Search results for: Hierarchical Bayesian framework
1239 Adaptive Network Intrusion Detection Learning: Attribute Selection and Classification
Authors: Dewan Md. Farid, Jerome Darmont, Nouria Harbi, Nguyen Huu Hoa, Mohammad Zahidur Rahman
Abstract:
In this paper, a new learning approach for network intrusion detection using naïve Bayesian classifier and ID3 algorithm is presented, which identifies effective attributes from the training dataset, calculates the conditional probabilities for the best attribute values, and then correctly classifies all the examples of training and testing dataset. Most of the current intrusion detection datasets are dynamic, complex and contain large number of attributes. Some of the attributes may be redundant or contribute little for detection making. It has been successfully tested that significant attribute selection is important to design a real world intrusion detection systems (IDS). The purpose of this study is to identify effective attributes from the training dataset to build a classifier for network intrusion detection using data mining algorithms. The experimental results on KDD99 benchmark intrusion detection dataset demonstrate that this new approach achieves high classification rates and reduce false positives using limited computational resources.Keywords: Attributes selection, Conditional probabilities, information gain, network intrusion detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26981238 eTransformation Framework for the Cognitive Systems
Authors: Ana Hol
Abstract:
Digital systems are in the Cognitive wave of the eTransformations and are now extensively aimed at meeting the individuals’ demands, both those of customers requiring services and those of service providers. It is also apparent that successful future systems will not just simply open doors to the traditional owners/users to offer and receive services such as Uber, for example, does today, but will in the future require more customized and cognitively enabled infrastructures that will be responsive to the system user’s needs. To be able to identify what is required for such systems this research reviews the historical and the current effects of the eTransformation process by studying: 1. eTransitions of company websites and mobile applications, 2. Emergence of new shared economy business models such as Uber, and 3. New requirements for demand driven, cognitive systems capable of learning and just-in-time decision-making. Based on the analysis, this study proposes a Cognitive eTransformation Framework capable of guiding implementations of new responsive and user aware systems.
Keywords: System implementations, AI supported systems, cognitive systems, eTransformation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9521237 Data Mining Classification Methods Applied in Drug Design
Authors: Mária Stachová, Lukáš Sobíšek
Abstract:
Data mining incorporates a group of statistical methods used to analyze a set of information, or a data set. It operates with models and algorithms, which are powerful tools with the great potential. They can help people to understand the patterns in certain chunk of information so it is obvious that the data mining tools have a wide area of applications. For example in the theoretical chemistry data mining tools can be used to predict moleculeproperties or improve computer-assisted drug design. Classification analysis is one of the major data mining methodologies. The aim of thecontribution is to create a classification model, which would be able to deal with a huge data set with high accuracy. For this purpose logistic regression, Bayesian logistic regression and random forest models were built using R software. TheBayesian logistic regression in Latent GOLD software was created as well. These classification methods belong to supervised learning methods. It was necessary to reduce data matrix dimension before construct models and thus the factor analysis (FA) was used. Those models were applied to predict the biological activity of molecules, potential new drug candidates.Keywords: data mining, classification, drug design, QSAR
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28491236 User Pattern Learning Algorithm based MDSS(Medical Decision Support System) Framework under Ubiquitous
Authors: Insung Jung, Gi-Nam Wang
Abstract:
In this paper, we present user pattern learning algorithm based MDSS (Medical Decision support system) under ubiquitous. Most of researches are focus on hardware system, hospital management and whole concept of ubiquitous environment even though it is hard to implement. Our objective of this paper is to design a MDSS framework. It helps to patient for medical treatment and prevention of the high risk patient (COPD, heart disease, Diabetes). This framework consist database, CAD (Computer Aided diagnosis support system) and CAP (computer aided user vital sign prediction system). It can be applied to develop user pattern learning algorithm based MDSS for homecare and silver town service. Especially this CAD has wise decision making competency. It compares current vital sign with user-s normal condition pattern data. In addition, the CAP computes user vital sign prediction using past data of the patient. The novel approach is using neural network method, wireless vital sign acquisition devices and personal computer DB system. An intelligent agent based MDSS will help elder people and high risk patients to prevent sudden death and disease, the physician to get the online access to patients- data, the plan of medication service priority (e.g. emergency case).Keywords: Neural network, U-healthcare, MDSS, CAP, DSS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18371235 A Parameter-Tuning Framework for Metaheuristics Based on Design of Experiments and Artificial Neural Networks
Authors: Felix Dobslaw
Abstract:
In this paper, a framework for the simplification and standardization of metaheuristic related parameter-tuning by applying a four phase methodology, utilizing Design of Experiments and Artificial Neural Networks, is presented. Metaheuristics are multipurpose problem solvers that are utilized on computational optimization problems for which no efficient problem specific algorithm exist. Their successful application to concrete problems requires the finding of a good initial parameter setting, which is a tedious and time consuming task. Recent research reveals the lack of approach when it comes to this so called parameter-tuning process. In the majority of publications, researchers do have a weak motivation for their respective choices, if any. Because initial parameter settings have a significant impact on the solutions quality, this course of action could lead to suboptimal experimental results, and thereby a fraudulent basis for the drawing of conclusions.Keywords: Parameter-Tuning, Metaheuristics, Design of Experiments, Artificial Neural Networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17771234 Paranoid Thoughts and Thought Control Strategies in a Nonclinical Population
Authors: Takashi Yamauchi, Anju Sudo, Yoshihiko Tanno
Abstract:
Recently, it has been suggested that thought control strategies aimed at controlling unwanted thoughts may be used to cope with paranoid thoughts in both clinical and nonclinical samples. The current study aims to examine the type of thought control strategies that were associated with the frequency of paranoid thoughts in nonclinical samples. A total of 159 Japanese undergraduate students completed the two scales–the Paranoia Checklist and the Thought Control Questionnaire. A hierarchical multiple regression analysis demonstrated that worry-based control strategies were associated with paranoid thoughts, whereas distraction- and social-based control strategies were inversely associated with paranoid thoughts. Our findings suggest that in a nonclinical population, worry-based strategies may be especially maladaptive, whereas distraction- and social-based strategies may be adaptive to paranoid thoughts.
Keywords: Nonclinical population, paranoid thoughts, thoughtcontrol strategies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20301233 Policy Management Framework for Managing Enterprise Policies
Authors: Dahir A. Ga'al, Wardah Zainal Abidin
Abstract:
Policy management in organizations became rising issue in the last decade. It’s because of today’s regulatory requirements in the organizations. To manage policies in large organizations is an imperative work. However, major challenges facing organizations in the last decade is managing all the policies in the organization and making them an active documents rather than simple (inactive) documents stored in computer hard drive or on a shelf. Because of this challenge, organizations need policy management program. This policy management program can be either manual or automated. This paper presents suggestions towards managing policies in organizations. As well as possible policy management solution or program to be utilized, manual or automated. The research first examines the models and frameworks used for managing policies from various perspectives in the literature of the research area/domain. At the end of this paper, a policy management framework is proposed for managing enterprise policies effectively and in a simplified manner.
Keywords: Policy, policy management, policy management program, policy repository.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26171232 Extending the Conceptual Neighborhood Graph of the Relations for the Semantic Adaptation of Multimedia Documents
Authors: Azze-Eddine Maredj, Nourredine Tonkin
Abstract:
The recent developments in computing and communication technology permit to users to access multimedia documents with variety of devices (PCs, PDAs, mobile phones...) having heterogeneous capabilities. This diversification of supports has trained the need to adapt multimedia documents according to their execution contexts. A semantic framework for multimedia document adaptation based on the conceptual neighborhood graphs was proposed. In this framework, adapting consists on finding another specification that satisfies the target constraints and which is as close as possible from the initial document. In this paper, we propose a new way of building the conceptual neighborhood graphs to best preserve the proximity between the adapted and the original documents and to deal with more elaborated relations models by integrating the relations relaxation graphs that permit to handle the delays and the distances defined within the relations.Keywords: Conceptual Neighborhood Graph, Relaxation Graphs, Relations with Delays, Semantic Adaptation of Multimedia Documents.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15461231 A Visualized Framework for Representing Uncertain and Incomplete Temporal Knowledge
Authors: Yue Wang, Jixin Ma, Brian Knight
Abstract:
This paper presents a visualized computer aided case tool for non-expert, called Visual Time, for representing and reasoning about incomplete and uncertain temporal information. It is both expressive and versatile, allowing logical conjunctions and disjunctions of both absolute and relative temporal relations, such as “Before”, “Meets”, “Overlaps”, “Starts”, “During”, and “Finishes”, etc. In terms of a visualized framework, Visual Time provides a user-friendly environment for describing scenarios with rich temporal structure in natural language, which can be formatted as structured temporal phrases and modeled in terms of Temporal Relationship Diagrams (TRD). A TRD can be automatically and visually transformed into a corresponding Time Graph, supported by automatic consistency checker that derives a verdict to confirm if a given scenario is temporally consistent or inconsistent.
Keywords: Time Visualization, Uncertainty, Incompleteness, Consistency Checking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15131230 Deterministic Modelling to Estimate Economic Impact from Implementation and Management of Large Infrastructure
Authors: Dimitrios J. Dimitriou
Abstract:
It is widely recognised that the assets portfolio development is helping to enhance economic growth, productivity and competitiveness. While numerous studies and reports certify the positive effect of investments in large infrastructure investments on the local economy, still, the methodology to estimate the contribution in economic development is a challenging issue for researchers and economists. The key question is how to estimate those economic impacts in each economic system. This paper provides a compact and applicable methodological framework providing quantitative results in terms of the overall jobs and income generated into the project life cycle. According to a deterministic mathematical approach, the key variables and the modelling framework are presented. The numerical case study highlights key results for a new motorway project in Greece, which is experienced economic stress for many years, providing the opportunity for comparisons with similar cases.
Keywords: Quantitative modelling, economic impact; large transport infrastructure; economic assessment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8831229 Using Spectral Vectors and M-Tree for Graph Clustering and Searching in Graph Databases of Protein Structures
Authors: Do Phuc, Nguyen Thi Kim Phung
Abstract:
In this paper, we represent protein structure by using graph. A protein structure database will become a graph database. Each graph is represented by a spectral vector. We use Jacobi rotation algorithm to calculate the eigenvalues of the normalized Laplacian representation of adjacency matrix of graph. To measure the similarity between two graphs, we calculate the Euclidean distance between two graph spectral vectors. To cluster the graphs, we use M-tree with the Euclidean distance to cluster spectral vectors. Besides, M-tree can be used for graph searching in graph database. Our proposal method was tested with graph database of 100 graphs representing 100 protein structures downloaded from Protein Data Bank (PDB) and we compare the result with the SCOP hierarchical structure.Keywords: Eigenvalues, m-tree, graph database, protein structure, spectra graph theory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16561228 A Hybrid GMM/SVM System for Text Independent Speaker Identification
Authors: Rafik Djemili, Mouldi Bedda, Hocine Bourouba
Abstract:
This paper proposes a novel approach that combines statistical models and support vector machines. A hybrid scheme which appropriately incorporates the advantages of both the generative and discriminant model paradigms is described and evaluated. Support vector machines (SVMs) are trained to divide the whole speakers' space into small subsets of speakers within a hierarchical tree structure. During testing a speech token is assigned to its corresponding group and evaluation using gaussian mixture models (GMMs) is then processed. Experimental results show that the proposed method can significantly improve the performance of text independent speaker identification task. We report improvements of up to 50% reduction in identification error rate compared to the baseline statistical model.Keywords: Speaker identification, Gaussian mixture model (GMM), support vector machine (SVM), hybrid GMM/SVM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22371227 A Framework for Review Spam Detection Research
Authors: Mohammadali Tavakoli, Atefeh Heydari, Zuriati Ismail, Naomie Salim
Abstract:
With the increasing number of people reviewing products online in recent years, opinion sharing websites has become the most important source of customers’ opinions. Unfortunately, spammers generate and post fake reviews in order to promote or demote brands and mislead potential customers. These are notably destructive not only for potential customers, but also for business holders and manufacturers. However, research in this area is not adequate, and many critical problems related to spam detection have not been solved to date. To provide green researchers in the domain with a great aid, in this paper, we have attempted to create a highquality framework to make a clear vision on review spam-detection methods. In addition, this report contains a comprehensive collection of detection metrics used in proposed spam-detection approaches. These metrics are extremely applicable for developing novel detection methods.
Keywords: Fake reviews, Feature collection, Opinion spam, Spam detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25171226 Implementation of a Virtual Testbed for Secure IoT Firmware Update Using Blockchain
Authors: Tarun Chand, Michael Jurczyk
Abstract:
With the increasing need and popularity of IoT devices and how integrated they are becoming in our daily lives and industries; these devices make for a very lucrative target for malicious actors. And since these devices have such limited resources, the implementation of robust security features is a tradeoff to be made for the actual functionality the device was intended for. This makes them an easy target with high returns. Several frameworks for the secure firmware update of these devices have been recently proposed in the literature. They focus on methods such as blockchains and distributed file systems to secure firmware updates, but do not go into the details of the actual implementation of these frameworks and the lower-level interactions among these methods used. This work integrates some of these security measures into one overall framework and details the actual lower-level implementation of this framework in a virtual dockerized testbed running on AWS.
Keywords: Blockchain, Ethereum, Geth, IPFS, secure IoT-firmware update, virtual testbed development
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 691225 Modular Data and Calculation Framework for a Technology-Based Mapping of the Manufacturing Process According to the Value Stream Management Approach
Authors: Tim Wollert, Fabian Behrendt
Abstract:
Value Stream Management (VSM) is a widely used methodology in the context of Lean Management for improving end-to-end material and information flows from a supplier to a customer from a company’s perspective. Whereas the design principles, e.g. Pull, value-adding, customer-orientation and further ones are still valid against the background of an increasing digitalized and dynamic environment, the methodology itself for mapping a value stream is characterized as time- and resource-intensive due to the high degree of manual activities. The digitalization of processes in the context of Industry 4.0 enables new opportunities to reduce these manual efforts and make the VSM approach more agile. The paper at hand aims at providing a modular data and calculation framework, utilizing the available business data, provided by information and communication technologies for automizing the value stream mapping process with focus on the manufacturing process.
Keywords: Industry 4.0, lean management 4.0, value stream management 4.0, value stream mapping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3691224 Budget Optimization for Maintenance of Bridges in Egypt
Authors: Hesham Abd Elkhalek, Sherif M. Hafez, Yasser M. El Fahham
Abstract:
Allocating limited budget to maintain bridge networks and selecting effective maintenance strategies for each bridge represent challenging tasks for maintenance managers and decision makers. In Egypt, bridges are continuously deteriorating. In many cases, maintenance works are performed due to user complaints. The objective of this paper is to develop a practical and reliable framework to manage the maintenance, repair, and rehabilitation (MR&R) activities of Bridges network considering performance and budget limits. The model solves an optimization problem that maximizes the average condition of the entire network given the limited available budget using Genetic Algorithm (GA). The framework contains bridge inventory, condition assessment, repair cost calculation, deterioration prediction, and maintenance optimization. The developed model takes into account multiple parameters including serviceability requirements, budget allocation, element importance on structural safety and serviceability, bridge impact on network, and traffic. A questionnaire is conducted to complete the research scope. The proposed model is implemented in software, which provides a friendly user interface. The framework provides a multi-year maintenance plan for the entire network for up to five years. A case study of ten bridges is presented to validate and test the proposed model with data collected from Transportation Authorities in Egypt. Different scenarios are presented. The results are reasonable, feasible and within acceptable domain.Keywords: Bridge Management Systems (BMS), cost optimization condition assessment, fund allocation, Markov chain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19581223 A Review of Quality Relationship between IT Processes, IT Products and IT Services
Authors: Whee Yen Wong, Chan Wai Lee, Kim Yeow Tshai
Abstract:
Producing IT products/services required carefully designed. IT development process is intangible and labour intensive. Making optimal use of available resources, both soft (knowledge, skill-set etc.) and hard (computer system, ancillary equipment etc.), is vital if IT development is to achieve sensible economical advantages. Apart from the norm of Project Life Cycle and System Development Life Cycle (SDLC), there is an urgent need to establish a general yet widely acceptable guideline on the most effective and efficient way to precede an IT project in the broader view of Product Life Cycle. The current paper proposes such a framework with two major areas of concern: (1) an integration of IT Products and IT Services within an existing IT Process architecture and; (2) how IT Product and IT Services are built into the framework of Product Life Cycle, Project Life Cycle and SDLC.Keywords: Mapping of Quality Relationship, IT Processes/IT Products/IT Services, Product Life Cycle, System Development Life Cycle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21711222 A Framework for Data Mining Based Multi-Agent: An Application to Spatial Data
Authors: H. Baazaoui Zghal, S. Faiz, H. Ben Ghezala
Abstract:
Data mining is an extraordinarily demanding field referring to extraction of implicit knowledge and relationships, which are not explicitly stored in databases. A wide variety of methods of data mining have been introduced (classification, characterization, generalization...). Each one of these methods includes more than algorithm. A system of data mining implies different user categories,, which mean that the user-s behavior must be a component of the system. The problem at this level is to know which algorithm of which method to employ for an exploratory end, which one for a decisional end, and how can they collaborate and communicate. Agent paradigm presents a new way of conception and realizing of data mining system. The purpose is to combine different algorithms of data mining to prepare elements for decision-makers, benefiting from the possibilities offered by the multi-agent systems. In this paper the agent framework for data mining is introduced, and its overall architecture and functionality are presented. The validation is made on spatial data. Principal results will be presented.
Keywords: Databases, data mining, multi-agent, spatial datamart.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20451221 An Adversarial Construction of Instability Bounds in LIS Networks
Authors: Dimitrios Koukopoulos
Abstract:
In this work, we study the impact of dynamically changing link slowdowns on the stability properties of packetswitched networks under the Adversarial Queueing Theory framework. Especially, we consider the Adversarial, Quasi-Static Slowdown Queueing Theory model, where each link slowdown may take on values in the two-valued set of integers {1, D} with D > 1 which remain fixed for a long time, under a (w, ¤ü)-adversary. In this framework, we present an innovative systematic construction for the estimation of adversarial injection rate lower bounds, which, if exceeded, cause instability in networks that use the LIS (Longest-in- System) protocol for contention-resolution. In addition, we show that a network that uses the LIS protocol for contention-resolution may result in dropping its instability bound at injection rates ¤ü > 0 when the network size and the high slowdown D take large values. This is the best ever known instability lower bound for LIS networks.Keywords: Network stability, quality of service, adversarial queueing theory, greedy scheduling protocols.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12291220 Semi-Supervised Outlier Detection Using a Generative and Adversary Framework
Authors: Jindong Gu, Matthias Schubert, Volker Tresp
Abstract:
In many outlier detection tasks, only training data belonging to one class, i.e., the positive class, is available. The task is then to predict a new data point as belonging either to the positive class or to the negative class, in which case the data point is considered an outlier. For this task, we propose a novel corrupted Generative Adversarial Network (CorGAN). In the adversarial process of training CorGAN, the Generator generates outlier samples for the negative class, and the Discriminator is trained to distinguish the positive training data from the generated negative data. The proposed framework is evaluated using an image dataset and a real-world network intrusion dataset. Our outlier-detection method achieves state-of-the-art performance on both tasks.Keywords: Outlier detection, generative adversary networks, semi-supervised learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10741219 A Comparative Study of Image Segmentation Algorithms
Authors: Mehdi Hosseinzadeh, Parisa Khoshvaght
Abstract:
In some applications, such as image recognition or compression, segmentation refers to the process of partitioning a digital image into multiple segments. Image segmentation is typically used to locate objects and boundaries (lines, curves, etc.) in images. Image segmentation is to classify or cluster an image into several parts (regions) according to the feature of image, for example, the pixel value or the frequency response. More precisely, image segmentation is the process of assigning a label to every pixel in an image such that pixels with the same label share certain visual characteristics. The result of image segmentation is a set of segments that collectively cover the entire image, or a set of contours extracted from the image. Several image segmentation algorithms were proposed to segment an image before recognition or compression. Up to now, many image segmentation algorithms exist and be extensively applied in science and daily life. According to their segmentation method, we can approximately categorize them into region-based segmentation, data clustering, and edge-base segmentation. In this paper, we give a study of several popular image segmentation algorithms that are available.Keywords: Image Segmentation, hierarchical segmentation, partitional segmentation, density estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29181218 The Requirements of Developing a Framework for Successful Adoption of Quality Management Systems in the Construction Industry
Authors: Mohammed Ali Ahmed, Vaughan Coffey, Bo Xia
Abstract:
Quality management systems (QMSs) in the construction industry are often implemented to ensure that sufficient effort is made by companies to achieve the required levels of quality for clients. Attainment of these quality levels can result in greater customer satisfaction, which is fundamental to ensure long-term competitiveness for construction companies. However, the construction sector is still lagging behind other industries in terms of its successful adoption of QMSs, due to the relative lack of acceptance of the benefits of these systems among industry stakeholders, as well as from other barriers related to implementing them. Thus, there is a critical need to undertake a detailed and comprehensive exploration of adoption of QMSs in the construction sector. This paper comprehensively investigates in the construction sector setting, the impacts of all the salient factors surrounding successful implementation of QMSs in building organizations, especially those of external factors. This study is part of an ongoing PhD project, which aims to develop a new framework that integrates both internal and external factors affecting QMS implementation. To achieve the paper aim and objectives, interviews will be conducted to define the external factors influencing the adoption of QMSs, and to obtain holistic critical success factors (CSFs) for implementing these systems. In the next stage of data collection, a questionnaire survey will be developed to investigate the prime barriers facing the adoption of QMSs, the CSFs for their implementation, and the external factors affecting the adoption of these systems. Following the survey, case studies will be undertaken to validate and explain in greater detail the real effects of these factors on QMSs adoption. Specifically, this paper evaluates the effects of the external factors in terms of their impact on implementation success within the selected case studies. Using findings drawn from analyzing the data obtained from these various approaches, specific recommendations for the successful implementation of QMSs will be presented, and an operational framework will be developed. Finally, through a focus group, the findings of the study and the new developed framework will be validated. Ultimately, this framework will be made available to the construction industry to facilitate the greater adoption and implementation of QMSs. In addition, deployment of the applicable recommendations suggested by the study will be shared with the construction industry to more effectively help construction companies to implement QMSs, and overcome the barriers experienced by businesses, thus promoting the achievement of higher levels of quality and customer satisfaction.Keywords: Barriers, critical success factors, external factors, internal factors, quality management systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20681217 A Study on the Design Elements of Sidewalk in Urban Commercial District
Authors: Ji Hyun Kang, Hwan Su Seo, Hong-Kyu Kim, Hong Sok Kim
Abstract:
This study was to search for the desirable direction of the sidewalk planning in Korea by establishing the concepts of walking and pedestrian space, and analyzing the advanced precedents in and out of country. Also, based on the precedent studies and relevant laws, regulations, and systems, it aimed for the following sequential process: firstly, to derive design elements from the functions and characteristics of sidewalk and cluster the similar elements by each characteristics, sampling representative characteristics and making them hierarchical; then, to analyze their significances via the first questionnaire survey, and the relative weights and priorities of each elements via the Analytic Hierarchy Process(AHP); finally, based on the analysis result, to establish the frame of suggesting the direction of policy to improve the pedestrian environment of sidewalk in urban commercial district for the future planning and design of pedestrian space.Keywords: Sidewalk, Pedestrian, AHP, Indicator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18021216 Investigation on Performance of Change Point Algorithm in Time Series Dynamical Regimes and Effect of Data Characteristics
Authors: Farhad Asadi, Mohammad Javad Mollakazemi
Abstract:
In this paper, Bayesian online inference in models of data series are constructed by change-points algorithm, which separated the observed time series into independent series and study the change and variation of the regime of the data with related statistical characteristics. variation of statistical characteristics of time series data often represent separated phenomena in the some dynamical system, like a change in state of brain dynamical reflected in EEG signal data measurement or a change in important regime of data in many dynamical system. In this paper, prediction algorithm for studying change point location in some time series data is simulated. It is verified that pattern of proposed distribution of data has important factor on simpler and smother fluctuation of hazard rate parameter and also for better identification of change point locations. Finally, the conditions of how the time series distribution effect on factors in this approach are explained and validated with different time series databases for some dynamical system.
Keywords: Time series, fluctuation in statistical characteristics, optimal learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18121215 A Systematic Construction of Instability Bounds in LIS Networks
Authors: Dimitrios Koukopoulos
Abstract:
In this work, we study the impact of dynamically changing link slowdowns on the stability properties of packetswitched networks under the Adversarial Queueing Theory framework. Especially, we consider the Adversarial, Quasi-Static Slowdown Queueing Theory model, where each link slowdown may take on values in the two-valued set of integers {1, D} with D > 1 which remain fixed for a long time, under a (w, p)-adversary. In this framework, we present an innovative systematic construction for the estimation of adversarial injection rate lower bounds, which, if exceeded, cause instability in networks that use the LIS (Longest-in- System) protocol for contention-resolution. In addition, we show that a network that uses the LIS protocol for contention-resolution may result in dropping its instability bound at injection rates p > 0 when the network size and the high slowdown D take large values. This is the best ever known instability lower bound for LIS networks.
Keywords: Parallel computing, network stability, adversarial queuing theory, greedy scheduling protocols.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14151214 A Framework for Successful TQM Implementation and Its Effect on the Organizational Sustainability Development
Authors: Redha Elhuni, M. Munir Ahmad
Abstract:
The main purpose of this research is to construct a generic model for successful implementation of Total Quality Management (TQM) in Oil sector, and to find out the effects of this model on the organizational sustainability development (OSD) performance of Libyan oil and gas companies using the structured equation modeling (SEM) approach. The research approach covers both quantitative and qualitative methods. A questionnaire was developed in order to identify the quality factors that are seen by Libyan oil and gas companies to be critical to the success of TQM implementation. Hypotheses were developed to evaluate the impact of TQM implementation on O SD. Data analysis reveals that there is a significant positive effect of the TQM implementation on OSD. 24 quality factors are found to be critical and absolutely essential for successful TQM implementation. The results generated a structure of the TQMSD implementation framework based on the four major road map constructs (Top management commitment, employee involvement and participation, customer-driven processes, and continuous improvement culture).
Keywords: TQM, CQFs, Oil & Gas, OSD, Libya.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42841213 A Fast, Portable Computational Framework for Aerodynamic Simulations
Authors: Mehdi Ghommem, Daniel Garcia, Nathan Collier, Victor Calo
Abstract:
We develop a fast, user-friendly implementation of a potential flow solver based on the unsteady vortex lattice method (UVLM). The computational framework uses the Python programming language which has easy integration with the scripts requiring computationally-expensive operations written in Fortran. The mixed-language approach enables high performance in terms of solution time and high flexibility in terms of easiness of code adaptation to different system configurations and applications. This computational tool is intended to predict the unsteady aerodynamic behavior of multiple moving bodies (e.g., flapping wings, rotating blades, suspension bridges...) subject to an incoming air. We simulate different aerodynamic problems to validate and illustrate the usefulness and effectiveness of the developed computational tool.Keywords: Unsteady aerodynamics, numerical simulations, mixed-language approach, potential flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12111212 An Approach to Manage and Evaluate Asset Performance
Authors: Mohammed S. ALSaidi, John P. Mo
Abstract:
Modern engineering assets are complex and very high in value. They are expected to function for years to come, with ability to handle the change in technology and ageing modification. The aging of an engineering asset and continues increase of vendors and contractors numbers forces the asset operation management (or Owner) to design an asset system which can capture these changes. Furthermore, an accurate performance measurement and risk evaluation processes are highly needed. Therefore, this paper explores the nature of the asset management system performance evaluation for an engineering asset based on the System Support Engineering (SSE) principles. The research work explores the asset support system from a range of perspectives, interviewing managers from across a refinery organization. The factors contributing to complexity of an asset management system are described in context which clusters them into several key areas. It is proposed that SSE framework may then be used as a tool for analysis and management of asset. The paper will conclude with discussion of potential application of the framework and opportunities for future research.
Keywords: Asset management, performance, evaluation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23581211 Simulation Aided Life Cycle Sustainability Assessment Framework for Manufacturing Design and Management
Authors: Mijoh A. Gbededo, Kapila Liyanage, Ilias Oraifige
Abstract:
Decision making for sustainable manufacturing design and management requires critical considerations due to the complexity and partly conflicting issues of economic, social and environmental factors. Although there are tools capable of assessing the combination of one or two of the sustainability factors, the frameworks have not adequately integrated all the three factors. Case study and review of existing simulation applications also shows the approach lacks integration of the sustainability factors. In this paper we discussed the development of a simulation based framework for support of a holistic assessment of sustainable manufacturing design and management. To achieve this, a strategic approach is introduced to investigate the strengths and weaknesses of the existing decision supporting tools. Investigation reveals that Discrete Event Simulation (DES) can serve as a rock base for other Life Cycle Analysis frameworks. Simio-DES application optimizes systems for both economic and competitive advantage, Granta CES EduPack and SimaPro collate data for Material Flow Analysis and environmental Life Cycle Assessment, while social and stakeholders’ analysis is supported by Analytical Hierarchy Process, a Multi-Criteria Decision Analysis method. Such a common and integrated framework creates a platform for companies to build a computer simulation model of a real system and assess the impact of alternative solutions before implementing a chosen solution.
Keywords: Discrete event simulation, life cycle sustainability analysis, manufacturing, sustainability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12891210 Parameter Estimation for Viewing Rank Distribution of Video-on-Demand
Authors: Hyoup-Sang Yoon
Abstract:
Video-on-demand (VOD) is designed by using content delivery networks (CDN) to minimize the overall operational cost and to maximize scalability. Estimation of the viewing pattern (i.e., the relationship between the number of viewings and the ranking of VOD contents) plays an important role in minimizing the total operational cost and maximizing the performance of the VOD systems. In this paper, we have analyzed a large body of commercial VOD viewing data and found that the viewing rank distribution fits well with the parabolic fractal distribution. The weighted linear model fitting function is used to estimate the parameters (coefficients) of the parabolic fractal distribution. This paper presents an analytical basis for designing an optimal hierarchical VOD contents distribution system in terms of its cost and performance.
Keywords: VOD, CDN, parabolic fractal distribution, viewing rank, weighted linear model fitting
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1790