Search results for: precise time domain expanding algorithm.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9683

Search results for: precise time domain expanding algorithm.

3743 Malware Beaconing Detection by Mining Large-scale DNS Logs for Targeted Attack Identification

Authors: Andrii Shalaginov, Katrin Franke, Xiongwei Huang

Abstract:

One of the leading problems in Cyber Security today is the emergence of targeted attacks conducted by adversaries with access to sophisticated tools. These attacks usually steal senior level employee system privileges, in order to gain unauthorized access to confidential knowledge and valuable intellectual property. Malware used for initial compromise of the systems are sophisticated and may target zero-day vulnerabilities. In this work we utilize common behaviour of malware called ”beacon”, which implies that infected hosts communicate to Command and Control servers at regular intervals that have relatively small time variations. By analysing such beacon activity through passive network monitoring, it is possible to detect potential malware infections. So, we focus on time gaps as indicators of possible C2 activity in targeted enterprise networks. We represent DNS log files as a graph, whose vertices are destination domains and edges are timestamps. Then by using four periodicity detection algorithms for each pair of internal-external communications, we check timestamp sequences to identify the beacon activities. Finally, based on the graph structure, we infer the existence of other infected hosts and malicious domains enrolled in the attack activities.

Keywords: Malware detection, network security, targeted attack.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6111
3742 Automation of the Maritime UAV Command, Control, Navigation Operations, Simulated in Real-Time Using Kinect Sensor: A Feasibility Study

Authors: Regius Asiimwe, Amir Anvar

Abstract:

This paper describes the process used in the automation of the Maritime UAV commands using the Kinect sensor. The AR Drone is a Quadrocopter manufactured by Parrot [1] to be controlled using the Apple operating systems such as iPhones and Ipads. However, this project uses the Microsoft Kinect SDK and Microsoft Visual Studio C# (C sharp) software, which are compatible with Windows Operating System for the automation of the navigation and control of the AR drone. The navigation and control software for the Quadrocopter runs on a windows 7 computer. The project is divided into two sections; the Quadrocopter control system and the Kinect sensor control system. The Kinect sensor is connected to the computer using a USB cable from which commands can be sent to and from the Kinect sensors. The AR drone has Wi-Fi capabilities from which it can be connected to the computer to enable transfer of commands to and from the Quadrocopter. The project was implemented in C#, a programming language that is commonly used in the automation systems. The language was chosen because there are more libraries already established in C# for both the AR drone and the Kinect sensor. The study will contribute toward research in automation of systems using the Quadrocopter and the Kinect sensor for navigation involving a human operator in the loop. The prototype created has numerous applications among which include the inspection of vessels such as ship, airplanes and areas that are not accessible by human operators.

Keywords: UAV, AR drone, Kinect Sensors, Automation, Real time, C sharp, Microsoft Kinect SDK.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2932
3741 From Electroencephalogram to Epileptic Seizures Detection by Using Artificial Neural Networks

Authors: Gaetano Zazzaro, Angelo Martone, Roberto V. Montaquila, Luigi Pavone

Abstract:

Seizure is the main factor that affects the quality of life of epileptic patients. The diagnosis of epilepsy, and hence the identification of epileptogenic zone, is commonly made by using continuous Electroencephalogram (EEG) signal monitoring. Seizure identification on EEG signals is made manually by epileptologists and this process is usually very long and error prone. The aim of this paper is to describe an automated method able to detect seizures in EEG signals, using knowledge discovery in database process and data mining methods and algorithms, which can support physicians during the seizure detection process. Our detection method is based on Artificial Neural Network classifier, trained by applying the multilayer perceptron algorithm, and by using a software application, called Training Builder that has been developed for the massive extraction of features from EEG signals. This tool is able to cover all the data preparation steps ranging from signal processing to data analysis techniques, including the sliding window paradigm, the dimensionality reduction algorithms, information theory, and feature selection measures. The final model shows excellent performances, reaching an accuracy of over 99% during tests on data of a single patient retrieved from a publicly available EEG dataset.

Keywords: Artificial Neural Network, Data Mining, Electroencephalogram, Epilepsy, Feature Extraction, Seizure Detection, Signal Processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1314
3740 Comparison of Finite Difference Schemes for Water Flow in Unsaturated Soils

Authors: H. Taheri Shahraiyni, B. Ataie Ashtiani

Abstract:

Flow movement in unsaturated soil can be expressed by a partial differential equation, named Richards equation. The objective of this study is the finding of an appropriate implicit numerical solution for head based Richards equation. Some of the well known finite difference schemes (fully implicit, Crank Nicolson and Runge-Kutta) have been utilized in this study. In addition, the effects of different approximations of moisture capacity function, convergence criteria and time stepping methods were evaluated. Two different infiltration problems were solved to investigate the performance of different schemes. These problems include of vertical water flow in a wet and very dry soils. The numerical solutions of two problems were compared using four evaluation criteria and the results of comparisons showed that fully implicit scheme is better than the other schemes. In addition, utilizing of standard chord slope method for approximation of moisture capacity function, automatic time stepping method and difference between two successive iterations as convergence criterion in the fully implicit scheme can lead to better and more reliable results for simulation of fluid movement in different unsaturated soils.

Keywords: Finite Difference methods, Richards equation, fullyimplicit, Crank-Nicolson, Runge-Kutta.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2377
3739 Overview of Multi-Chip Alternatives for 2.5D and 3D Integrated Circuit Packagings

Authors: Ching-Feng Chen, Ching-Chih Tsai

Abstract:

With the size of the transistor gradually approaching the physical limit, it challenges the persistence of Moore’s Law due to such issues of the short channel effect and the development of the high numerical aperture (NA) lithography equipment. In the context of the ever-increasing technical requirements of portable devices and high-performance computing (HPC), relying on the law continuation to enhance the chip density will no longer support the prospects of the electronics industry. Weighing the chip’s power consumption-performance-area-cost-cycle time to market (PPACC) is an updated benchmark to drive the evolution of the advanced wafer nanometer (nm). The advent of two and half- and three-dimensional (2.5 and 3D)- Very-Large-Scale Integration (VLSI) packaging based on Through Silicon Via (TSV) technology has updated the traditional die assembly methods and provided the solution. This overview investigates the up-to-date and cutting-edge packaging technologies for 2.5D and 3D integrated circuits (IC) based on the updated transistor structure and technology nodes. We conclude that multi-chip solutions for 2.5D and 3D IC packaging can prolong Moore’s Law.

Keywords: Moore’s Law, High Numerical Aperture, Power Consumption-Performance-Area-Cost-Cycle Time to Market, PPACC, 2.5 and 3D-Very-Large-Scale Integration Packaging, Through Silicon Vi.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 229
3738 Comparison of Number of Waves Surfed and Duration Using Global Positioning System and Inertial Sensors

Authors: J. Madureira, R. Lagido, I. Sousa

Abstract:

Surf is an increasingly popular sport and its performance evaluation is often qualitative. This work aims at using a smartphone to collect and analyze the GPS and inertial sensors data in order to obtain quantitative metrics of the surfing performance. Two approaches are compared for detection of wave rides, computing the number of waves rode in a surfing session, the starting time of each wave and its duration. The first approach is based on computing the velocity from the Global Positioning System (GPS) signal and finding the velocity thresholds that allow identifying the start and end of each wave ride. The second approach adds information from the Inertial Measurement Unit (IMU) of the smartphone, to the velocity thresholds obtained from the GPS unit, to determine the start and end of each wave ride. The two methods were evaluated using GPS and IMU data from two surfing sessions and validated with similar metrics extracted from video data collected from the beach. The second method, combining GPS and IMU data, was found to be more accurate in determining the number of waves, start time and duration. This paper shows that it is feasible to use smartphones for quantification of performance metrics during surfing. In particular, detection of the waves rode and their duration can be accurately determined using the smartphone GPS and IMU. 

Keywords: Inertial Measurement Unit (IMU), Global Positioning System (GPS), smartphone, surfing performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1656
3737 Material Analysis for Temple Painting Conservation in Taiwan

Authors: Chen-Fu Wang, Lin-Ya Kung

Abstract:

For traditional painting materials, the artisan used to combine the pigments with different binders to create colors. As time goes by, the materials used for painting evolved from natural to chemical materials. The vast variety of ingredients used in chemical materials has complicated restoration work; it makes conservation work more difficult. Conservation work also becomes harder when the materials cannot be easily identified; therefore, it is essential that we take a more scientific approach to assist in conservation work. Paintings materials are high molecular weight polymer, and their analysis is very complicated as well other contamination such as smoke and dirt can also interfere with the analysis of the material. The current methods of composition analysis of painting materials include Fourier transform infrared spectroscopy (FT-IR), mass spectrometer, Raman spectroscopy, X-ray diffraction spectroscopy (XRD), each of which has its own limitation. In this study, FT-IR was used to analyze the components of the paint coating. We have taken the most commonly seen materials as samples and deteriorated it. The aged information was then used for the database to exam the temple painting materials. By observing the FT-IR changes over time, we can tell all of the painting materials will be deteriorated by the UV light, but only the speed of its degradation had some difference. From the deterioration experiment, the acrylic resin resists better than the others. After collecting the painting materials aging information on FT-IR, we performed some test on the paintings on the temples. It was found that most of the artisan used tune-oil for painting materials, and some other paintings used chemical materials. This method is now working successfully on identifying the painting materials. However, the method is destructive and high cost. In the future, we will work on the how to know the painting materials more efficiently.

Keywords: Temple painting, painting material, conservation, FT-IR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1275
3736 Can Exams Be Shortened? Using a New Empirical Approach to Test in Finance Courses

Authors: Eric S. Lee, Connie Bygrave, Jordan Mahar, Naina Garg, Suzanne Cottreau

Abstract:

Marking exams is universally detested by lecturers. Final exams in many higher education courses often last 3.0 hrs. Do exams really need to be so long? Can we justifiably reduce the number of questions on them? Surprisingly few have researched these questions, arguably because of the complexity and difficulty of using traditional methods. To answer these questions empirically, we used a new approach based on three key elements: Use of an unusual variation of a true experimental design, equivalence hypothesis testing, and an expanded set of six psychometric criteria to be met by any shortened exam if it is to replace a current 3.0-hr exam (reliability, validity, justifiability, number of exam questions, correspondence, and equivalence). We compared student performance on each official 3.0-hr exam with that on five shortened exams having proportionately fewer questions (2.5, 2.0, 1.5, 1.0, and 0.5 hours) in a series of four experiments conducted in two classes in each of two finance courses (224 students in total). We found strong evidence that, in these courses, shortening of final exams to 2.0 hrs was warranted on all six psychometric criteria. Shortening these exams by one hour should result in a substantial one-third reduction in lecturer time and effort spent marking, lower student stress, and more time for students to prepare for other exams. Our approach provides a relatively simple, easy-to-use methodology that lecturers can use to examine the effect of shortening their own exams.

Keywords: Exam length, psychometric criteria, synthetic experimental designs, test length.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1503
3735 Online Signature Verification Using Angular Transformation for e-Commerce Services

Authors: Peerapong Uthansakul, Monthippa Uthansakul

Abstract:

The rapid growth of e-Commerce services is significantly observed in the past decade. However, the method to verify the authenticated users still widely depends on numeric approaches. A new search on other verification methods suitable for online e-Commerce is an interesting issue. In this paper, a new online signature-verification method using angular transformation is presented. Delay shifts existing in online signatures are estimated by the estimation method relying on angle representation. In the proposed signature-verification algorithm, all components of input signature are extracted by considering the discontinuous break points on the stream of angular values. Then the estimated delay shift is captured by comparing with the selected reference signature and the error matching can be computed as a main feature used for verifying process. The threshold offsets are calculated by two types of error characteristics of the signature verification problem, False Rejection Rate (FRR) and False Acceptance Rate (FAR). The level of these two error rates depends on the decision threshold chosen whose value is such as to realize the Equal Error Rate (EER; FAR = FRR). The experimental results show that through the simple programming, employed on Internet for demonstrating e-Commerce services, the proposed method can provide 95.39% correct verifications and 7% better than DP matching based signature-verification method. In addition, the signature verification with extracting components provides more reliable results than using a whole decision making.

Keywords: Online signature verification, e-Commerce services, Angular transformation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1582
3734 Prediction on Housing Price Based on Deep Learning

Authors: Li Yu, Chenlu Jiao, Hongrun Xin, Yan Wang, Kaiyang Wang

Abstract:

In order to study the impact of various factors on the housing price, we propose to build different prediction models based on deep learning to determine the existing data of the real estate in order to more accurately predict the housing price or its changing trend in the future. Considering that the factors which affect the housing price vary widely, the proposed prediction models include two categories. The first one is based on multiple characteristic factors of the real estate. We built Convolution Neural Network (CNN) prediction model and Long Short-Term Memory (LSTM) neural network prediction model based on deep learning, and logical regression model was implemented to make a comparison between these three models. Another prediction model is time series model. Based on deep learning, we proposed an LSTM-1 model purely regard to time series, then implementing and comparing the LSTM model and the Auto-Regressive and Moving Average (ARMA) model. In this paper, comprehensive study of the second-hand housing price in Beijing has been conducted from three aspects: crawling and analyzing, housing price predicting, and the result comparing. Ultimately the best model program was produced, which is of great significance to evaluation and prediction of the housing price in the real estate industry.

Keywords: Deep learning, convolutional neural network, LSTM, housing prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4990
3733 A Review on Factors Influencing Implementation of Secure Software Development Practices

Authors: Sri Lakshmi Kanniah, Mohd Naz’ri Mahrin

Abstract:

More and more businesses and services are depending on software to run their daily operations and business services. At the same time, cyber-attacks are becoming more covert and sophisticated, posing threats to software. Vulnerabilities exist in the software due to the lack of security practices during the phases of software development. Implementation of secure software development practices can improve the resistance to attacks. Many methods, models and standards for secure software development have been developed. However, despite the efforts, they still come up against difficulties in their deployment and the processes are not institutionalized. There is a set of factors that influence the successful deployment of secure software development processes. In this study, the methodology and results from a systematic literature review of factors influencing the implementation of secure software development practices is described. A total of 44 primary studies were analysed as a result of the systematic review. As a result of the study, a list of twenty factors has been identified. Some of factors that affect implementation of secure software development practices are: Involvement of the security expert, integration between security and development team, developer’s skill and expertise, development time and communication between stakeholders. The factors were further classified into four categories which are institutional context, people and action, project content and system development process. The results obtained show that it is important to take into account organizational, technical and people issues in order to implement secure software development initiatives.

Keywords: Secure software development, software development, software security, systematic literature review.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2494
3732 Development of an Automatic Calibration Framework for Hydrologic Modelling Using Approximate Bayesian Computation

Authors: A. Chowdhury, P. Egodawatta, J. M. McGree, A. Goonetilleke

Abstract:

Hydrologic models are increasingly used as tools to predict stormwater quantity and quality from urban catchments. However, due to a range of practical issues, most models produce gross errors in simulating complex hydraulic and hydrologic systems. Difficulty in finding a robust approach for model calibration is one of the main issues. Though automatic calibration techniques are available, they are rarely used in common commercial hydraulic and hydrologic modelling software e.g. MIKE URBAN. This is partly due to the need for a large number of parameters and large datasets in the calibration process. To overcome this practical issue, a framework for automatic calibration of a hydrologic model was developed in R platform and presented in this paper. The model was developed based on the time-area conceptualization. Four calibration parameters, including initial loss, reduction factor, time of concentration and time-lag were considered as the primary set of parameters. Using these parameters, automatic calibration was performed using Approximate Bayesian Computation (ABC). ABC is a simulation-based technique for performing Bayesian inference when the likelihood is intractable or computationally expensive to compute. To test the performance and usefulness, the technique was used to simulate three small catchments in Gold Coast. For comparison, simulation outcomes from the same three catchments using commercial modelling software, MIKE URBAN were used. The graphical comparison shows strong agreement of MIKE URBAN result within the upper and lower 95% credible intervals of posterior predictions as obtained via ABC. Statistical validation for posterior predictions of runoff result using coefficient of determination (CD), root mean square error (RMSE) and maximum error (ME) was found reasonable for three study catchments. The main benefit of using ABC over MIKE URBAN is that ABC provides a posterior distribution for runoff flow prediction, and therefore associated uncertainty in predictions can be obtained. In contrast, MIKE URBAN just provides a point estimate. Based on the results of the analysis, it appears as though ABC the developed framework performs well for automatic calibration.

Keywords: Automatic calibration framework, approximate Bayesian computation, hydrologic and hydraulic modelling, MIKE URBAN software, R platform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1740
3731 Breast Cancer Survivability Prediction via Classifier Ensemble

Authors: Mohamed Al-Badrashiny, Abdelghani Bellaachia

Abstract:

This paper presents a classifier ensemble approach for predicting the survivability of the breast cancer patients using the latest database version of the Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute. The system consists of two main components; features selection and classifier ensemble components. The features selection component divides the features in SEER database into four groups. After that it tries to find the most important features among the four groups that maximizes the weighted average F-score of a certain classification algorithm. The ensemble component uses three different classifiers, each of which models different set of features from SEER through the features selection module. On top of them, another classifier is used to give the final decision based on the output decisions and confidence scores from each of the underlying classifiers. Different classification algorithms have been examined; the best setup found is by using the decision tree, Bayesian network, and Na¨ıve Bayes algorithms for the underlying classifiers and Na¨ıve Bayes for the classifier ensemble step. The system outperforms all published systems to date when evaluated against the exact same data of SEER (period of 1973-2002). It gives 87.39% weighted average F-score compared to 85.82% and 81.34% of the other published systems. By increasing the data size to cover the whole database (period of 1973-2014), the overall weighted average F-score jumps to 92.4% on the held out unseen test set.

Keywords: Classifier ensemble, breast cancer survivability, data mining, SEER.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1672
3730 Conflation Methodology Applied to Flood Recovery

Authors: E. L. Suarez, D. E. Meeroff, Y. Yong

Abstract:

Current flooding risk modeling focuses on resilience, defined as the probability of recovery from a severe flooding event. However, the long-term damage to property and well-being by nuisance flooding and its long-term effects on communities are not typically included in risk assessments. An approach was developed to address the probability of recovering from a severe flooding event combined with the probability of community performance during a nuisance event. A consolidated model, namely the conflation flooding recovery (&FR) model, evaluates risk-coping mitigation strategies for communities based on the recovery time from catastrophic events, such as hurricanes or extreme surges, and from everyday nuisance flooding events. The &FR model assesses the variation contribution of each independent input and generates a weighted output that favors the distribution with minimum variation. This approach is especially useful if the input distributions have dissimilar variances. The &FR is defined as a single distribution resulting from the product of the individual probability density functions. The resulting conflated distribution resides between the parent distributions, and it infers the recovery time required by a community to return to basic functions, such as power, utilities, transportation, and civil order, after a flooding event. The &FR model is more accurate than averaging individual observations before calculating the mean and variance or averaging the probabilities evaluated at the input values, which assigns the same weighted variation to each input distribution. The main disadvantage of these traditional methods is that the resulting measure of central tendency is exactly equal to the average of the input distribution’s means without the additional information provided by each individual distribution variance. When dealing with exponential distributions, such as resilience from severe flooding events and from nuisance flooding events, conflation results are equivalent to the weighted least squares method or best linear unbiased estimation. The combination of severe flooding risk with nuisance flooding improves flood risk management for highly populated coastal communities, such as in South Florida, USA, and provides a method to estimate community flood recovery time more accurately from two different sources, severe flooding events and nuisance flooding events.

Keywords: Community resilience, conflation, flood risk, nuisance flooding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 144
3729 Seismic Performance of Slopes Subjected to Earthquake Mainshock Aftershock Sequences

Authors: Alisha Khanal, Gokhan Saygili

Abstract:

It is commonly observed that aftershocks follow the mainshock. Aftershocks continue over a period of time with a decreasing frequency and typically there is not sufficient time for repair and retrofit between a mainshock–aftershock sequence. Usually, aftershocks are smaller in magnitude; however, aftershock ground motion characteristics such as the intensity and duration can be greater than the mainshock due to the changes in the earthquake mechanism and location with respect to the site. The seismic performance of slopes is typically evaluated based on the sliding displacement predicted to occur along a critical sliding surface. Various empirical models are available that predict sliding displacement as a function of seismic loading parameters, ground motion parameters, and site parameters but these models do not include the aftershocks. The seismic risks associated with the post-mainshock slopes ('damaged slopes') subjected to aftershocks is significant. This paper extends the empirical sliding displacement models for flexible slopes subjected to earthquake mainshock-aftershock sequences (a multi hazard approach). A dataset was developed using 144 pairs of as-recorded mainshock-aftershock sequences using the Pacific Earthquake Engineering Research Center (PEER) database. The results reveal that the combination of mainshock and aftershock increases the seismic demand on slopes relative to the mainshock alone; thus, seismic risks are underestimated if aftershocks are neglected.

Keywords: Seismic slope stability, sliding displacement, mainshock, aftershock, landslide, earthquake.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 900
3728 Pipelined Control-Path Effects on Area and Performance of a Wormhole-Switched Network-on-Chip

Authors: Faizal A. Samman, Thomas Hollstein, Manfred Glesner

Abstract:

This paper presents design trade-off and performance impacts of the amount of pipeline phase of control path signals in a wormhole-switched network-on-chip (NoC). The numbers of the pipeline phase of the control path vary between two- and one-cycle pipeline phase. The control paths consist of the routing request paths for output selection and the arbitration paths for input selection. Data communications between on-chip routers are implemented synchronously and for quality of service, the inter-router data transports are controlled by using a link-level congestion control to avoid lose of data because of an overflow. The trade-off between the area (logic cell area) and the performance (bandwidth gain) of two proposed NoC router microarchitectures are presented in this paper. The performance evaluation is made by using a traffic scenario with different number of workloads under 2D mesh NoC topology using a static routing algorithm. By using a 130-nm CMOS standard-cell technology, our NoC routers can be clocked at 1 GHz, resulting in a high speed network link and high router bandwidth capacity of about 320 Gbit/s. Based on our experiments, the amount of control path pipeline stages gives more significant impact on the NoC performance than the impact on the logic area of the NoC router.

Keywords: Network-on-Chip, Synchronous Parallel Pipeline, Router Architecture, Wormhole Switching

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1483
3727 Multi-Level Air Quality Classification in China Using Information Gain and Support Vector Machine

Authors: Bingchun Liu, Pei-Chann Chang, Natasha Huang, Dun Li

Abstract:

Machine Learning and Data Mining are the two important tools for extracting useful information and knowledge from large datasets. In machine learning, classification is a wildly used technique to predict qualitative variables and is generally preferred over regression from an operational point of view. Due to the enormous increase in air pollution in various countries especially China, Air Quality Classification has become one of the most important topics in air quality research and modelling. This study aims at introducing a hybrid classification model based on information theory and Support Vector Machine (SVM) using the air quality data of four cities in China namely Beijing, Guangzhou, Shanghai and Tianjin from Jan 1, 2014 to April 30, 2016. China's Ministry of Environmental Protection has classified the daily air quality into 6 levels namely Serious Pollution, Severe Pollution, Moderate Pollution, Light Pollution, Good and Excellent based on their respective Air Quality Index (AQI) values. Using the information theory, information gain (IG) is calculated and feature selection is done for both categorical features and continuous numeric features. Then SVM Machine Learning algorithm is implemented on the selected features with cross-validation. The final evaluation reveals that the IG and SVM hybrid model performs better than SVM (alone), Artificial Neural Network (ANN) and K-Nearest Neighbours (KNN) models in terms of accuracy as well as complexity.

Keywords: Machine learning, air quality classification, air quality index, information gain, support vector machine, cross-validation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 948
3726 A Stochastic Analytic Hierarchy Process Based Weighting Model for Sustainability Measurement in an Organization

Authors: Faramarz Khosravi, Gokhan Izbirak

Abstract:

A weighted statistical stochastic based Analytical Hierarchy Process (AHP) model for modeling the potential barriers and enablers of sustainability for measuring and assessing the sustainability level is proposed. For context-dependent potential barriers and enablers, the proposed model takes the basis of the properties of the variables describing the sustainability functions and was developed into a realistic analytical model for the sustainable behavior of an organization. This thus serves as a means for measuring the sustainability of the organization. The main focus of this paper was the application of the AHP tool in a statistically-based model for measuring sustainability. Hence a strong weighted stochastic AHP based procedure was achieved. A case study scenario of a widely reported major Canadian electric utility was adopted to demonstrate the applicability of the developed model and comparatively examined its results with those of an equal-weighted model method. Variations in the sustainability of a company, as fluctuations, were figured out during the time. In the results obtained, sustainability index for successive years changed form 73.12%, 79.02%, 74.31%, 76.65%, 80.49%, 79.81%, 79.83% to more exact values 73.32%, 77.72%, 76.76%, 79.41%, 81.93%, 79.72%, and 80,45% according to priorities of factors that have found by expert views, respectively. By obtaining relatively necessary informative measurement indicators, the model can practically and effectively evaluate the sustainability extent of any organization and also to determine fluctuations in the organization over time.

Keywords: AHP, sustainability fluctuation, environmental indicators, performance measurement, environmental sustainability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 926
3725 Design and Application of NFC-Based Identity and Access Management in Cloud Services

Authors: Shin-Jer Yang, Kai-Tai Yang

Abstract:

In response to a changing world and the fast growth of the Internet, more and more enterprises are replacing web-based services with cloud-based ones. Multi-tenancy technology is becoming more important especially with Software as a Service (SaaS). This in turn leads to a greater focus on the application of Identity and Access Management (IAM). Conventional Near-Field Communication (NFC) based verification relies on a computer browser and a card reader to access an NFC tag. This type of verification does not support mobile device login and user-based access management functions. This study designs an NFC-based third-party cloud identity and access management scheme (NFC-IAM) addressing this shortcoming. Data from simulation tests analyzed with Key Performance Indicators (KPIs) suggest that the NFC-IAM not only takes less time in identity identification but also cuts time by 80% in terms of two-factor authentication and improves verification accuracy to 99.9% or better. In functional performance analyses, NFC-IAM performed better in salability and portability. The NFC-IAM App (Application Software) and back-end system to be developed and deployed in mobile device are to support IAM features and also offers users a more user-friendly experience and stronger security protection. In the future, our NFC-IAM can be employed to different environments including identification for mobile payment systems, permission management for remote equipment monitoring, among other applications.

Keywords: Cloud service, multi-tenancy, NFC, IAM, mobile device.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1118
3724 Calibration of Syringe Pumps Using Interferometry and Optical Methods

Authors: E. Batista, R. Mendes, A. Furtado, M. C. Ferreira, I. Godinho, J. A. Sousa, M. Alvares, R. Martins

Abstract:

Syringe pumps are commonly used for drug delivery in hospitals and clinical environments. These instruments are critical in neonatology and oncology, where any variation in the flow rate and drug dosing quantity can lead to severe incidents and even death of the patient. Therefore it is very important to determine the accuracy and precision of these devices using the suitable calibration methods. The Volume Laboratory of the Portuguese Institute for Quality (LVC/IPQ) uses two different methods to calibrate syringe pumps from 16 nL/min up to 20 mL/min. The Interferometric method uses an interferometer to monitor the distance travelled by a pusher block of the syringe pump in order to determine the flow rate. Therefore, knowing the internal diameter of the syringe with very high precision, the travelled distance, and the time needed for that travelled distance, it was possible to calculate the flow rate of the fluid inside the syringe and its uncertainty. As an alternative to the gravimetric and the interferometric method, a methodology based on the application of optical technology was also developed to measure flow rates. Mainly this method relies on measuring the increase of volume of a drop over time. The objective of this work is to compare the results of the calibration of two syringe pumps using the different methodologies described above. The obtained results were consistent for the three methods used. The uncertainties values were very similar for all the three methods, being higher for the optical drop method due to setup limitations.

Keywords: Calibration, interferometry, syringe pump, optical method, uncertainty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 781
3723 Animal-Assisted Therapy for Persons with Disabilities Based on Canine Tail Language Interpretation via Gaussian-Trapezoidal Fuzzy Emotional Behavior Model

Authors: W. Phanwanich, O. Kumdee, P. Ritthipravat, Y. Wongsawat

Abstract:

In order to alleviate the mental and physical problems of persons with disabilities, animal-assisted therapy (AAT) is one of the possible modalities that employs the merit of the human-animal interaction. Nevertheless, to achieve the purpose of AAT for persons with severe disabilities (e.g. spinal cord injury, stroke, and amyotrophic lateral sclerosis), real-time animal language interpretation is desirable. Since canine behaviors can be visually notable from its tail, this paper proposes the automatic real-time interpretation of canine tail language for human-canine interaction in the case of persons with severe disabilities. Canine tail language is captured via two 3-axis accelerometers. Directions and frequencies are selected as our features of interests. The novel fuzzy rules based on Gaussian-Trapezoidal model and center of gravity (COG)-based defuzzification method are proposed in order to interpret the features into four canine emotional behaviors, i.e., agitate, happy, scare and neutral as well as its blended emotional behaviors. The emotional behavior model is performed in the simulated dog and has also been evaluated in the real dog with the perfect recognition rate.

Keywords: Animal-assisted therapy (AAT), Persons with disabilities, Canine tail language, Fuzzy emotional behavior model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2018
3722 Experimental Investigation on Effect of Different Heat Treatments on Phase Transformation and Superelasticity of NiTi Alloy

Authors: Erfan Asghari Fesaghandis, Reza Ghaffari Adli, Abbas Kianvash, Hossein Aghajani, Homa Homaie

Abstract:

NiTi alloys possess magnificent superelastic, shape memory, high strength and biocompatible properties. For improving mechanical properties, foremost, superelasticity behavior, heat treatment process is carried out. In this paper, two different heat treatment methods were undertaken: (1) solid solution, and (2) aging. The effect of each treatment in a constant time is investigated. Five samples were prepared to study the structure and optimize mechanical properties under different time and temperature. For measuring the upper plateau stress, lower plateau stress and residual strain, tensile test is carried out. The samples were aged at two different temperatures to see difference between aging temperatures. The sample aged at 500 °C has a bigger crystallite size and lower amount of Ni which causes the mentioned sample to possess poor pseudo elasticity behaviour than the other aged sample. The sample aged at 460 °C has shown remarkable superelastic properties. The mentioned sample’s higher plateau is 580 MPa with the lowest residual strain (0.17%) while other samples have possessed higher residual strains. X-ray diffraction was used to investigate the produced phases.

Keywords: Heat treatment, phase transformation, superelasticity, NiTi alloy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 699
3721 The Appropriate Time Required for Newborn Calf Camel to Get Optimal Amount of Colostrums Immunoglobulin (IgG) with Relation to Levels of Cortisol and Thyroxin

Authors: Amina M. Bishr, Ahmed B. Magdub, Abdul-Baset R. Abuzweda

Abstract:

A major challenge in camel productivity is the high mortality rate of camel calves in the early stage due to the lack of colostrums. This study investigates the time required for the calves to obtain the optimum amount of the immunoglobulin (IgG). Eleven pregnant female camels (Camelus Dromedarus) were selected randomly and variant in age and gestation. After delivery, 7 calves were obtained and used for this investigation. Colostrum samples were collected from mothers immediately after parturition. Blood samples were obtained from the calves as follow: 0 day (before suckling), 24, 48, 72, 96, 120 and 144 hours, 2nd, 3rd, and 4th weeks post suckling. Blood serum and colostrums whey were separated and used to determine IgG concentration, total protein and concentration of Cortisol and Thyroxin. The results showed high levels of IgG in camel colostrums (328.8 ± 4.5 mg / ml). The IgG concentration in serum of calves was the highest within 1st 24 h after suckling (140.75 mg /ml), and then declined gradually reached lower level at 144 h (41.97 mg / ml). The average turnover rate (t 1/2) of serum IgG in the all cases was 3.22 days. The turnover of ranged from 2.56 days for calves have values of IgG more than average and 7.7 days for those with values below average. In spite of very high levels of thyroxin in sera of new born the results showed no correlation between cortisol and thyroxin with IgG levels.

Keywords: Camel, cortisol, IgG, thyroxin, turn-over rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2024
3720 Artificial Intelligent Approach for Machining Titanium Alloy in a Nonconventional Process

Authors: Md. Ashikur Rahman Khan, M. M. Rahman, K. Kadirgama

Abstract:

Artificial neural networks (ANN) are used in distinct researching fields and professions, and are prepared by cooperation of scientists in different fields such as computer engineering, electronic, structure, biology and so many different branches of science. Many models are built correlating the parameters and the outputs in electrical discharge machining (EDM) concern for different types of materials. Up till now model for Ti-5Al-2.5Sn alloy in the case of electrical discharge machining performance characteristics has not been developed. Therefore, in the present work, it is attempted to generate a model of material removal rate (MRR) for Ti-5Al-2.5Sn material by means of Artificial Neural Network. The experimentation is performed according to the design of experiment (DOE) of response surface methodology (RSM). To generate the DOE four parameters such as peak current, pulse on time, pulse off time and servo voltage and one output as MRR are considered. Ti-5Al-2.5Sn alloy is machined with positive polarity of copper electrode. Finally the developed model is tested with confirmation test. The confirmation test yields an error as within the agreeable limit. To investigate the effect of the parameters on performance sensitivity analysis is also carried out which reveals that the peak current having more effect on EDM performance.

Keywords: Ti-5Al-2.5Sn, material removal rate, copper tungsten, positive polarity, artificial neural network, multi-layer perceptron.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2399
3719 A Control Model for Improving Safety and Efficiency of Navigation System Based on Reinforcement Learning

Authors: Almutasim Billa A. Alanazi, Hal S. Tharp

Abstract:

Artificial Intelligence (AI), specifically Reinforcement Learning (RL), has proven helpful in many control path planning technologies by maximizing and enhancing their performance, such as navigation systems. Since it learns from experience by interacting with the environment to determine the optimal policy, the optimal policy takes the best action in a particular state, accounting for the long-term rewards. Most navigation systems focus primarily on "arriving faster," overlooking safety and efficiency while estimating the optimum path, as safety and efficiency are essential factors when planning for a long-distance journey. This paper represents an RL control model that proposes a control mechanism for improving navigation systems. Also, the model could be applied to other control path planning applications because it is adjustable and can accept different properties and parameters. However, the navigation system application has been taken as a case and evaluation study for the proposed model. The model utilized a Q-learning algorithm for training and updating the policy. It allows the agent to analyze the quality of an action made in the environment to maximize rewards. The model gives the ability to update rewards regularly based on safety and efficiency assessments, allowing the policy to consider the desired safety and efficiency benefits while making decisions, which improves the quality of the decisions taken for path planning compared to the conventional RL approaches.

Keywords: Artificial intelligence, control system, navigation systems, reinforcement learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 202
3718 A Multiple-Objective Environmental Rationalization and Optimization for Material Substitution in the Production of Stone-Washed Jeans- Garments

Authors: Nabil A. Ibrahim, Nabil M. Abdel Moneim, Mohamed A. Ramadan, Marwa M. Hosni

Abstract:

As the Textile Industry is the second largest industry in Egypt and as small and medium-sized enterprises (SMEs) make up a great portion of this industry therein it is essential to apply the concept of Cleaner Production for the purpose of reducing pollution. In order to achieve this goal, a case study concerned with ecofriendly stone-washing of jeans-garments was investigated. A raw material-substitution option was adopted whereby the toxic potassium permanganate and sodium sulfide were replaced by the environmentally compatible hydrogen peroxide and glucose respectively where the concentrations of both replaced chemicals together with the operating time were optimized. In addition, a process-rationalization option involving four additional processes was investigated. By means of criteria such as product quality, effluent analysis, mass and heat balance; and cost analysis with the aid of a statistical model, a process optimization treatment revealed that the superior process optima were 50%, 0.15% and 50min for H2O2 concentration, glucose concentration and time, respectively. With these values the superior process ought to reduce the annual cost by about EGP 105 relative to the currently used conventional method.

Keywords: Cleaner Production, Eco-friendly of jeans garments, Stone washing, Textile Industry, Textile Wet Processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2073
3717 Research of Strong-Column-Weak-Beam Criteria of Reinforced Concrete Frames Subjected to Biaxial Seismic Excitation

Authors: Chong Zhang, Mu-Xuan Tao

Abstract:

In several earthquakes, numerous reinforced concrete (RC) frames subjected to seismic excitation demonstrated a collapse pattern characterized by column hinges, though designed according to the Strong-Column-Weak-Beam (S-C-W-B) criteria. The effect of biaxial seismic excitation on the disparity between design and actual performance is carefully investigated in this article. First, a modified load contour method is proposed to derive a closed-form equation of biaxial bending moment strength, which is verified by numerical and experimental tests. Afterwards, a group of time history analyses of a simple frame modeled by fiber beam-column elements subjected to biaxial seismic excitation are conducted to verify that the current S-C-W-B criteria are not adequate to prevent the occurrence of column hinges. A biaxial over-strength factor is developed based on the proposed equation, and the reinforcement of columns is appropriately amplified with this factor to prevent the occurrence of column hinges under biaxial excitation, which is proved to be effective by another group of time history analyses.

Keywords: Biaxial bending moment strength, biaxial seismic excitation, fiber beam-column model, load contour method, strong-column-weak-beam.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 622
3716 Taguchi-Based Optimization of Surface Roughness and Dimensional Accuracy in Wire EDM Process with S7 Heat Treated Steel

Authors: Joseph C. Chen, Joshua Cox

Abstract:

This research focuses on the use of the Taguchi method to reduce the surface roughness and improve dimensional accuracy of parts machined by Wire Electrical Discharge Machining (EDM) with S7 heat treated steel material. Due to its high impact toughness, the material is a candidate for a wide variety of tooling applications which require high precision in dimension and desired surface roughness. This paper demonstrates that Taguchi Parameter Design methodology is able to optimize both dimensioning and surface roughness successfully by investigating seven wire-EDM controllable parameters: pulse on time (ON), pulse off time (OFF), servo voltage (SV), voltage (V), servo feed (SF), wire tension (WT), and wire speed (WS). The temperature of the water in the Wire EDM process is investigated as the noise factor in this research. Experimental design and analysis based on L18 Taguchi orthogonal arrays are conducted. This paper demonstrates that the Taguchi-based system enables the wire EDM process to produce (1) high precision parts with an average of 0.6601 inches dimension, while the desired dimension is 0.6600 inches; and (2) surface roughness of 1.7322 microns which is significantly improved from 2.8160 microns.

Keywords: Taguchi parameter design, surface roughness, dimensional accuracy, Wire EDM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1088
3715 AI-Based Techniques for Online Social Media Network Sentiment Analysis: A Methodical Review

Authors: A. M. John-Otumu, M. M. Rahman, O. C. Nwokonkwo, M. C. Onuoha

Abstract:

Online social media networks have long served as a primary arena for group conversations, gossip, text-based information sharing and distribution. The use of natural language processing techniques for text classification and unbiased decision making has not been far-fetched. Proper classification of these textual information in a given context has also been very difficult. As a result, a systematic review was conducted from previous literature on sentiment classification and AI-based techniques. The study was done in order to gain a better understanding of the process of designing and developing a robust and more accurate sentiment classifier that could correctly classify social media textual information of a given context between hate speech and inverted compliments with a high level of accuracy using the knowledge gain from the evaluation of different artificial intelligence techniques reviewed. The study evaluated over 250 articles from digital sources like ACM digital library, Google Scholar, and IEEE Xplore; and whittled down the number of research to 52 articles. Findings revealed that deep learning approaches such as Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), Bidirectional Encoder Representations from Transformer (BERT), and Long Short-Term Memory (LSTM) outperformed various machine learning techniques in terms of performance accuracy. A large dataset is also required to develop a robust sentiment classifier. Results also revealed that data can be obtained from places like Twitter, movie reviews, Kaggle, Stanford Sentiment Treebank (SST), and SemEval Task4 based on the required domain. The hybrid deep learning techniques like CNN+LSTM, CNN+ Gated Recurrent Unit (GRU), CNN+BERT outperformed single deep learning techniques and machine learning techniques. Python programming language outperformed Java programming language in terms of development simplicity and AI-based library functionalities. Finally, the study recommended the findings obtained for building robust sentiment classifier in the future.

Keywords: Artificial Intelligence, Natural Language Processing, Sentiment Analysis, Social Network, Text.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 594
3714 A Microcontroller Implementation of Constrained Model Predictive Control

Authors: Amira Kheriji Abbes, Faouzi Bouani, Mekki Ksouri

Abstract:

Model Predictive Control (MPC) is an established control technique in a wide range of process industries. The reason for this success is its ability to handle multivariable systems and systems having input, output or state constraints. Neverthless comparing to PID controller, the implementation of the MPC in miniaturized devices like Field Programmable Gate Arrays (FPGA) and microcontrollers has historically been very small scale due to its complexity in implementation and its computation time requirement. At the same time, such embedded technologies have become an enabler for future manufacturing enterprisers as well as a transformer of organizations and markets. In this work, we take advantage of these recent advances in this area in the deployment of one of the most studied and applied control technique in the industrial engineering. In this paper, we propose an efficient firmware for the implementation of constrained MPC in the performed STM32 microcontroller using interior point method. Indeed, performances study shows good execution speed and low computational burden. These results encourage to develop predictive control algorithms to be programmed in industrial standard processes. The PID anti windup controller was also implemented in the STM32 in order to make a performance comparison with the MPC. The main features of the proposed constrained MPC framework are illustrated through two examples.

Keywords: Embedded software, microcontroller, constrainedModel Predictive Control, interior point method, PID antiwindup, Keil tool, C/Cµ language.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2800