. (Accessed 20/08/2014)
[51] A. Galvni, and M. Slatkin, "Evaluating Plague and small pox as historical selective pressures for CCR5 D32 HIV resistance allele”, PNAS, 100, 2003, 15276-15279.
[52] D. Esteban, A. Nuara, and R. Buller R, "Interleukin-18 and Glycosaminoglycan binding by a protein encoded by Variola virus” Journal of General Virology, 85, 2004, 1291-1299.
[53] A. Alejo, M. Ruiz-Arguello, Y. Ho, V. Smith, M. Saraiva, and A. Alcami, "A Chemokine-binding domain in the tumor necrosis factor receptor from variola (Small pox) virus”, PNAS, 103, 2006, 5995-6000.
[54] V. Panchanathan, G. Chaudhri, and G. Karupiah, "Interferon function is not required for recovery from a secondary poxvirus infection”, PNAS, 102, 2005, 12921-12926.
[55] L. Dunlop, K. Oehlberg, J. Reid, D. Avci , and A. Rosengard, "Variola virus Immune evasion proteins”, Microbes and Infection, 5, 2003, 1049-1056.
[56] K. Rubins, L. Hensley, P. Jahrling, A. Whitney, T. Geisbert, J. Huggins, et al., "The host response to small pox: Analysis of the gene expression program in peripheral blood cells in a non human primate model”, 101, 2004, 15190-15195.
[57] G. Chaudhri, V. Panchanathan, H. Bluethmann, and G. Karupiah, (2006) "Obligatory Rquirement for Antibody in Recovery from a Primary Poxvirus Infection”, Journal of Virology, 80, 2006, 6339-6344.