Search results for: Laplacian Pyramid
19 Effect of Channel Estimation on Capacity of MIMO System Employing Circular or Linear Receiving Array Antennas
Authors: Xia Liu, Marek E. Bialkowski
Abstract:
This paper reports on investigations into capacity of a Multiple Input Multiple Output (MIMO) wireless communication system employing a uniform linear array (ULA) at the transmitter and either a uniform linear array (ULA) or a uniform circular array (UCA) antenna at the receiver. The transmitter is assumed to be surrounded by scattering objects while the receiver is postulated to be free from scattering objects. The Laplacian distribution of angle of arrival (AOA) of a signal reaching the receiver is postulated. Calculations of the MIMO system capacity are performed for two cases without and with the channel estimation errors. For estimating the MIMO channel, the scaled least square (SLS) and minimum mean square error (MMSE) methods are considered.Keywords: MIMO, channel capacity, channel estimation, ULA, UCA, spatial correlation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 136518 Objective Performance of Compressed Image Quality Assessments
Authors: Ratchakit Sakuldee, Somkait Udomhunsakul
Abstract:
Measurement of the quality of image compression is important for image processing application. In this paper, we propose an objective image quality assessment to measure the quality of gray scale compressed image, which is correlation well with subjective quality measurement (MOS) and least time taken. The new objective image quality measurement is developed from a few fundamental of objective measurements to evaluate the compressed image quality based on JPEG and JPEG2000. The reliability between each fundamental objective measurement and subjective measurement (MOS) is found. From the experimental results, we found that the Maximum Difference measurement (MD) and a new proposed measurement, Structural Content Laplacian Mean Square Error (SCLMSE), are the suitable measurements that can be used to evaluate the quality of JPEG200 and JPEG compressed image, respectively. In addition, MD and SCLMSE measurements are scaled to make them equivalent to MOS, given the rate of compressed image quality from 1 to 5 (unacceptable to excellent quality).
Keywords: JPEG, JPEG2000, objective image quality measurement, subjective image quality measurement, correlation coefficients.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 218817 Object Detection based Weighted-Center Surround Difference
Authors: Seung-Hun Kim, Kye-Hoon Jeon, Byoung-Doo Kang, I1-Kyun Jung
Abstract:
Intelligent traffic surveillance technology is an issue in the field of traffic data analysis. Therefore, we need the technology to detect moving objects in real-time while there are variations in background and natural light. In this paper, we proposed a Weighted-Center Surround Difference method for object detection in outdoor environments. The proposed system detects objects using the saliency map that is obtained by analyzing the weight of each layers of Gaussian pyramid. In order to validate the effectiveness of our system, we implemented the proposed method using a digital signal processor, TMS320DM6437. Experimental results show that blurred noisy around objects was effectively eliminated and the object detection accuracy is improved.Keywords: Saliency Map, Center Surround Difference, Object Detection, Surveillance System
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 173616 Comparative Study of Different Enhancement Techniques for Computed Tomography Images
Authors: C. G. Jinimole, A. Harsha
Abstract:
One of the key problems facing in the analysis of Computed Tomography (CT) images is the poor contrast of the images. Image enhancement can be used to improve the visual clarity and quality of the images or to provide a better transformation representation for further processing. Contrast enhancement of images is one of the acceptable methods used for image enhancement in various applications in the medical field. This will be helpful to visualize and extract details of brain infarctions, tumors, and cancers from the CT image. This paper presents a comparison study of five contrast enhancement techniques suitable for the contrast enhancement of CT images. The types of techniques include Power Law Transformation, Logarithmic Transformation, Histogram Equalization, Contrast Stretching, and Laplacian Transformation. All these techniques are compared with each other to find out which enhancement provides better contrast of CT image. For the comparison of the techniques, the parameters Peak Signal to Noise Ratio (PSNR) and Mean Square Error (MSE) are used. Logarithmic Transformation provided the clearer and best quality image compared to all other techniques studied and has got the highest value of PSNR. Comparison concludes with better approach for its future research especially for mapping abnormalities from CT images resulting from Brain Injuries.
Keywords: Computed tomography, enhancement techniques, increasing contrast, PSNR and MSE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 137815 Optimal Feature Extraction Dimension in Finger Vein Recognition Using Kernel Principal Component Analysis
Authors: Amir Hajian, Sepehr Damavandinejadmonfared
Abstract:
In this paper the issue of dimensionality reduction is investigated in finger vein recognition systems using kernel Principal Component Analysis (KPCA). One aspect of KPCA is to find the most appropriate kernel function on finger vein recognition as there are several kernel functions which can be used within PCA-based algorithms. In this paper, however, another side of PCA-based algorithms -particularly KPCA- is investigated. The aspect of dimension of feature vector in PCA-based algorithms is of importance especially when it comes to the real-world applications and usage of such algorithms. It means that a fixed dimension of feature vector has to be set to reduce the dimension of the input and output data and extract the features from them. Then a classifier is performed to classify the data and make the final decision. We analyze KPCA (Polynomial, Gaussian, and Laplacian) in details in this paper and investigate the optimal feature extraction dimension in finger vein recognition using KPCA.
Keywords: Biometrics, finger vein recognition, Principal Component Analysis (PCA), Kernel Principal Component Analysis (KPCA).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 196214 Performance Improvement in the Bivariate Models by using Modified Marginal Variance of Noisy Observations for Image-Denoising Applications
Authors: R. Senthilkumar
Abstract:
Most simple nonlinear thresholding rules for wavelet- based denoising assume that the wavelet coefficients are independent. However, wavelet coefficients of natural images have significant dependencies. This paper attempts to give a recipe for selecting one of the popular image-denoising algorithms based on VisuShrink, SureShrink, OracleShrink, BayesShrink and BiShrink and also this paper compares different Bivariate models used for image denoising applications. The first part of the paper compares different Shrinkage functions used for image-denoising. The second part of the paper compares different bivariate models and the third part of this paper uses the Bivariate model with modified marginal variance which is based on Laplacian assumption. This paper gives an experimental comparison on six 512x512 commonly used images, Lenna, Barbara, Goldhill, Clown, Boat and Stonehenge. The following noise powers 25dB,26dB, 27dB, 28dB and 29dB are added to the six standard images and the corresponding Peak Signal to Noise Ratio (PSNR) values are calculated for each noise level.Keywords: BiShrink, Image-Denoising, PSNR, Shrinkage function
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 134713 Speckle Reducing Contourlet Transform for Medical Ultrasound Images
Authors: P.S. Hiremath, Prema T. Akkasaligar, Sharan Badiger
Abstract:
Speckle noise affects all coherent imaging systems including medical ultrasound. In medical images, noise suppression is a particularly delicate and difficult task. A tradeoff between noise reduction and the preservation of actual image features has to be made in a way that enhances the diagnostically relevant image content. Even though wavelets have been extensively used for denoising speckle images, we have found that denoising using contourlets gives much better performance in terms of SNR, PSNR, MSE, variance and correlation coefficient. The objective of the paper is to determine the number of levels of Laplacian pyramidal decomposition, the number of directional decompositions to perform on each pyramidal level and thresholding schemes which yields optimal despeckling of medical ultrasound images, in particular. The proposed method consists of the log transformed original ultrasound image being subjected to contourlet transform, to obtain contourlet coefficients. The transformed image is denoised by applying thresholding techniques on individual band pass sub bands using a Bayes shrinkage rule. We quantify the achieved performance improvement.Keywords: Contourlet transform, Despeckling, Pyramidal directionalfilter bank, Thresholding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 244612 Effect Comparison of Speckle Noise Reduction Filters on 2D-Echocardigraphic Images
Authors: Faten A. Dawood, Rahmita W. Rahmat, Suhaini B. Kadiman, Lili N. Abdullah, Mohd D. Zamrin
Abstract:
Echocardiography imaging is one of the most common diagnostic tests that are widely used for assessing the abnormalities of the regional heart ventricle function. The main goal of the image enhancement task in 2D-echocardiography (2DE) is to solve two major anatomical structure problems; speckle noise and low quality. Therefore, speckle noise reduction is one of the important steps that used as a pre-processing to reduce the distortion effects in 2DE image segmentation. In this paper, we present the common filters that based on some form of low-pass spatial smoothing filters such as Mean, Gaussian, and Median. The Laplacian filter was used as a high-pass sharpening filter. A comparative analysis was presented to test the effectiveness of these filters after being applied to original 2DE images of 4-chamber and 2-chamber views. Three statistical quantity measures: root mean square error (RMSE), peak signal-to-ratio (PSNR) and signal-tonoise ratio (SNR) are used to evaluate the filter performance quantitatively on the output enhanced image.
Keywords: Gaussian operator, median filter, speckle texture, peak signal-to-ratio
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 199511 An Algorithm for Determining the Arrival Behavior of a Secondary User to a Base Station in Cognitive Radio Networks
Authors: Danilo López, Edwin Rivas, Leyla López
Abstract:
This paper presents the development of an algorithm that predicts the arrival of a secondary user (SU) to a base station (BS) in a cognitive network based on infrastructure, requesting a Best Effort (BE) or Real Time (RT) type of service with a determined bandwidth (BW) implementing neural networks. The algorithm dynamically uses a neural network construction technique using the geometric pyramid topology and trains a Multilayer Perceptron Neural Networks (MLPNN) based on the historical arrival of an SU to estimate future applications. This will allow efficiently managing the information in the BS, since it precedes the arrival of the SUs in the stage of selection of the best channel in CRN. As a result, the software application determines the probability of arrival at a future time point and calculates the performance metrics to measure the effectiveness of the predictions made.
Keywords: Cognitive radio, MLPNN, base station, prediction, best effort, real time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 144510 A Novel Multiresolution based Optimization Scheme for Robust Affine Parameter Estimation
Authors: J.Dinesh Peter
Abstract:
This paper describes a new method for affine parameter estimation between image sequences. Usually, the parameter estimation techniques can be done by least squares in a quadratic way. However, this technique can be sensitive to the presence of outliers. Therefore, parameter estimation techniques for various image processing applications are robust enough to withstand the influence of outliers. Progressively, some robust estimation functions demanding non-quadratic and perhaps non-convex potentials adopted from statistics literature have been used for solving these. Addressing the optimization of the error function in a factual framework for finding a global optimal solution, the minimization can begin with the convex estimator at the coarser level and gradually introduce nonconvexity i.e., from soft to hard redescending non-convex estimators when the iteration reaches finer level of multiresolution pyramid. Comparison has been made to find the performance of the results of proposed method with the results found individually using two different estimators.Keywords: Image Processing, Affine parameter estimation, Outliers, Robust Statistics, Robust M-estimators
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14549 EEG-Based Fractal Analysis of Different Motor Imagery Tasks using Critical Exponent Method
Authors: Montri Phothisonothai, Masahiro Nakagawa
Abstract:
The objective of this paper is to characterize the spontaneous Electroencephalogram (EEG) signals of four different motor imagery tasks and to show hereby a possible solution for the present binary communication between the brain and a machine ora Brain-Computer Interface (BCI). The processing technique used in this paper was the fractal analysis evaluated by the Critical Exponent Method (CEM). The EEG signal was registered in 5 healthy subjects,sampling 15 measuring channels at 1024 Hz.Each channel was preprocessed by the Laplacian space ltering so as to reduce the space blur and therefore increase the spaceresolution. The EEG of each channel was segmented and its Fractaldimension (FD) calculated. The FD was evaluated in the time interval corresponding to the motor imagery and averaged out for all the subjects (each channel). In order to characterize the FD distribution,the linear regression curves of FD over the electrodes position were applied. The differences FD between the proposed mental tasks are quantied and evaluated for each experimental subject. The obtained results of the proposed method are a substantial fractal dimension in the EEG signal of motor imagery tasks and can be considerably utilized as the multiple-states BCI applications.
Keywords: electroencephalogram (EEG), motor imagery tasks, mental tasks, biomedical signals processing, human-machine interface, fractal analysis, critical exponent method (CEM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22598 Baby Boom Generation in Singapore and Its Impact on Ageing
Authors: Sharmistha Roy
Abstract:
In Singapore, there are about 1 million baby boomers, defined as those born between 1947 and 1964. They constitute a sizeable proportion (about 30 per cent) of the resident population comprising Singapore citizens and permanent residents. The first batches of these baby boomers have already 65 years old by 2012. Thereafter, baby boomers will swell the ranks of the elderly population in Singapore until 2030. The baby boomers in this study are divided into broad groups, namely, the early baby boomers (born 1947-54) and late baby boomers (1955-64). Continuing decline in fertility and mortality rates in the past three decades as well as improvements in health care facilities and services have changed the demography of Singapore from a “pyramid-shape” young, post war baby boomers population to a rapidly ageing population. With the ageing of the baby boom generation, the population of Singapore is about to grey rapidly over the next three decades. As such, there is a need for Singapore to understand the profile, perceptions and aspirations of this group, and devise strategies to address the needs and concerns as well as opportunities that arise with the ageing of baby boomers are discussed and presented in this work.
Keywords: Ageing index, Baby boomers, Demographic dependency ratio (DDR), Fertility and mortality rate, Life expectancy, Singapore.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 129887 Adaptive Shape Parameter (ASP) Technique for Local Radial Basis Functions (RBFs) and Their Application for Solution of Navier Strokes Equations
Authors: A. Javed, K. Djidjeli, J. T. Xing
Abstract:
The concept of adaptive shape parameters (ASP) has been presented for solution of incompressible Navier Strokes equations using mesh-free local Radial Basis Functions (RBF). The aim is to avoid ill-conditioning of coefficient matrices of RBF weights and inaccuracies in RBF interpolation resulting from non-optimized shape of basis functions for the cases where data points (or nodes) are not distributed uniformly throughout the domain. Unlike conventional approaches which assume globally similar values of RBF shape parameters, the presented ASP technique suggests that shape parameter be calculated exclusively for each data point (or node) based on the distribution of data points within its own influence domain. This will ensure interpolation accuracy while still maintaining well conditioned system of equations for RBF weights. Performance and accuracy of ASP technique has been tested by evaluating derivatives and laplacian of a known function using RBF in Finite difference mode (RBFFD), with and without the use of adaptivity in shape parameters. Application of adaptive shape parameters (ASP) for solution of incompressible Navier Strokes equations has been presented by solving lid driven cavity flow problem on mesh-free domain using RBF-FD. The results have been compared for fixed and adaptive shape parameters. Improved accuracy has been achieved with the use of ASP in RBF-FD especially at regions where larger gradients of field variables exist.
Keywords: CFD, Meshless Particle Method, Radial Basis Functions, Shape Parameters
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28306 Critical Factors Affecting the Implementation of Total Quality Management in the Construction Industry in U.A.E
Authors: Firas Mohamad Al-Sabek
Abstract:
The purpose of the paper is to examine the most critical and important factor which will affect the implementation of Total Quality Management (TQM) in the construction industry in the United Arab Emirates. It also examines the most effected Project outcome from implementing TQM. A framework was also proposed depending on the literature studies. The method used in this paper is a quantitative study. A survey with a sample of 60 respondents was created and distributed in a construction company in Abu Dhabi, which includes 15 questions to examine the most critical factor that will affect the implementation of TQM in addition to the most effected project outcome from implementing TQM. The survey showed that management commitment is the most important factor in implementing TQM in a construction company. Also it showed that Project cost is most effected outcome from the implementation of TQM. Management commitment is very important for implementing TQM in any company. If the management loose interest in quality then everyone in the organization will do so. The success of TQM will depend mostly on the top of the pyramid. Also cost is reduced and money is saved when the project team implement TQM. While if no quality measures are present within the team, the project will suffer a commercial failure. Based on literature, more factors can be examined and added to the model. In addition, more construction companies could be surveyed in order to obtain more accurate results. Also this study could be conducted outside the United Arab Emirates for further enchantment.Keywords: Construction project, total quality management, management commitment, cost, theoretical framework.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40685 Faster Pedestrian Recognition Using Deformable Part Models
Authors: Alessandro Preziosi, Antonio Prioletti, Luca Castangia
Abstract:
Deformable part models achieve high precision in pedestrian recognition, but all publicly available implementations are too slow for real-time applications. We implemented a deformable part model algorithm fast enough for real-time use by exploiting information about the camera position and orientation. This implementation is both faster and more precise than alternative DPM implementations. These results are obtained by computing convolutions in the frequency domain and using lookup tables to speed up feature computation. This approach is almost an order of magnitude faster than the reference DPM implementation, with no loss in precision. Knowing the position of the camera with respect to horizon it is also possible prune many hypotheses based on their size and location. The range of acceptable sizes and positions is set by looking at the statistical distribution of bounding boxes in labelled images. With this approach it is not needed to compute the entire feature pyramid: for example higher resolution features are only needed near the horizon. This results in an increase in mean average precision of 5% and an increase in speed by a factor of two. Furthermore, to reduce misdetections involving small pedestrians near the horizon, input images are supersampled near the horizon. Supersampling the image at 1.5 times the original scale, results in an increase in precision of about 4%. The implementation was tested against the public KITTI dataset, obtaining an 8% improvement in mean average precision over the best performing DPM-based method. By allowing for a small loss in precision computational time can be easily brought down to our target of 100ms per image, reaching a solution that is faster and still more precise than all publicly available DPM implementations.Keywords: Autonomous vehicles, deformable part model, dpm, pedestrian recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13974 An Overall Approach to the Communication of Organizations in Conventional and Virtual Offices
Authors: Mehmet Altınöz
Abstract:
Organizational communication is an administrative function crucial especially for executives in the implementation of organizational and administrative functions. Executives spend a significant part of their time on communicative activities. Doing his or her daily routine, arranging meeting schedules, speaking on the telephone, reading or replying to business correspondence, or fulfilling the control functions within the organization, an executive typically engages in communication processes. Efficient communication is the principal device for the adequate implementation of administrative and organizational activities. For this purpose, management needs to specify the kind of communication system to be set up and the kind of communication devices to be used. Communication is vital for any organization. In conventional offices, communication takes place within the hierarchical pyramid called the organizational structure, and is known as formal or informal communication. Formal communication is the type that works in specified structures within the organizational rules and towards the organizational goals. Informal communication, on the other hand, is the unofficial type taking place among staff as face-to-face or telephone interaction. Communication in virtual as well as conventional offices is essential for obtaining the right information in administrative activities and decision-making. Virtual communication technologies increase the efficiency of communication especially in virtual teams. Group communication is strengthened through an inter-group central channel. Further, ease of information transmission makes it possible to reach the information at the source, allowing efficient and correct decisions. Virtual offices can present as a whole the elements of information which conventional offices produce in different environments. At present, virtual work has become a reality with its pros and cons, and will probably spread very rapidly in coming years, in line with the growth in information technologies.Keywords: Organization, conventional office, virtual office, communication, communication model, communication functions, communication methods, vertical communication, linear communication, diagonal communication
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31643 Appropriate Technology: Revisiting the Movement in Developing Countries for Sustainability
Authors: Jayshree Patnaik, Bhaskar Bhowmick
Abstract:
The economic growth of any nation is steered and dependent on innovation in technology. It can be preferably argued that technology has enhanced the quality of life. Technology is linked both with an economic and a social structure. But there are some parts of the world or communities which are yet to reap the benefits of technological innovation. Business and organizations are now well equipped with cutting-edge innovations that improve the firm performance and provide them with a competitive edge, but rarely does it have a positive impact on any community which is weak and marginalized. In recent times, it is observed that communities are actively handling social or ecological issues with the help of indigenous technologies. Thus, "Appropriate Technology" comes into the discussion, which is quite prevalent in the rural third world. Appropriate technology grew as a movement in the mid-1970s during the energy crisis, but it lost its stance in the following years when people started it to describe it as an inferior technology or dead technology. Basically, there is no such technology which is inferior or sophisticated for a particular region. The relevance of appropriate technology lies in penetrating technology into a larger and weaker section of community where the “Bottom of the pyramid” can pay for technology if they find the price is affordable. This is a theoretical paper which primarily revolves around how appropriate technology has faded and again evolved in both developed and developing countries. The paper will try to focus on the various concepts, history and challenges faced by the appropriate technology over the years. Appropriate technology follows a documented approach but lags in overall design and diffusion. Diffusion of technology into the poorer sections of community remains unanswered until the present time. Appropriate technology is multi-disciplinary in nature; therefore, this openness allows having a varied working model for different problems. Appropriate technology is a friendly technology that seeks to improve the lives of people in a constraint environment by providing an affordable and sustainable solution. Appropriate technology needs to be defined in the era of modern technological advancement for sustainability.
Keywords: Appropriate technology, community, developing country, sustainability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18632 Development of a Basic Robot System for Medical and Nursing Care for Patients with Glaucoma
Authors: Naoto Suzuki
Abstract:
Medical methods to completely treat glaucoma are yet to be developed. Therefore, ophthalmologists manage patients mainly to delay disease progression. Patients with glaucoma are mainly elderly individuals. In elderly people's houses, having an equipment that can provide medical treatment and care can release their family from their care. For elderly people with the glaucoma to live by themselves as much as possible, we developed a support robot having five functions: elderly people care, ophthalmological examination, trip assistance to the neighborhood, medical treatment, and data referral to a hospital. The medical and nursing care robot should approach the visual field that the patients can see at a speed suitable for their eyesight. This is because the robot will be dangerous if it approaches the patients from the visual field that they cannot see. We experimentally developed a robot that brings a white cane to elderly people with glaucoma. The base part of the robot is a carriage, which is a Megarover 1.1, and it has two infrared sensors. The robot moves along a white line on the floor using the infrared sensors and has a special arm, which does not use electricity. The arm can scoop the block attached to the white cane. Next, we also developed a direction detector comprised of a charge-coupled device camera (SVR41ResucueHD; Sun Mechatronics), goggles (MG-277MLF; Midori Anzen Co. Ltd.), and biconvex lenses with a focal length of 25 mm (Edmund Co.). Some young people were photographed using the direction detector, which was put on their faces. Image processing was performed using Scilab 6.1.0 and Image Processing and Computer Vision Toolbox 4.1.2. To measure the people's line of vision, we calculated the iris's center of gravity using five processes: reduction, trimming, binarization or gray scale, edge extraction, and Hough transform. We compared the binarization and gray scale processes in image processing. The binarization process was better than the gray scale process. For edge extraction, we compared five methods: Sobel, Prewitt, Laplacian of Gaussian, fast Fourier transform, and Canny. The Canny method was the optimal extraction method. We performed the Hough transform to search for the main coordinates from the iris's edge, and we found that the Hough transform could calculate the center point of the iris.
Keywords: Glaucoma, support robot, elderly people, Hough transform, direction detector, line of vision.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5481 Embedded Semantic Segmentation Network Optimized for Matrix Multiplication Accelerator
Authors: Jaeyoung Lee
Abstract:
Autonomous driving systems require high reliability to provide people with a safe and comfortable driving experience. However, despite the development of a number of vehicle sensors, it is difficult to always provide high perceived performance in driving environments that vary from time to season. The image segmentation method using deep learning, which has recently evolved rapidly, provides high recognition performance in various road environments stably. However, since the system controls a vehicle in real time, a highly complex deep learning network cannot be used due to time and memory constraints. Moreover, efficient networks are optimized for GPU environments, which degrade performance in embedded processor environments equipped simple hardware accelerators. In this paper, a semantic segmentation network, matrix multiplication accelerator network (MMANet), optimized for matrix multiplication accelerator (MMA) on Texas instrument digital signal processors (TI DSP) is proposed to improve the recognition performance of autonomous driving system. The proposed method is designed to maximize the number of layers that can be performed in a limited time to provide reliable driving environment information in real time. First, the number of channels in the activation map is fixed to fit the structure of MMA. By increasing the number of parallel branches, the lack of information caused by fixing the number of channels is resolved. Second, an efficient convolution is selected depending on the size of the activation. Since MMA is a fixed, it may be more efficient for normal convolution than depthwise separable convolution depending on memory access overhead. Thus, a convolution type is decided according to output stride to increase network depth. In addition, memory access time is minimized by processing operations only in L3 cache. Lastly, reliable contexts are extracted using the extended atrous spatial pyramid pooling (ASPP). The suggested method gets stable features from an extended path by increasing the kernel size and accessing consecutive data. In addition, it consists of two ASPPs to obtain high quality contexts using the restored shape without global average pooling paths since the layer uses MMA as a simple adder. To verify the proposed method, an experiment is conducted using perfsim, a timing simulator, and the Cityscapes validation sets. The proposed network can process an image with 640 x 480 resolution for 6.67 ms, so six cameras can be used to identify the surroundings of the vehicle as 20 frame per second (FPS). In addition, it achieves 73.1% mean intersection over union (mIoU) which is the highest recognition rate among embedded networks on the Cityscapes validation set.
Keywords: Edge network, embedded network, MMA, matrix multiplication accelerator and semantic segmentation network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 467