Search results for: N2 adsorption/desorption isotherm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 297

Search results for: N2 adsorption/desorption isotherm

267 Adsorption of Cadmium onto Activated and Non-Activated Date Pits

Authors: Munther I. Kandah, Fahmi A. Abu Al-Rub, Lucy Bawarish, Mira Bawarish, Hiba Al-Tamimi, Reem Khalil, Raja'a Sa, ada

Abstract:

In this project cadmium ions were adsorbed from aqueous solutions onto either date pits; a cheap agricultural and nontoxic material, or chemically activated carbon prepared from date pits using phosphoric acid. A series of experiments were conducted in a batch adsorption technique to assess the feasibility of using the prepared adsorbents. The effects of the process variables such as initial cadmium ions concentration, contact time, solution pH and adsorbent dose on the adsorption capacity of both adsorbents were studied. The experimental data were tested using different isotherm models such as Langmuir, Freundlich, Tempkin and Dubinin- Radushkevich. The results showed that although the equilibrium data could be described by all models used, Langmuir model gave slightly better results when using activated carbon while Freundlich model, gave better results with date pits.

Keywords: Adsorption, Cadmium, Chemical Activation, DatePits.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1764
266 Nanostructure of Gamma-Alumina Prepared by a Modified Sol-Gel Technique

Authors: Débora N. Zambrano, Marina O. Gosatti, Leandro M. Dufou, Daniel A. Serrano, M. Mónica Guraya, Soledad Perez-Catán

Abstract:

Nanoporous g-Al2O3 samples were synthesized via a sol-gel technique, introducing changes in the Yoldas´ method. The aim of the work was to achieve an effective control of the nanostructure properties and morphology of the final g-Al2O3. The influence of the reagent temperature during the hydrolysis was evaluated in case of water at 5 ºC and 98 ºC, and alkoxide at -18 ºC and room temperature. Sol-gel transitions were performed at 120 ºC and room temperature. All g-Al2O3 samples were characterized by X-ray diffraction, nitrogen adsorption and thermal analysis. Our results showed that temperature of both water and alkoxide has not much influence on the nanostructure of the final g-Al2O3, thus giving a structure very similar to that of samples obtained by the reference method as long as the reaction temperature above 75 ºC is reached soon enough. XRD characterization showed diffraction patterns corresponding to g-Al2O3 for all samples. Also BET specific area values (253-280 m2/g) were similar to those obtained by Yoldas’s original method. The temperature of the sol-gel transition does not affect the resulting sample structure, and crystalline boehmite particles were identified in all dried gels. We analyzed the reproducibility of the samples’ structure by preparing different samples under identical conditions; we found that performing the sol-gel transition at 120 ºC favors the production of more reproducible samples and also reduces significantly the time of the sol-gel reaction.

Keywords: Nanostructure alumina, boehmite, sol-gel technique, N2 adsorption/desorption isotherm, pore size distribution, BET area.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1306
265 Mitigation of Nitrate Pollution in Wastewater: A Case Study of the Treatment of Cassava Processing Effluent Using Cassava Peel Carbon Material

Authors: Olayinka Omotosho

Abstract:

The study investigated efficiency cassava peel carbon and Zinc Chloride activated cassava peel carbon at 1:3, 2:3 and 1:1 activation levels in the removal of nitrates from oxidized cassava processing wastewater. Results showed that the CPC and CPAC were effective in adsorption of nitrates. A summary of results from the study revealed that CPAC at 1:3 exhibited the highest initial decontamination (69.5% after 2 hrs) while CPAC at 1:1 activation ratio showed a slower initial decontamination rate. The CPC & CPAC exhibited Langmuir Rα values of 0.15, 0.11, 0.09, and 0.07 for the 0:1, 1:3, 2:3 and 1:1 confirming its suitability as adsorption material.

Keywords: Adsorption, Cassava, Activated Carbon, Nitrate, Isotherm, Langmuir.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1239
264 Removal of Textile Dye from Industrial Wastewater by Natural and Modified Diatomite

Authors: Hakim Aguedal, Abdelkader Iddou, Abdallah Aziz, Djillali Reda Merouani, Ferhat Bensaleh, Saleh Bensadek

Abstract:

The textile industry produces high amount of colored effluent each year. The management or treatment of these discharges depends on the applied techniques. Adsorption is one of wastewater treatment techniques destined to treat this kind of pollution, and the performance and efficiency predominantly depend on the nature of the adsorbent used. Therefore, scientific research is directed towards the development of new materials using different physical and chemical treatments to improve their adsorption capacities. In the same perspective, we looked at the effect of the heat treatment on the effectiveness of diatomite, which is found in abundance in Algeria. The textile dye Orange Bezaktiv (SRL-150) which is used as organic pollutants in this study is provided by the textile company SOITEXHAM in Oran city (west Algeria). The effect of different physicochemical parameters on the adsorption of SRL-150 on natural and modified diatomite is studied, and the results of the kinetics and adsorption isotherms were modeled.

Keywords: Wastewater treatment, diatomite, adsorption, dye pollution, kinetic, Isotherm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1558
263 Organoclay of Cetyl Trimethyl Ammonium- Montmorillonite: Preparation and Study in Adsorption of Benzene-Toluene-2-Chlorophenol

Authors: Is Fatimah, Winda Novita, Yopi Andika, Imam Sahroni, Basitoh Djaelani, Yuyun Yunani N.

Abstract:

Contamination of aromatic compounds in water can cause severe long-lasting effects not only for biotic organism but also on human health. Several alternative technologies for remediation of polluted water have been attempted. One of these is adsorption process of aromatic compounds by using organic modified clay mineral. Porous structure of clay is potential properties for molecular adsorptivity and it can be increased by immobilizing hydrophobic structure to attract organic compounds. In this work natural montmorillonite were modified with cetyltrimethylammonium (CTMA+) and was evaluated for use as adsorbents of aromatic compounds: benzene, toluene, and 2-chloro phenol in its single and multicomponent solution by ethanol:water solvent. Preparation of CTMA-montmorillonite was conducted by simple ion exchange procedure and characterization was conducted by using x-day diffraction (XRD), Fourier-transform infra red (FTIR) and gas sorption analysis. The influence of structural modification of montmorillonite on its adsorption capacity and adsorption affinity of organic compound were studied. It was shown that adsorptivity of montmorillonite was increased by modification associated with arrangements of CTMA+ in the structure even the specific surface area of modified montmorillonite was lower than raw montmorillonite. Adsorption rate indicated that material has affinity to adsorb compound by following order: benzene> toluene > 2-chloro phenol. The adsorption isotherms of benzene and toluene showed 1st order adsorption kinetic indicating a partition phenomenon of compounds between the aqueous and organophilic CTMAmontmorillonite.

Keywords: Adsorption, Desorption, Montmorillonite, Organoclay, Surfactant.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2407
262 Adsorption Refrigeration Working Pairs: The State-of-the-Art in the Application

Authors: Ahmed N. Shmroukh, Ahmed Hamza H. Ali, Ali K. Abel-Rahman

Abstract:

Adsorption refrigeration working pair is a vital and is the main component in the adsorption refrigeration machine. Therefore the development key is laying on the adsorption pair that leads to the improvement of the adsorption refrigeration machine. In this study the state-of-the-art in the application of the adsorption refrigeration working pairs in both classical and modern adsorption pairs are presented, compared and summarized. It is found that the maximum adsorption capacity for the classical working pairs was 0.259kg/kg for activated carbon/methanol and that for the modern working pairs was 2kg/kg for maxsorb III/R-134a. The study concluded that, the performances of the adsorption working pairs of adsorption cooling systems are still need further investigations as well as developing adsorption pairs having higher sorption capacity with low or no impact on environmental, to build compact, efficient, reliable and long life performance adsorption chillier. Also, future researches need to be focused on designing the adsorption system that provide efficient heating and cooling for the adsorbent materials through distributing the adsorbent material over heat exchanger surface, to allow good heat and mass transfer between the adsorbent and the refrigerant.

Keywords: Adsorption, Adsorbent/Adsorbate Pairs, Refrigeration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4722
261 Banana Peels as an Eco-Sorbent for Manganese Ions

Authors: M. S. Mahmoud

Abstract:

This study was conducted to evaluate the manganese removal from aqueous solution using Banana peels activated carbon (BPAC). Batch experiments have been carried out to determine the influence of parameters such as pH, biosorbent dose, initial metal ion concentrations and contact times on the biosorption process. From these investigations, a significant increase in percentage removal of manganese 97.4% is observed at pH value 5.0, biosorbent dose 0.8 g, initial concentration 20 ppm, temperature 25 ± 2°C, stirring rate 200 rpm and contact time 2h. The equilibrium concentration and the adsorption capacity at equilibrium of the experimental results were fitted to the Langmuir and Freundlich isotherm models; the Langmuir isotherm was found to well represent the measured adsorption data implying BPAC had heterogeneous surface. A raw groundwater samples were collected from Baharmos groundwater treatment plant network at Embaba and Manshiet Elkanater City/District-Giza, Egypt, for treatment at the best conditions that reached at first phase by BPAC. The treatment with BPAC could reduce iron and manganese value of raw groundwater by 91.4% and 97.1%, respectively and the effect of the treatment process on the microbiological properties of groundwater sample showed decrease of total bacterial count either at 22°C or at 37°C to 85.7% and 82.4%, respectively. Also, BPAC was characterized using SEM and FTIR spectroscopy.

Keywords: Biosorption, banana peels, isothermal models, manganese.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3203
260 Molecular Dynamics Simulation of Lubricant Adsorption and Thermal Depletion Instability

Authors: Bei Li, Qiu B. Chen, Chee H. Wong

Abstract:

In this work, we incorporated a quartic bond potential into a coarse-grained bead-spring model to study lubricant adsorption on a solid surface as well as depletion instability. The surface tension density and the number density profiles were examined to verify the solid-liquid and liquid-vapor interfaces during heat treatment. It was found that both the liquid-vapor interfacial thickness and the solid-vapor separation increase with the temperatureT* when T*is below the phase transition temperature Tc *. At high temperatures (T*>Tc *), the solid-vapor separation decreases gradually as the temperature increases. In addition, we evaluated the lubricant weight and bond loss profiles at different temperatures. It was observed that the lubricant desorption is favored over decomposition and is the main cause of the lubricant failure at the head disk interface in our simulations.

Keywords: Depletion instability, Lubricant film, Thermal adsorption, Molecular dynamics (MD).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1727
259 Adsorption of Inorganic Salt by Granular Activated Carbon and Related Prediction Models

Authors: Kai-Lin Hsu, Jie-Chung Lou, Jia-Yun Han

Abstract:

In recent years, the underground water sources in southern Taiwan have become salinized because of saltwater intrusions. This study explores the adsorption characteristics of activated carbon on salinizing inorganic salts using isothermal adsorption experiments and provides a model analysis. The temperature range for the isothermal adsorption experiments ranged between 5 to 45 ℃, and the amount adsorbed varied between 28.21 to 33.87 mg/g. All experimental data of adsorption can be fitted to both the Langmuir and the Freundlich models. The thermodynamic parameters for per chlorate onto granular activated carbon were calculated as -0.99 to -1.11 kcal/mol for DG°, -0.6 kcal/mol for DH°, and 1.21 to 1.84 kcal/mol for DS°. This shows that the adsorption process of granular activated carbon is spontaneously exothermic. The observation of adsorption behaviors under low ionic strength, low pH values, and low temperatures is beneficial to the adsorption removal of perchlorate with granular activated carbon.

Keywords: Water Treatment, Per Chlorate, Adsorption, Granular Activated Carbon

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2694
258 Effect of the Experimental Conditions on the Adsorption Capacities in the Removal of Pb2+ from Aqueous Solutions by the Hydroxyapatite Nanopowders

Authors: Oral Lacin, Turan Calban, Fatih Sevim, Taner Celik

Abstract:

In this study, Pb2+ uptake by the hydroxyapatite nanopowders (n-Hap) from aqueous solutions was investigated by using batch adsorption techniques. The adsorption equilibrium studies were carried out as a function of contact time, adsorbent dosage, pH, temperature, and initial Pb2+ concentration. The results showed that the equilibrium time of adsorption was achieved within 60 min, and the effective pH was selected to be 5 (natural pH). The maximum adsorption capacity of Pb2+ on n-Hap was found as 565 mg.g-1. It is believed that the results obtained for adsorption may provide a background for the detailed mechanism investigations and the pilot and industrial scale applications.

Keywords: Nanopowders, hydroxyapatite, heavy metals, adsorption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1421
257 The Removal of Cu (II) Ions from Aqueous Solutions on Synthetic Zeolite NaA

Authors: Dimitar Georgiev, Bogdan Bogdanov, Yancho Hristov, Irena Markovska

Abstract:

In this study the adsorption of Cu (II) ions from aqueous solutions on synthetic zeolite NaA was evaluated. The effect of solution temperature and the determination of the kinetic parameters of adsorption of Cu(II) from aqueous solution on zeolite NaA is important in understanding the adsorption mechanism. Variables of the system include adsorption time, temperature (293- 328K), initial solution concentration and pH for the system. The sorption kinetics of the copper ions were found to be strongly dependent on pH (the optimum pH 3-5), solute ion concentration and temperature (293 – 328 K). It was found, the pseudo-second-order model was the best choice among all the kinetic models to describe the adsorption behavior of Cu(II) onto ziolite NaA, suggesting that the adsorption mechanism might be a chemisorptions process The activation energy of adsorption (Ea) was determined as Cu(II) 13.5 kJ mol-1. The low value of Ea shows that Cu(II) adsorption process by zeolite NaA may be an activated chemical adsorption. The thermodynamic parameters (ΔG0, ΔH0, and ΔS0) were also determined from the temperature dependence. The results show that the process of adsorption Cu(II) is spontaneous and endothermic process and rise in temperature favors the adsorption.

Keywords: Zeolite NaA, adsorption, adsorption capacity, kinetic sorption

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2166
256 Mercury Removing Capacity of Multiwall Carbon Nanotubes as Detected by Cold Vapor Atomic Absorption Spectroscopy: Kinetic & Equilibrium Studies

Authors: Yasser M. Moustafa, Rania E. Morsi, Mohammed Fathy

Abstract:

Multiwall carbon nanotubes, prepared by chemical vapor deposition, have an average diameter of 60-100 nm as shown by High Resolution Transmittance Electron Microscope, HR-TEM. The Multiwall carbon nanotubes (MWCNTs) were further characterized using X-ray Diffraction and Raman Spectroscopy. Mercury uptake capacity of MWCNTs was studied using batch adsorption method at different concentration ranges up to 150 ppm. Mercury concentration (before and after the treatment) was measured using cold vapor atomic absorption spectroscopy. The effect of time, concentration, pH and adsorbent dose were studied. MWCNT were found to perform complete absorption in the sub-ppm concentrations (parts per billion levels) while for high concentrations, the adsorption efficiency was 92% at the optimum conditions; 0.1 g of the adsorbent at 150 ppm mercury (II) solution. The adsorption of mercury on MWCNTs was found to follow the Freundlich adsorption isotherm and the pseudo-second order kinetic model.

Keywords: Cold Vapor Atomic Absorption Spectroscopy, Hydride System, Mercury Removing, Multi Wall Carbon Nanotubes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2386
255 Ligand-Depended Adsorption Characteristics of Silver Nanoparticles on Activated Carbon

Authors: Hamza Simsir, Nurettin Eltugral, Selhan Karagoz

Abstract:

Surface modification and functionalization has been an important tool for scientists in order to open new frontiers in nanoscience and nanotechnology. Desired surface characteristics for the intended applications can be achieved with surface functionalization. In this work, the effect of water soluble ligands on the adsorption capabilities of silver nanoparticles onto AC which was synthesized from German beech wood was investigated. Sodium borohydride (NaBH4) and polyvinyl alcohol (PVA) were used as the ligands. Silver nanoparticles with different surface coatings have average sizes range from 10 to 13 nm. They were synthesized in aqueous media by reducing Ag (I) ion in the presence of ligands. These particles displayed adsorption tendencies towards AC when they were mixed together and shaken in distilled water. Silver nanoparticles (NaBH4-AgNPs) reduced and stabilized by NaBH4 adsorbed onto AC with a homogenous dispersion of aggregates with sizes in the range of 100-400 nm. Beside, silver nanoparticles, which were prepared in the presence of both NaBH4 and PVA (NaBH4/PVA-Ag NPs), demonstrated that NaBH4/PVA-Ag NPs adsorbed and dispersed homogenously but, they aggregated with larger sizes on the AC surface (range from 300 to 600 nm). In addition, desorption resistance of Ag nanoparticles were investigated in distilled water. According to the results AgNPs were not desorbed on the AC surface in distilled water.

Keywords: Activated carbon, adsorption, ligand, silver nanoparticles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3377
254 Adsorptive Removal of Vapors of Toxic Sulfur Compounds using Activated Carbons

Authors: Meenakshi Goyal, Rashmi Dhawan

Abstract:

Adsorption of CS2 vapors has been studied on different types of activated carbons obtained from different source raw materials. The activated carbons have different surface areas and are associated with varying amounts of the carbon-oxygen surface groups. The adsorption of CS2 vapors is not directly related to surface area, but is considerably influenced by the presence of carbonoxygen surface groups. The adsorption decreases on increasing the amount of carbon-oxygen surface groups on oxidation and increases when these surface groups are eliminated on degassing. The adsorption is maximum in case of the 950°-degassed carbon sample which is almost completely free of any associated oxygen. The kinetic data as analysed by Empirical diffusion model and Linear driving force mass transfer model indicate that the adsorption does not involve Fickian diffusion but may be considered as a pseudo first order mass transfer process. The activation energy of adsorption and isosteric enthalpies of adsorption indicate that the adsorption does not involve interaction between CS2 and carbon-oxygen surface groups, but hydrophobic interactions between CS2 and C-C atoms in the carbon lattice.

Keywords: Adsorption, surface groups, adsorption kinetics, isosteric enthalpy of adsorption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2278
253 Adsorption of Bovine Serum Albumin on CeO2

Authors: Roman Marsalek

Abstract:

Preparation of nanoparticles of cerium oxide and adsorption of bovine serum albumin on them were studied. Particle size distribution and influence of pH on zeta potential of prepared CeO2 were determined. Average size of prepared cerium oxide nanoparticles was 9 nm. The simultaneous measurements of the bovine serum albumin adsorption and zeta potential determination of the (adsorption) suspensions were carried out. The adsorption isotherms were found to be of typical Langmuir type; values of the bovine serum albumin adsorption capacities were calculated. Increasing of pH led to decrease of zeta potential and decrease of adsorption capacity of cerium oxide nanoparticles. The maximum adsorption capacity was found for strongly acid suspension (am = 118 mg/g). The samples of nanoceria with positive zeta potential adsorbed more bovine serum albumin on the other hand, the samples with negative zeta potential showed little or no protein adsorption. Surface charge or better say zeta potential of CeO2 nanoparticles plays the key role in adsorption of proteins on such type of materials.

Keywords: Adsorption, BSA, cerium oxide nanoparticles, zeta potential.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3000
252 Use of Agricultural Waste for the Removal of Nickel Ions from Aqueous Solutions: Equilibrium and Kinetics Studies

Authors: Manjeet Bansal, Diwan Singh, V.K.Garg, Pawan Rose

Abstract:

The potential of economically cheaper cellulose containing natural materials like rice husk was assessed for nickel adsorption from aqueous solutions. The effects of pH, contact time, sorbent dose, initial metal ion concentration and temperature on the uptake of nickel were studied in batch process. The removal of nickel was dependent on the physico-chemical characteristics of the adsorbent, adsorbate concentration and other studied process parameters. The sorption data has been correlated with Langmuir, Freundlich and Dubinin-Radush kevich (D-R) adsorption models. It was found that Freundlich and Langmuir isotherms fitted well to the data. Maximum nickel removal was observed at pH 6.0. The efficiency of rice husk for nickel removal was 51.8% for dilute solutions at 20 g L-1 adsorbent dose. FTIR, SEM and EDAX were recorded before and after adsorption to explore the number and position of the functional groups available for nickel binding on to the studied adsorbent and changes in surface morphology and elemental constitution of the adsorbent. Pseudo-second order model explains the nickel kinetics more effectively. Reusability of the adsorbent was examined by desorption in which HCl eluted 78.93% nickel. The results revealed that nickel is considerably adsorbed on rice husk and it could be and economic method for the removal of nickel from aqueous solutions.

Keywords: Adsorption, nickel, SEM, EDAX.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2637
251 Malt Bagasse Waste as Biosorbent for Malachite Green: An Ecofriendly Approach for Dye Removal from Aqueous Solution

Authors: H. C. O. Reis, A. S. Cossolin, B. A. P. Santos, K. C. Castro, G. M. Pereira, V. C. Silva, P. T. Sousa Jr, E. L. Dall’Oglio, L. G. Vasconcelos, E. B. Morais

Abstract:

In this study, malt bagasse, a low-cost waste biomass, was tested as a biosorbent to remove the cationic dye Malachite green (MG) from aqueous solution. Batch biosorption experiments were investigated as functions of different experimental parameters such as initial pH, salt (NaCl) concentration, contact time, temperature and initial dye concentration. Higher removal rates of MG were obtained at pH 8 and 10. The equilibrium and kinetic studies suggest that the biosorption follows Langmuir isotherm and the pseudo-second-order model. The maximum monolayer adsorption capacity was estimated at 117.65 mg/g (at 45 °C). According to Dubinin–Radushkevich (D-R) isotherm model, biosorption of MG onto malt bagasse occurs physically. The thermodynamic parameters such as Gibbs free energy, enthalpy and entropy indicated that the MG biosorption onto malt bagasse is spontaneous and endothermic. The results of the ionic strength effect indicated that the biosorption process under study had a strong tolerance under high salt concentrations. It can be concluded that malt bagasse waste has potential for application as biosorbent for removal of MG from aqueous solution.

Keywords: Color removal, kinetic and isotherm studies, thermodynamic parameters, FTIR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 927
250 The Effect of Unburned Carbon on Coal Fly Ash toward its Adsorption Capacity for Methyl Violet

Authors: Widi Astuti, Agus Prasetya, Endang Tri Wahyuni, I Made Bendiyasa

Abstract:

Coal fly ash (CFA) generated by coal-based thermal power plants is mainly composed of quartz, mullite, and unburned carbon. In this study, the effect of unburned carbon on CFA toward its adsorption capacity was investigated. CFA with various carbon content was obtained by refluxing it with sulfuric acid having various concentration at various temperature and reflux time, by heating at 400-800°C, and by sieving into 100-mesh in particle size. To evaluate the effect of unburned carbon on CFA toward its adsorption capacity, adsorption of methyl violet solution with treated CFA was carried out. The research shows that unburned carbon leads to adsorption capacity decrease. The highest adsorption capacity of treated CFA was found 5.73 x 10-4mol.g-1.

Keywords: CFA, carbon, methyl violet, adsorption capacity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2141
249 Binary Mixture of Copper-Cobalt Ions Uptake by Zeolite using Neural Network

Authors: John Kabuba, Antoine Mulaba-Bafubiandi, Kim Battle

Abstract:

In this study a neural network (NN) was proposed to predict the sorption of binary mixture of copper-cobalt ions into clinoptilolite as ion-exchanger. The configuration of the backpropagation neural network giving the smallest mean square error was three-layer NN with tangent sigmoid transfer function at hidden layer with 10 neurons, linear transfer function at output layer and Levenberg-Marquardt backpropagation training algorithm. Experiments have been carried out in the batch reactor to obtain equilibrium data of the individual sorption and the mixture of coppercobalt ions. The obtained modeling results have shown that the used of neural network has better adjusted the equilibrium data of the binary system when compared with the conventional sorption isotherm models.

Keywords: Adsorption isotherm, binary system, neural network; sorption

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2004
248 Adsorption of Copper by using Microwave Incinerated Rice Husk Ash (MIRHA)

Authors: N.A.Johan, S.R.M.Kutty, M. H. Isa, N.S.Muhamad, H.Hashim

Abstract:

Many non-conventional adsorbent have been studied as economic alternative to commercial activated carbon and mostly agricultural waste have been introduced such as rubber leaf powder and hazelnut shell. Microwave Incinerated Rice Husk Ash (MIRHA), produced from the rice husk is one of the low-cost materials that were used as adsorbent of heavy metal. The aim of this research was to study the feasibility of using MIRHA500 and MIRHA800 as adsorbent for the removal of Cu(II) metal ions from aqueous solutions by the batch studies. The adsorption of Cu(II) into MIRHA500 and MIRH800 favors Fruendlich isotherm and imply pseudo – kinetic second order which applied chemisorptions

Keywords: Copper (II) aqueous solution, batch study, MIRHA500, MIRHA800, Microwave Incinerated Rice Husk Ash(MIRHA)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1870
247 Determination of Moisture Diffusivity of AACin Drying Phase using Genetic Algorithm

Authors: Jan Kočí, Jiří Maděra, Miloš Jerman, Robert Černý

Abstract:

The current practice of determination of moisture diffusivity of building materials under laboratory conditions is predominantly aimed at the absorption phase. The main reason is the simplicity of the inverse analysis of measured moisture profiles. However, the liquid moisture transport may exhibit significant hysteresis. Thus, the moisture diffusivity should be different in the absorption (wetting) and desorption (drying) phase. In order to bring computer simulations of hygrothermal performance of building materials closer to the reality, it is then necessary to find new methods for inverse analysis which could be used in the desorption phase as well. In this paper we present genetic algorithm as a possible method of solution of the inverse problem of moisture transport in desorption phase. Its application is demonstrated for AAC as a typical building material.

Keywords: autoclaved aerated concrete, desorption, genetic algorithm, inverse analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1556
246 Experimental Study on Adsorption Capacity of Activated Carbon Pairs with Different Refrigerants

Authors: Ahmed N. Shmroukh, Ahmed Hamza H. Ali, Ali K. Abel-Rahman

Abstract:

This study is experimentally targeting to develop effective in heat and mass transfer processes for the adsorbate to obtain applicable adsorption capacity data. This is done by using fin and tube heat exchanger core and the adsorbate is adhesive over its surface and located as the core of the adsorber. The pairs are activated carbon powder/R-134a, activated carbon powder/R-407c, activated carbon powder/R-507A, activated carbon granules/R-507A, activated carbon granules/R-407c and activated carbon granules/R-134a, at different adsorption temperatures of 25, 30, 35 and 50°C. The following is results is obtained: at adsorption temperature of 25 °C the maximum adsorption capacity is found to be 0.8352kg/kg for activated carbon powder with R-134a and the minimum adsorption capacity found to be 0.1583kg/kg for activated carbon granules with R-407c. While, at adsorption temperature of 50°C the maximum adsorption capacity is found to be 0.3207kg/kg for activated carbon powder with R-134a and the minimum adsorption capacity found to be 0.0609kg/kg for activated carbon granules with R-407c. Therefore, the activated carbon powder/R-134a pair is highly recommended to be used as adsorption refrigeration working pair because of its higher maximum adsorption capacity than the other tested pairs, to produce a compact, efficient and reliable for long life performance adsorption refrigeration system.

Keywords: Adsorption, Adsorbent/Adsorbate Pairs, Adsorption Capacity, Refrigeration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4805
245 QCM-D Study of E-casein Adsorption on Bimodal PEG Brushes

Authors: N. Ngadi, J. Abrahamson, C. Fee, K. Morison

Abstract:

Adsorption of proteins onto a solid surface is believed to be the initial and controlling step in biofouling. A better knowledge of the fouling process can be obtained by controlling the formation of the first protein layer at a solid surface. A number of methods have been investigated to inhibit adsorption of proteins. In this study, the adsorption kinetics of

Keywords: E-casein, QCM-D, stainless steel, bimodal brush, PEG

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1339
244 Removal of Rhodamine B from Aqueous Solution Using Natural Clay by Fixed Bed Column Method

Authors: A. Ghribi, M. Bagane

Abstract:

The discharge of dye in industrial effluents is of great concern because their presence and accumulation have a toxic or carcinogenic effect on living species. The removal of such compounds at such low levels is a difficult problem. The adsorption process is an effective and attractive proposition for the treatment of dye contaminated wastewater. Activated carbon adsorption in fixed beds is a very common technology in the treatment of water and especially in processes of decolouration. However, it is expensive and the powdered one is difficult to be separated from aquatic system when it becomes exhausted or the effluent reaches the maximum allowable discharge level. The regeneration of exhausted activated carbon by chemical and thermal procedure is also expensive and results in loss of the sorbent. The focus of this research was to evaluate the adsorption potential of the raw clay in removing rhodamine B from aqueous solutions using a laboratory fixed-bed column. The continuous sorption process was conducted in this study in order to simulate industrial conditions. The effect of process parameters, such as inlet flow rate, adsorbent bed height, and initial adsorbate concentration on the shape of breakthrough curves was investigated. A glass column with an internal diameter of 1.5 cm and height of 30 cm was used as a fixed-bed column. The pH of feed solution was set at 8.5. Experiments were carried out at different bed heights (5 - 20 cm), influent flow rates (1.6- 8 mL/min) and influent rhodamine B concentrations (20 - 80 mg/L). The obtained results showed that the adsorption capacity increases with the bed depth and the initial concentration and it decreases at higher flow rate. The column regeneration was possible for four adsorption–desorption cycles. The clay column study states the value of the excellent adsorption capacity for the removal of rhodamine B from aqueous solution. Uptake of rhodamine B through a fixed-bed column was dependent on the bed depth, influent rhodamine B concentration, and flow rate.

Keywords: Adsorption, Breakthrough curve, Clay, Fixed bed column, Rhodamine B, Regeneration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1632
243 Adsorption of Phenol and 4-Hydroxybenzoic Acid onto Functional Materials

Authors: Mourad Makhlouf, Omar Bouchher, Messabih Sidi Mohamed, Benrachedi Khaled

Abstract:

The objective of this study was to investigate the removal of two organic pollutants; 4-hydroxybenzoic acid (p-hydroxybenzoic acid) and phenol from synthetic wastewater by the adsorption on mesoporous materials. In this context, the aim of this work is to study the adsorption of organic compounds phenol and 4AHB on MCM-41 and FSM-16 non-grafted (NG) and other grafted (G) by trimethylchlorosilane (TMCS). The results of phenol and 4AHB adsorption in aqueous solution show that the adsorption capacity tends to increase after grafting in relation to the increase in hydrophobicity. The materials are distinguished by a higher adsorption capacity to the other NG materials. The difference in the phenol is 14.43% (MCM-41), 14.55% (FSM-16), and 16.72% (MCM-41), 13.57% (FSM-16) in the 4AHB. Our adsorption results show that the grafted materials by TMCS are good adsorbent at 25 °C.

Keywords: MCM-41, FSM-16, TMCS, phenol, 4AHB.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1008
242 Adsorption Kinetics of Alcohols over MCM-41 Materials

Authors: Farouq Twaiq, Mustafa Nasser, Siham Al-Hajri, Mansoor Al-Hasani

Abstract:

Adsorption of methanol and ethanol over mesoporous siliceous material are studied in the current paper. The pure mesoporous silica is prepared using tetraethylorthosilicate (TEOS) as silica source and dodecylamine as template at low pH. The prepared material was characterized using nitrogen adsorption,nX-ray diffraction (XRD) and scanning electron microscopy (SEM). The adsorption kinetics of methanol and ethanol from aqueous solution were studied over the prepared mesoporous silica material. The percent removal of alcohol was calculated per unit mass of adsorbent used. The 1st order model is found to be in agreement with both adsorbates while the 2nd order model fit the adsorption of methanol only.

Keywords: Adsorption, Kinetics, Mesoprous silica, Methanol

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2170
241 Influence of Solution Chemistry on Adsorption of Perfluorooctanesulfonate (PFOS) and Perfluorooctanoate (PFOA) on Boehmite

Authors: Fei Wang, Kaimin Shih

Abstract:

The persistent nature of perfluorochemicals (PFCs) has attracted global concern in recent years. Perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) are the most commonly found PFC compounds, and thus their fate and transport play key roles in PFC distribution in the natural environment. The kinetic behavior of PFOS or PFOA on boehmite consists of a fast adsorption process followed by a slow adsorption process which may be attributed to the slow transport of PFOS or PFOA into the boehmite pore surface. The adsorption isotherms estimated the maximum adsorption capacities of PFOS and PFOA on boehmite as 0.877 μg/m2 and 0.633 μg/m2, with the difference primarily due to their different functional groups. The increase of solution pH led to a moderate decrease of PFOS and PFOA adsorption, owing to the increase of ligand exchange reactions and the decrease of electrostatic interactions. The presence of NaCl in solution demonstrated negative effects for PFOS and PFOA adsorption on boehmite surfaces, with potential mechanisms being electrical double layer compression, competitive adsorption of chloride.

Keywords: PFOS, PFOA, adsorption, electrostatic interaction, ligand exchange

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2322
240 Wastewater Treatment with Ammonia Recovery System

Authors: M. Örvös, T. Balázs, K. F. Both

Abstract:

From environmental aspect purification of ammonia containing wastewater is expected. High efficiency ammonia desorption can be done from the water by air on proper temperature. After the desorption process, ammonia can be recovered and used in another technology. The calculation method described below give some methods to find either the minimum column height or ammonia rich solution of the effluent.

Keywords: Absorber, desorber, packed column.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2627
239 Physico-chemical Treatment of Tar-Containing Wastewater Generated from Biomass Gasification Plants

Authors: Vrajesh Mehta, Anal Chavan

Abstract:

Treatment of tar-containing wastewater is necessary for the successful operation of biomass gasification plants (BGPs). In the present study, tar-containing wastewater was treated using lime and alum for the removal of in-organics, followed by adsorption on powdered activated carbon (PAC) for the removal of organics. Limealum experiments were performed in a jar apparatus and activated carbon studies were performed in an orbital shaker. At optimum concentrations, both lime and alum individually proved to be capable of removing color, total suspended solids (TSS) and total dissolved solids (TDS), but in both cases, pH adjustment had to be carried out after treatment. The combination of lime and alum at the dose ratio of 0.8:0.8 g/L was found to be optimum for the removal of inorganics. The removal efficiency achieved at optimum concentrations were 78.6, 62.0, 62.5 and 52.8% for color, alkalinity, TSS and TDS, respectively. The major advantages of the lime-alum combination were observed to be as follows: no requirement of pH adjustment before and after treatment and good settleability of sludge. Coagulation-precipitation followed by adsorption on PAC resulted in 92.3% chemical oxygen demand (COD) removal and 100% phenol removal at equilibrium. Ammonia removal efficiency was found to be 11.7% during coagulation-flocculation and 36.2% during adsorption on PAC. Adsorption of organics on PAC in terms of COD and phenol followed Freundlich isotherm with Kf = 0.55 & 18.47 mg/g and n = 1.01 & 1.45, respectively. This technology may prove to be one of the fastest and most techno-economically feasible methods for the treatment of tar-containing wastewater generated from BGPs.

Keywords: Activated carbon, Alum, Biomass gasification, Coagulation-flocculation, Lime, Tar-containing wastewater.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3628
238 Evaluation of Hydrogen Particle Volume on Surfaces of Selected Nanocarbons

Authors: M. Ziółkowska, J. T. Duda, J. Milewska-Duda

Abstract:

This paper describes an approach to the adsorption phenomena modeling aimed at specifying the adsorption mechanisms on localized or nonlocalized adsorbent sites, when applied to the nanocarbons. The concept comes from the fundamental thermodynamic description of adsorption equilibrium and is based on numerical calculations of the hydrogen adsorbed particles volume on the surface of selected nanocarbons: single-walled nanotube and nanocone. This approach enables to obtain information on adsorption mechanism and then as a consequence to take appropriate mathematical adsorption model, thus allowing for a more reliable identification of the material porous structure. Theoretical basis of the approach is discussed and newly derived results of the numerical calculations are presented for the selected nanocarbons.

Keywords: Adsorption, mathematical modeling, nanocarbons, numerical analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1868