

Abstract—With the increasing need and popularity of IoT devices

and how integrated they are becoming in our daily lives and industries;
these devices make for a very lucrative target for malicious actors. And
since these devices have such limited resources, the implementation of
robust security features is a tradeoff to be made for the actual
functionality the device was intended for. This makes them an easy
target with high returns. Several frameworks for the secure firmware
update of these devices have been recently proposed in the literature.
They focus on methods such as blockchains and distributed file
systems to secure firmware updates, but do not go into the details of
the actual implementation of these frameworks and the lower-level
interactions among these methods used. This work integrates some of
these security measures into one overall framework and details the
actual lower-level implementation of this framework in a virtual
dockerized testbed running on AWS.

Keywords—Blockchain, Ethereum, Geth, IPFS, secure IoT-
firmware update, virtual testbed development

I. INTRODUCTION

HE rapid gain in popularity of Internet of Things (IoT)
devices has introduced new challenges, particularly in

managing firmware updates securely and efficiently.
Traditional methods often face issues related to trust,
transparency, and decentralized control, and pose
vulnerabilities, such as single points of failure and susceptibility
to malicious interference. In response to these challenges,
several methods of securely updating IoT device firmware have
been recently proposed in the literature. These approaches,
among others, use blockchains for immutable record keeping,
proof of authority consensus to validate and authorize firmware
updates, and decentralized storage for distributed and secure
storage of firmware binaries. This work combines these
mechanisms to establish a decentralized and secure framework
for managing firmware updates in IoT devices. A virtual testbed
is then developed that implements the proposed framework,
utilizing private Ethereum blockchains implemented through
Geth for secure record keeping and proof of authority, and a
private Interplanetary File System (IPFS) for secure firmware
storage and retrieval. The testbed consists of Docker containers
deployed on Amazon Web Services (AWS). The main
contribution of this work is the actual lower-level
implementation of a framework in a virtual dockerized testbed
running on AWS. It is also shown how individual security
methods interact on a lower-level to implement the overall
secure framework.

Tarun Chand and Michael Jurczyk (Dr.) are with the EECS Dept., College

of Engineering, University of Missouri, Columbia, MO, United States (e-mail:

II. BACKGROUND AND RELATED WORKS

A. Existing Methods and Frameworks

Several methods of securely updating IoT device firmware
have been recently proposed in the literature [1]–[7]. For any
secure firmware update, the process needs to ensure that only
the official OEM device manufacturer’s firmware will be
installed, and that during the firmware delivery, the firmware
binary has not been tampered with. This can be accomplished
using blockchains for secure record keeping of firmware
updates by the manufacturer [1]–[7]. In addition, blockchains
provide proof of authority consensus algorithms [1], [2], where
the validation is based on the reputation and authority of
participants, often employed in private or consortium
blockchains for enhanced governance.

To reliably perform firmware updates, the OEM device
manufacturer needs to ensure that the firmware is accessible to
customers’ IoT devices. Centralized firmware storage by the
manufacturer could result in a single-point-of-failure or an
attack point to prevent timely firmware updates [3]. The use of
a distributed storage service such as Interplanetary File System
(IPFS) for firmware storage is therefore proposed in [3] to
guarantee reliable firmware updates.

For firmware delivery, either a push or pull operation can be
used [4]. In a push operation, the source of the update pushes
the updates onto the IoT devices whenever they are ready. In a
pull operation, the IoT device will ping the firmware source of
the update and check to see if there are any updates to be made.
This could be automated or could be triggered by the
user/owner and works well for devices that are constantly
connected, for example home routers. Networks with many
nodes, like the ones seen in large scale sensor networks or home
IoT devices, wireless methods for firmware upgrades are most
suitable since connecting each device via cables and wires is
not exactly scalable and convenient [5], [6].

After the firmware is delivered to the end device, verification
needs to be performed to check if the update was not modified
by malicious actors, for example a man-in-the-middle attack.
The authors of [5] do have a verification process in place and is
well integrated into their system since they are using blockchain
to deliver their payload in the first place. Another paper [7]
proposes an architecture where there is a separate runtime that
works like a pseudo-operating system to isolate the memory of
the system and is responsible for the verification of the
firmware installed on the device.

The authors of [2] introduce a secure firmware update

tcp99@missouri.edu, jurczykm@missouri.edu).

Tarun Chand, Michael Jurczyk

Implementation of a Virtual Testbed for Secure IoT
Firmware Update Using Blockchain

T

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:18, No:7, 2024

373International Scholarly and Scientific Research & Innovation 18(7) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
7,

 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
71

7.
pd

f

framework using the Hyperledger Fabric [8], with Hyper-ledger
Composer as their UI frontend. Although the authors mention
that the development was done on a Linux environment, the
actual execution takes place inside a Docker container, which
is a very portable implementation and easy to replicate. They
have a very specific use case of developing a system for health-
care, and their design reflects that.

B. Methods/Framework used for the proposed testbed

From these works, it can be concluded that there are efforts
being made to incorporate blockchains into the firmware update
process for IoT devices and. It is very much practical to do so
as shown by the various implementations of the paper. The
works of [5] and [6] come close to creating a secure system for
update and verification wirelessly on a wide network, and [2]
shows the implementation of a system with GDPR compliance
using Hyperledger as its platform for blockchain
implementation and the firmware being stored in a distributed
storage as done by the authors of [3]. In our testbed, elements
of these different papers have been selected and brought
together as one complete end-to-end package that can be easily
deployed to any system capable of running containers. Our
virtual testbed utilizes private Ethereum blockchains
implemented through Geth for secure record keeping, proof of
authority, and firmware validation, a private Interplanetary File
System (IPFS) for secure and distributed firmware storage and
retrieval, and pull operation for firmware delivery. The testbed
consists of Docker containers deployed on AWS.

III. TECHNOLOGIES USED IN THE TESTBED

A. Blockchain

Blockchains use cryptographic signatures to link and secure
a chain of records/blocks [9]. These blocks are then distributed
among multiple computing systems to form a decentralized
digital ledger. Each block in the blockchain contains a
collection of transactions, along with a cryptographic hash of
the previous block in the chain. This creates an immutable chain
of blocks, where any modification to a block would require
changing all subsequent blocks in the chain.

The Ethereum whitepaper [10] describes a blockchain as a
state transition system. When a new transaction is submitted to
the network, it is broadcast to all nodes in the network. Each
node validates the transaction and adds it to a pool of
unconfirmed transactions. Miners, who are nodes that perform
computational work to secure the network and validate
transactions, do so in accordance with the consensus
mechanism dictated by the particular blockchain protocol being
used. The Ethereum blockchain, for example, uses proof of
stake while the Bitcoin blockchain uses proof of work.

Once the block is added to the chain, it is distributed to all
nodes in the network, which validate the block’s contents and
cryptographic hash. If the block is valid, it is added to the local
copy of the blockchain. Any nodes that do not agree with the
block’s contents can reject it and continue to validate
transactions using the existing chain.

The use of cryptographic hashes, distributed consensus, and

the consensus mechanism makes the blockchain highly resistant
to tampering and hacking.

1) Ethereum

One of the existing blockchain platforms is the open-source
Ethereum platform that is used, among others, for digital
currency exchange and implementation of decentralized
applications using smart contracts. Here is how it works
according to the Ethereum whitepaper [10]:

Accounts are used to access the Ethereum blockchain. An
account can either be externally owned by a person (secured by
a private/public key pair), or a contract account implemented
and secured through smart contracts. Each account has a unique
20-byte address, either derived from the public key of an
externally owned account or from the smart contract of a
contract account. For externally owned accounts, account
information includes the current currency balance, and a nonce.
The nonce is incremented for each transaction to ensure that
each transaction is only processed once. In addition, in contract
accounts, the byte-code of the smart contract and storage data
is part of the account as well.

Ethereum also has its own cryptocurrency called Ether
(ETH), which is used to pay for transactions on the network and
incentivize validators. Ether can also be used to purchase and
sell other digital assets, such as tokens that represent ownership
in a decentralized application or a specific asset.

Ethereum accounts interact through “transactions”. A
transaction can either be the execution of a smart contract, or
the transfer of some asset (such as Ether cryptocurrency)
between accounts. Each transaction includes information such
as sender and recipient addresses, the Ether amount to be
transferred, and a “Gas Limit” (maximum resources the sender
is willing to pay for) and “Gas Price” (maximum amount the
sender is willing to pay for a resource). Gas Limit and Gas Price
determine the price the sender is willing to pay for this
transaction. After a transaction is submitted into the Ethereum
network, validators validate the transaction, and once it is
successfully validated, the transaction will be added to the
Ethereum blockchain.

At the heart of Ethereum are smart contracts, which are self-
executing contracts that are stored on the blockchain. Smart
contracts are written in a high-level programming language
called Solidity. They can be invoked by specific events and
used to automate complex processes and transactions.

Ethereum’s blockchain is composed of several key
components:
• Blocks: as mentioned earlier, Ethereum’s blockchain is

made up of a series of blocks that contain transactions and
other data. Each block is linked to the previous block in the
chain, creating an immutable and tamper-proof record of
all transactions on the network.

• Gas: Ethereum uses a concept called ”gas” to regulate the
cost and complexity of executing smart contracts. Gas is a
measure of computational work, and users must pay a fee
in Ether to execute smart contracts on the network. The
more complex the contract, the more gas it requires, and
the higher the fee.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:18, No:7, 2024

374International Scholarly and Scientific Research & Innovation 18(7) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
7,

 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
71

7.
pd

f

• EVM: The Ethereum Virtual Machine (EVM) is a runtime
environment that executes smart contracts on the Ethereum
network. The EVM is responsible for validating
transactions, executing smart contract code, and storing
data on the blockchain.

• Nodes: Ethereum is a decentralized network, which means
that it is run by a network of nodes, rather than a single
central authority. Nodes are computers that run the
Ethereum software and validate transactions on the
network.

2) Geth

Geth [11] is one of the most popular clients for running a
node on the Ethereum network. It is a command-line interface
that enables users to interact with the Ethereum network, mine
Ether, and execute smart contracts. Geth connects to the
Ethereum network and downloads a copy of the blockchain.
This copy of the blockchain is stored on the node running it,
and it allows us to interact with the network.

In the words of Geth documentation [11], ”Geth is an
Ethereum execution client meaning it handles transactions,
deployment, and execution of smart contracts and contains an
embedded computer known as the Ethereum Virtual Machine.”

Geth performs the following functions:
 Interacting with the network,
 Mining Ether,
 Executing smart contracts.

Geth can run in the following modes:
 Full node: This mode downloads the entire Ethereum

blockchain and validates all transactions. Running a full
node allows you to have a complete copy of the blockchain,
which can be useful for developing decentralized
applications.

 Light node: This mode downloads only the header of each
block and is much faster than running a full node.
However, light nodes cannot validate transactions, so they
rely on other nodes on the network to do so.

 Fast sync node: This mode downloads the entire
blockchain, but it does so more quickly than a full node by
skipping over certain details that are not necessary for
validation.

The default behavior when Geth is run is to start in Light
node mode, which is what our project does as well.

3) Geth Private Network

Geth provides a number of tools and commands that allow
for creation and managing of a private Ethereum network.

To create a private network, a genesis block needs to be
setup, which is the first block in the new blockchain. The
genesis block contains all of the initial configuration and
settings for a new network, including the initial allocation of
Ether, the network ID, and the consensus algorithm.

After this, Geth is used to initialize the new network and start
mining blocks. Geth can also be used to add new nodes to the
network, monitor the status of the network, and interact with
smart contracts on the network.

To take part in the blockchain, each node needs to have an

account represented by its public address and a private key.
When an account is created using Geth, a password is needed
to encrypt the private key and stored in a keystore, typically in
the data directory along with the other blockchain data required
for running a Geth node. One thing to note is, this Geth
generated key pair is valid for any Ethereum network including
the mainnet and other popular test networks and not just our
private network.

The implementation of proof of authority consensus
mechanism is done when the Geth clients are initialized and is
handled by Geth itself. There is a genesis.json file that every
client has to be initialized with before taking part in the
blockchain network. The presence of ”clique” field in the
genesis file implies that we are using the proof of authority
consensus mechanism and the following field with ”extradata”
field contains the list of accounts to be used as authoritative
accounts that can mine new blocks.

4) Formation of Blockchain Network

The formation of the blockchain network in this project is
going to peer to peer with a few nodes as authoritative Geth
clients with the ability to mine new blocks. These nodes are
going to be chosen at the time of deployment of the OEM
server. Although the signers can be any node, the testbed is
structured in such a way that the OEM manufacturer gets to
decide who the signers are going to be before the blockchain is
deployed. Once the genesis block is formed, the list of signers
becomes immutable and any new peers that were not registered
with the genesis block do not have the ability to mine new
blocks.

B. Decentralized Storage

Decentralized storage is a type of data storage system that
does not rely on a central server or authority. Instead, it
distributes data across a network of computers, making it more
secure and reliable.

In a decentralized storage system, data is broken up into
smaller pieces, encrypted, and then distributed across a network
of nodes, which can be computers owned by individuals or
organizations. Each node stores a small portion of the data, and
no single node has access to the entire dataset.

When a user wants to retrieve the data, their client software
contacts multiple nodes on the network and requests the pieces
of data needed to reconstruct the original file. The nodes then
transmit the requested data to the user’s client, which decrypts
the data and assembles it into the original file.

Since the data is distributed across multiple nodes, there is
no single point of failure or attack. This makes it much more
difficult for a hacker or malicious actor to compromise the data
or tamper with it.

Another advantage of decentralized storage is its scalability.
Since the data is distributed across multiple nodes, it can easily
be scaled up or down to meet changing demand. This makes it
an ideal storage solution for applications that require large
amounts of data storage, such as storage of firmware for IoT
devices.

There are several decentralized storage systems currently in

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:18, No:7, 2024

375International Scholarly and Scientific Research & Innovation 18(7) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
7,

 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
71

7.
pd

f

use, including IPFS (InterPlanetary File System) [12], Storj
[13], and Sia [14].

1) IPFS

InterPlanetary File System [12] is a decentralized file storage
system that uses a distributed network of nodes to store and
distribute files. Unlike traditional file storage systems that rely
on centralized servers, IPFS allows files to be stored and
accessed from multiple nodes.

The core concept behind IPFS is content addressing, which
means that files are identified by a unique hash or fingerprint
rather than by their location on a specific server. This allows
files to be retrieved from any node on the IPFS network, rather
than from a single server.

According to IPFS documentation, this is what the life cycle
of data looks like:
1. Content-addressable representation: this includes

chunking the file and hashing each chunk.
2. Pinning: this involves advertising and providing the data a

node has.
3. Retrieval: this involves content routing, block fetching

from the Merkle DAG, and verification.
4. Deleting: this is always a local operation for a node.

Here is how IPFS works:
• Add content: To add content to the IPFS network, we first

create a file or folder on your local computer. You then use
IPFS client software to add the content to the network,
which generates a unique hash that identifies the content.

• Distribute content: The IPFS network is made up of a
distributed network of nodes, which can be computers
owned by individuals or organizations. When we add
content to the IPFS network, the content is automatically
distributed across multiple nodes.

• Retrieve content: To retrieve content from the IPFS
network, we use the unique hash generated when the
content was added. The client software then searches the
IPFS network for nodes that have a copy of the content and
retrieves the pieces needed to reconstruct the original file.

• Update content: If we need to update a file that has already
been added to the IPFS network, we need to create a new
version of the file, add it to the network, and calculate the
new hash for the file. We then have to change the address
in the smart contract with this new hash. It is difficult to
make changes and update existing content once it has been
added since data on the IPFS network is immutable.

2) IPFS Private Network

It is possible to host a private IPFS network. One of the key
benefits of IPFS is that it is designed to be easily deployable
and customizable, allowing individuals and organizations to set
up their own IPFS nodes and networks.

To host a private IPFS network, these general steps need to
be taken:
o Install and Configure IPFS: This involves setting up

storage and networking parameters, as well as configuring
access control and security settings. The important one

being generation of a swarm key which can be used by
other nodes to join the network which we can refer to as a
swarm.

• Add content: Once the IPFS node is up and running, we can
add content to the network by using IPFS client software to
create and upload files or folders. This will generate a
unique hash that identifies the content on the IPFS network.

• Distribute content: The distribution of the content is done
by the IPFS clients present in the same swarm. The
uploaded file propagates through the network ready to be
retrieved by referencing the content id of the file.

• Retrieve content: To retrieve content from the private IPFS
network, we can use IPFS client to search for the content
by its unique hash.

IV. TESTBED DESIGN

A. Testbed Architecture

Fig. 1 block diagram shows the overall architecture of the
system used in this project. The figure examines the high-level
architecture of the system, including the major components,
interactions, and data flows. The IoT device firmware upgrade
process using blockchain and distributed storage involves
several components working together seamlessly. At the heart
of the OEM network are two main servers - a web server and a
Geth signer server. The web server is responsible for handling
requests from various users, such as OEM manufacturers and
end-users, while the Geth signer server provides the necessary
infrastructure for securely storing and retrieving firmware
update metadata on the blockchain.

When an OEM manufacturer wants to release a new
firmware version for their devices, they use the web server to
upload the updated firmware. This firmware is then stored on a
distributed storage system, specifically InterPlanetary File
System (IPFS), which is also running on the same server as the
web server. The IPFS system assigns a unique Content ID
(CID) to the firmware, which acts as its digital fingerprint. This
CID is then passed on to the Geth signer server, where it is used
to create a new transaction on the blockchain. The Geth signer
is responsible for ensuring that only authorized parties can
update the firmware on the devices. The authorized party being
the OEM manufacturer that is in possession of the private key
for the account mentioned in the genesis.json file. Only those
accounts mentioned in the genesis.json are able to mine new
blocks.

One of the key reasons IPFS is chosen instead of storing the
firmware binaries directly on the blockchain is that IPFS is
better suited for storing larger files. Storing large files directly
on the blockchain can lead to bloat and increased storage costs.
Geth is not particularly optimized to sync large blocks across
the blockchain network and hence not a good choice to store
large blobs of data directly on the chain. By using IPFS, we can
keep the blockchain lean and focused on storing metadata,
while still providing a secure and decentralized storage solution
for the firmware blobs themselves.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:18, No:7, 2024

376International Scholarly and Scientific Research & Innovation 18(7) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
7,

 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
71

7.
pd

f

Fig. 1 Testbed Architecture

On the other side of the system, there is a second web server
that runs on the end-user’s updater device. This web server
provides a user interface for the end-user to initiate firmware
updates on their device. When the end-user requests an update,
the web server communicates with the local Geth node (which
is not a signer) to retrieve the latest firmware version from the
IPFS node. The web server downloads the firmware from the
IPFS node and applies the update to the IoT device.

Ethereum was selected as the preferred platform for
implementing the blockchain, as opposed to more customizable
options like Hyperledger Fabric. This decision was based on
practical considerations and the specific scope of the project.
The rationale for choosing Ethereum is outlined below:
• Rapid prototyping: Ethereum’s ecosystem offers valuable

tools such as the Remix IDE and Ganache blockchain.
These tools enable quick prototyping of smart contracts,
allowing exploration of ideas and concepts in the early
phase of development.

• Incremental development: Ethereum supports incremental
development by allowing the system to be developed in
stages. Functional placeholder tools like Ganache
blockchain make it possible to develop individual
components separately. This is in contrast to Hyperledger
Fabric, where the conventional approach often involves
developing the entire system in a single iteration.

• Availability of resources: Ethereum is widely adopted as a
development platform, resulting in a lot of resources and a
healthy online community for troubleshooting.

• Developer experience: The use of Remix IDE in Ethereum
simplifies the debugging process, contributing to a more
user-friendly and efficient developer experience.

B. Data Flow

The sequence diagram in Fig. 2 shows a high-level overview
of how data will flow through the system:
• The manufacturer releases a new firmware version for a

device.
• The manufacturer uploads the firmware binary to IPFS and

gets a CID that represents the firmware in return.
• The manufacturer records the CID of the file in the

blockchain with the help of the deployed smart contract.
• An end-user initiates a firmware update on their device.
• The client’s updater device contacts the blockchain to

retrieve the content id of the latest firmware for a given
device.

• The updater device downloads the firmware binary from
IPFS using the CID recorded in the smart contract.

• The updater device installs the firmware update onto the
IoT device in the local network.

C. Pseudocode

In order to provide a clear and structured understanding of
the IoT device firmware upgrade system’s inner workings, the
following section on pseudocode is presented: Let us take a
look at the pseudocode for each component, beginning with the
OEM server’s firmware upload process.
Function to Upload Firmware

Function Upload(firmwareFile, deviceName):

connect_to_ethereum() # Connect to the Ethereum node
get_account() # Get the Ethereum account address
get_contract_abi() # Fetch the contract ABI
get_contract_address() # Fetch the contract address
connect_to_ipfs() #Connect to the local IPFS node

Upload the firmware:
ipfs_hash = upload_firmware_to_ipfs(firmwareFile)

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:18, No:7, 2024

377International Scholarly and Scientific Research & Innovation 18(7) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
7,

 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
71

7.
pd

f

record_transaction_on_blockchain(ipfs_hash, deviceName)
return { ’status’ : transaction_status, ’hash’ : ipfs_hash }

Note that proof of authority mechanism is being handled by

the geth signer node and is configured using the genesis.json
file when the blockchain is initialized.

Fig. 2 Data Flow Diagram

And the following is how the end users’ device would apply
the firmware update from the web UI.

Function to Fetch Latest Firmware

Function Update(device):

connect_to_ethereum() # Connect to the Ethereum node
get_contract_abi() # Fetch the contract ABI
get_contract_address() #Fetch the contract address

latest_firmware_hash =

fetch_latest_firmware_hash_from_blockchain(device)
firmware_data =

fetch_firmware_data_from_ipfs(latest_firmware_hash)

apply_firmware_update(firmware_data)

As for the smart contract, the smart contract does the basic

function of storing the latest firmware hash for each device and
providing an interface for outside to store and retrieve those
hashes.

Contract FirmwareUpdate {
 mapping(string => string) deviceToFirmwareMapping;

function getLatestFirmwareHash (string device) view
returns(string){

return deviceToFirmwareMapping[device];
}
function storeFirmware(string ipfsHash, string device) public
payable{
deviceToFirmwareMapping[device] = ipfsHash;
}

}

V. TESTBED DEVELOPMENT

Fig. 3 summarizes how the testbed has been structured using

several Docker containers on the server and client sides:

Fig. 3 Testbed structure

There is a heavy usage of Docker in this project. All the
components are packaged up into Docker containers and spun
up using docker-compose scripts. This is done in order to have
a reproducible environment and stability in case there are
version conflicts of packages being used in this project in the
future.

All these Docker containers are being run in their respective
Amazon Web Services EC2 virtual machines as Ubuntu 22.04
as their base operating system. The development process can be
split into two distinct components: the server side and the client
side.

A. Server Side

The server side of the development consists of three Docker
containers:

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:18, No:7, 2024

378International Scholarly and Scientific Research & Innovation 18(7) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
7,

 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
71

7.
pd

f

Geth Signer: The two most important processes going to be
running inside this container are the Geth client and a bootstrap
node (a stripped down version of the Geth client responsible
only for peer discovery). When the blockchain is initialized, it
generates the genesis block, and configures the chain to follow
a proof of authority consensus mechanism and specifies the
account that has the authority to sign the blocks when they are
mined. After it the blockchain is created and deployed, it acts
as a web server serving details specific to this particular
container like contract address and abi or the enode address for
the bootnode. For the implementation of this web server, Flask
is used since it is lightweight and fits perfectly for this kind of
use case.

IPFS node: The IPFS node container initializes and sets up
the IPFS node, generates a random swarm key and starts the file
server. Only nodes with the swarm key are able to join this IPFS
network. Finally it starts the IPFS daemon for the distributed
storage. It also makes use of the Flask library to act as a web
server. It serves up information about this particular container
like the swarm key and the bootstrap address needed for the
peer to peer connection with this particular node.

Web Server: This container serves as the interface between
the blockchain, the distributed storage, and the developers of
the device firmware. It provides the frontend for uploading new
firmware for those devices.

B. Client Side

The client side also consists of three Docker containers:
Geth Node: The implementation for the client side Geth node

that is not signing is straightforward. The entry point of this
container is the creation of a new account for the user. After the
account is generated, the details of the bootnode are retrieved
from the server, Geth is initialized and a peer to peer connection
is established with the bootnode present on the server side.

IPFS Node: The implementation of the IPFS client is also
straightforward. The entry point configures the IPFS client and
unlike the server side, no swarm key is generated. Instead, it
reaches out to the server side of the IPFS client to retrieve the
swarm key so that it can let this particular node join the swarm.
Finally, the IPFS daemon is started and it becomes a part of our
IPFS network.

Updater: The frontend allows the end user to select the
device and check for updates. If a new update is detected, it will
start the download process.

VI. SCALABILITY AND IMPLEMENTATION ISSUES

The firmware update framework is highly scalable, as both
the blockchain and the IPFS file system are decentralized and
distributed. In the firmware update testbed, each client is
implemented using a separate AWS EC2 t3-small virtual
machine running Linux. AWS pricing sets a fixed hourly price
per virtual machine used. Thus, the cost running the testbed on
AWS is directly proportional to the number of clients
simulated. Depending on the simulation budget available, this
might limit the maximum number of simulated clients.

During the testbed implementation phase, one main
implementation issue was encountered. Server and Clients was

run in different AWS instances with their own IP addresses.
Every time the testbed is started up, the server is issued a new
IP address and the clients need to find this address when starting
up. It was decided, for simulation cost reasons, not to use AWS
elastic IP addresses for the server, but to use an EFS file system
shared among the server and clients’ instances. When the server
starts up, it will store its IP address in the file system, and clients
can then retrieve it when they start up.

VII. CONCLUSION

In this paper, recently proposed methods and frameworks for
the secure firmware update of IoT devices were surveyed.
These methods rely on blockchains and distributed file systems
to securely and reliably update IoT firmware. These
mechanisms were then combined to establish a decentralized,
secure, and reliable framework for these firmware updates.
Then, the data flow among various components and the actual
testbed architecture were defined. Finally, the lower-level
implementation of this framework in a virtual dockerized
testbed running on AWS was described. The testbed utilizes
private Ethereum blockchains implemented through Geth for
secure record keeping and proof of authority, and a private
Interplanetary File System (IPFS) for secure firmware storage
and retrieval.

REFERENCES
[1] M. A. Uddin, A. Stranieri, I. Gondal, and V. Balasubramanian, “A survey

on the adoption of blockchain in IoT: Challenges and solutions,”
Blockchain: Research and Applications, p. 100006, June 2021.

[2] M. Antwi, A. Adnane, F. Ahmad, R. Hussain, M. H. Rehman, and C. A.
Kerrache, “The case of hyperledger fabric as a blockchain so- lution for
healthcare applications,” Blockchain: Research and Applications, p.
100012, March 2021.

[3] W.-J. Tsaur, J.-C. Chang, and C.-L. Chen, “A highly secure IoT firmware
update mechanism using blockchain,” Sensors, p. 530, 2022.

[4] R. Bielawski, R. Gaynier, D. Ma, S. Lauzon, and A. Weimerskirch,
„Cybersecurity of Firmware Updates (Report No. DOT HS 812 807),”
National Highway Traffic Safety Administration, Oct. 2020.

[5] X. He, S. Alqahtani, R. Gamble and M. Papa, “Securing Over-The-Air
IoT Firmware Updates using Blockchain,” Proceedings of the
International Conference on Omni-Layer Intelligent Systems
(COINS’19), Crete, Greece, pp. 164-171, 2019.

[6] N. S. Mtetwa, N. Sibeko, P. Tarwireyi and A. M. Abu-Mahfouz, "OTA
Firmware Updates for LoRaWAN Using Blockchain," 2020 2nd
International Multidisciplinary Information Technology and Engineering
Conference (IMITEC), pp. 1-8, 2020.

[7] J. Clemens, R. Pal, and B. Sherrell, “Runtime state verification on
resource-constrained platforms,” MILCOM 2018 IEEE Military
Communications Conference (MILCOM), pp. 1–6, 2018

[8] Hyperledger Fabric: https://www.hyperledger.org/
[9] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,”

Decentralized business review, p. 21260 , 2008
[10] V. Buterin, “A next-generation smart contract and decentralized

application platform,” White Paper, 2014
[11] Ethereum - Geth Documentation: https://geth.ethereum.org/docs/
[12] IPFS Official Website: https://www.ipfs.com/
[13] Storj Official Website: https://www.storj.io/
[14] Sia Official Website: https://sia.tech/

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:18, No:7, 2024

379International Scholarly and Scientific Research & Innovation 18(7) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
7,

 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
71

7.
pd

f

