Search results for: Decision Analysis and Resolution
9426 Clarification of the Essential of Life Cycle Cost upon Decision-Making Process: An Empirical Study in Building Projects
Authors: Ayedh Alqahtani, Andrew Whyte
Abstract:
Life Cycle Cost (LCC) is one of the goals and key pillars of the construction management science because it comprises many of the functions and processes necessary, which assist organisations and agencies to achieve their goals. It has therefore become important to design and control assets during their whole life cycle, from the design and planning phase through to disposal phase. LCCA is aimed to improve the decision making system in the ownership of assets by taking into account all the cost elements including to the asset throughout its life. Current application of LCC approach is impractical during misunderstanding of the advantages of LCC. This main objective of this research is to show a different relationship between capital cost and long-term running costs. One hundred and thirty eight actual building projects in United Kingdom (UK) were used in order to achieve and measure the above-mentioned objective of the study. The result shown that LCC is one of the most significant tools should be considered on the decision making process.
Keywords: Building projects, Capital cost, Life cycle cost, Maintenance costs, Operation costs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19309425 Cost Sensitive Analysis of Production Logistics Measures A Decision Making Support System for Evaluating Measures in the Production
Authors: Michael Grigutsch, Peter Nyhuis
Abstract:
Due to the volatile global economy, enterprises are increasingly focusing on logistics. By investing in suitable measures a company can increase their logistic performance and assert themselves over the competition. However, enterprises are also faced with the challenge of investing available capital for maximum profits. In order to be able to create an informed and quantifiably comprehensible basis for a decision, enterprises need a suitable model for logistically and monetarily evaluating measures in production. Previously, within the frame of Collaborate Research Centre 489 (SFB 489) at the Institute for Production Systems and Logistics, (IFA) a Logistic Information System was developed specifically for providing enterprises in the forging industry with support when making decisions. Based on this research, a new initiative referred to as ‘Transfer Project T7’, aims to develop a universal approach for logistically and monetarily evaluating production measures. This paper focuses on the structural measure echelon storage and their impact on the entire production system.
Keywords: Logistic Operating Curves, Transfer Functions, Production Logistics, Storages Echelon.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13329424 A Comparative Analysis of Financial Performance of Funded and Non-Funded Charity Organizations
Authors: Saunah Zainon, Ruhaya Atan, Yap Bee Wah, Zarina Abu Bakar
Abstract:
The primary objective of this study is to test whether there is any difference in performance between funded and nonfunded registered charity organizations. In this study, performance as the dependent variable is measured using total donations. Using a sample of 101 charity organizations registered with the Registry of Society, analysis of variance (ANOVA) results indicate that there is a difference in financial performance between funded and non-funded charity organizations. The study provides empirical evidence to resource providers and the policy makers in scrutinizing the decision to disburse their funds and resources to these charity organizations.Keywords: charity organizations, donations, funded, non-funded
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22599423 A Proposal of an Automatic Formatting Method for Transforming XML Data
Authors: Zhe JIN, Motomichi TOYAMA
Abstract:
PPX(Pretty Printer for XML) is a query language that offers a concise description method of formatting the XML data into HTML. In this paper, we propose a simple specification of formatting method that is a combination description of automatic layout operators and variables in the layout expression of the GENERATE clause of PPX. This method can automatically format irregular XML data included in a part of XML with layout decision rule that is referred to DTD. In the experiment, a quick comparison shows that PPX requires far less description compared to XSLT or XQuery programs doing same tasks.
Keywords: PPX, Irregular XML data, Layout decision rule, HTML.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14179422 Competitor Analysis to Quantify the Benefits and for Different Use of Transport Infrastructure
Authors: Dimitrios J. Dimitriou, Maria F. Sartzetaki
Abstract:
Different transportation modes have key operational advantages and disadvantages, providing a variety of different transport options to users and passengers. This paper reviews key variables for the competition between air transport and other transport modes. The aim of this paper is to review the competition between air transport and other transport modes, providing results in terms of perceived cost for the users, for destinations high competitiveness for all transport modes. The competitor analysis variables include the cost and time outputs for each transport option, highlighting the level of competitiveness on high demanded Origin-Destination corridors. The case study presents the output of a such analysis for the OD corridor in Greece that connects the Capital city (Athens) with the second largest city (Thessaloniki) and the different transport modes have been considered (air, train, road). Conventional wisdom is to present an easy to handle tool for planners, managers and decision makers towards pricing policy effectiveness and demand attractiveness, appropriate to use for other similar cases.
Keywords: Competitor analysis, generalized cost, transport economics, quantitative modelling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10199421 Application of Artificial Neural Network in Assessing Fill Slope Stability
Authors: An-Jui. Li, Kelvin Lim, Chien-Kuo Chiu, Benson Hsiung
Abstract:
This paper details the utilization of artificial intelligence (AI) in the field of slope stability whereby quick and convenient solutions can be obtained using the developed tool. The AI tool used in this study is the artificial neural network (ANN), while the slope stability analysis methods are the finite element limit analysis methods. The developed tool allows for the prompt prediction of the safety factors of fill slopes and their corresponding probability of failure (depending on the degree of variation of the soil parameters), which can give the practicing engineer a reasonable basis in their decision making. In fact, the successful use of the Extreme Learning Machine (ELM) algorithm shows that slope stability analysis is no longer confined to the conventional methods of modeling, which at times may be tedious and repetitive during the preliminary design stage where the focus is more on cost saving options rather than detailed design. Therefore, similar ANN-based tools can be further developed to assist engineers in this aspect.
Keywords: Landslide, limit analysis, ANN, soil properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12079420 Evaluation of New Product Development Projects using Artificial Intelligence and Fuzzy Logic
Authors: Orhan Feyzioğlu, Gülçin Büyüközkan
Abstract:
As a vital activity for companies, new product development (NPD) is also a very risky process due to the high uncertainty degree encountered at every development stage and the inevitable dependence on how previous steps are successfully accomplished. Hence, there is an apparent need to evaluate new product initiatives systematically and make accurate decisions under uncertainty. Another major concern is the time pressure to launch a significant number of new products to preserve and increase the competitive power of the company. In this work, we propose an integrated decision-making framework based on neural networks and fuzzy logic to make appropriate decisions and accelerate the evaluation process. We are especially interested in the two initial stages where new product ideas are selected (go/no go decision) and the implementation order of the corresponding projects are determined. We show that this two-staged intelligent approach allows practitioners to roughly and quickly separate good and bad product ideas by making use of previous experiences, and then, analyze a more shortened list rigorously.Keywords: Decision Making, Neural Networks, Fuzzy Theory and Systems, Choquet Integral, New Product Development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28339419 Projections of Climate Change in the Rain Regime of the Ibicui River Basin
Authors: Claudineia Brazil, Elison Eduardo Bierhals, Francisco Pereira, José Leandro Néris, Matheus Rippel, Luciane Salvi
Abstract:
The global concern about climate change has been increasing, since the emission of gases from human activities contributes to the greenhouse effect in the atmosphere, indicating significant impacts to the planet in the coming years. The study of precipitation regime is fundamental for the development of research in several areas. Among them are hydrology, agriculture, and electric sector. Using the climatic projections of the models belonging to the CMIP5, the main objective of the paper was to present an analysis of the impacts of climate change without rainfall in the Uruguay River basin. After an analysis of the results, it can be observed that for the future climate, there is a tendency, in relation to the present climate, for larger numbers of dry events, mainly in the winter months, changing the pluviometric regime for wet summers and drier winters. Given this projected framework, it is important to note the importance of adequate management of the existing water sources in the river basin, since the value of rainfall is reduced for the next years, it may compromise the dynamics of the ecosystems in the region. Facing climate change is fundamental issue for regions and cities all around the world. Society must improve its resilience to phenomenon impacts, and spreading the knowledge among decision makers and citizens is also essential. So, these research results can be subsidies for the decision-making in planning and management of mitigation measures and/or adaptation in south Brazil.
Keywords: Climate change, hydrological potential, precipitation, mitigation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10759418 Bayesian Networks for Earthquake Magnitude Classification in a Early Warning System
Authors: G. Zazzaro, F.M. Pisano, G. Romano
Abstract:
During last decades, worldwide researchers dedicated efforts to develop machine-based seismic Early Warning systems, aiming at reducing the huge human losses and economic damages. The elaboration time of seismic waveforms is to be reduced in order to increase the time interval available for the activation of safety measures. This paper suggests a Data Mining model able to correctly and quickly estimate dangerousness of the running seismic event. Several thousand seismic recordings of Japanese and Italian earthquakes were analyzed and a model was obtained by means of a Bayesian Network (BN), which was tested just over the first recordings of seismic events in order to reduce the decision time and the test results were very satisfactory. The model was integrated within an Early Warning System prototype able to collect and elaborate data from a seismic sensor network, estimate the dangerousness of the running earthquake and take the decision of activating the warning promptly.Keywords: Bayesian Networks, Decision Support System, Magnitude Classification, Seismic Early Warning System
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35989417 Attacks Classification in Adaptive Intrusion Detection using Decision Tree
Authors: Dewan Md. Farid, Nouria Harbi, Emna Bahri, Mohammad Zahidur Rahman, Chowdhury Mofizur Rahman
Abstract:
Recently, information security has become a key issue in information technology as the number of computer security breaches are exposed to an increasing number of security threats. A variety of intrusion detection systems (IDS) have been employed for protecting computers and networks from malicious network-based or host-based attacks by using traditional statistical methods to new data mining approaches in last decades. However, today's commercially available intrusion detection systems are signature-based that are not capable of detecting unknown attacks. In this paper, we present a new learning algorithm for anomaly based network intrusion detection system using decision tree algorithm that distinguishes attacks from normal behaviors and identifies different types of intrusions. Experimental results on the KDD99 benchmark network intrusion detection dataset demonstrate that the proposed learning algorithm achieved 98% detection rate (DR) in comparison with other existing methods.Keywords: Detection rate, decision tree, intrusion detectionsystem, network security.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36299416 Spatiotemporal Analysis of Visual Evoked Responses Using Dense EEG
Authors: Rima Hleiss, Elie Bitar, Mahmoud Hassan, Mohamad Khalil
Abstract:
A comprehensive study of object recognition in the human brain requires combining both spatial and temporal analysis of brain activity. Here, we are mainly interested in three issues: the time perception of visual objects, the ability of discrimination between two particular categories (objects vs. animals), and the possibility to identify a particular spatial representation of visual objects. Our experiment consisted of acquiring dense electroencephalographic (EEG) signals during a picture-naming task comprising a set of objects and animals’ images. These EEG responses were recorded from nine participants. In order to determine the time perception of the presented visual stimulus, we analyzed the Event Related Potentials (ERPs) derived from the recorded EEG signals. The analysis of these signals showed that the brain perceives animals and objects with different time instants. Concerning the discrimination of the two categories, the support vector machine (SVM) was applied on the instantaneous EEG (excellent temporal resolution: on the order of millisecond) to categorize the visual stimuli into two different classes. The spatial differences between the evoked responses of the two categories were also investigated. The results showed a variation of the neural activity with the properties of the visual input. Results showed also the existence of a spatial pattern of electrodes over particular regions of the scalp in correspondence to their responses to the visual inputs.
Keywords: Brain activity, dense EEG, evoked responses, spatiotemporal analysis, SVM, perception.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10719415 Human Verification in a Video Surveillance System Using Statistical Features
Authors: Sanpachai Huvanandana
Abstract:
A human verification system is presented in this paper. The system consists of several steps: background subtraction, thresholding, line connection, region growing, morphlogy, star skelatonization, feature extraction, feature matching, and decision making. The proposed system combines an advantage of star skeletonization and simple statistic features. A correlation matching and probability voting have been used for verification, followed by a logical operation in a decision making stage. The proposed system uses small number of features and the system reliability is convincing.Keywords: Human verification, object recognition, videounderstanding, segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15059414 A Simplified Adaptive Decision Feedback Equalization Technique for π/4-DQPSK Signals
Authors: V. Prapulla, A. Mitra, R. Bhattacharjee, S. Nandi
Abstract:
We present a simplified equalization technique for a π/4 differential quadrature phase shift keying ( π/4 -DQPSK) modulated signal in a multipath fading environment. The proposed equalizer is realized as a fractionally spaced adaptive decision feedback equalizer (FS-ADFE), employing exponential step-size least mean square (LMS) algorithm as the adaptation technique. The main advantage of the scheme stems from the usage of exponential step-size LMS algorithm in the equalizer, which achieves similar convergence behavior as that of a recursive least squares (RLS) algorithm with significantly reduced computational complexity. To investigate the finite-precision performance of the proposed equalizer along with the π/4 -DQPSK modem, the entire system is evaluated on a 16-bit fixed point digital signal processor (DSP) environment. The proposed scheme is found to be attractive even for those cases where equalization is to be performed within a restricted number of training samples.Keywords: Adaptive decision feedback equalizer, Fractionally spaced equalizer, π/4 DQPSK signal, Digital signal processor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 57379413 A Review: Comparative Analysis of Arduino Micro Controllers in Robotic Car
Authors: C. Rajan, B. Megala, A. Nandhini, C. Rasi Priya
Abstract:
Robotics brings together several very different engineering areas and skills. There are various types of robot such as humanoid robot, mobile robots, remotely operated vehicles, modern autonomous robots etc. This survey paper advocates the operation of a robotic car (remotely operated vehicle) that is controlled by a mobile phone (communicate on a large scale over a large distance even from different cities). The person makes a call to the mobile phone placed in the car. In the case of a call, if any one of the button is pressed, a tone equivalent to the button pressed is heard at the other end of the call. This tone is known as DTMF (Dual Tone Multiple Frequency). The car recognizes this DTMF tone with the help of the phone stacked in the car. The received tone is processed by the Arduino microcontroller. The microcontroller is programmed to acquire a decision for any given input and outputs its decision to motor drivers in order to drive the motors in the forward direction or backward direction or left or right direction. The mobile phone that makes a call to cell phone stacked in the car act as a remote.
Keywords: Arduino Micro-controller, Arduino UNO, DTMF, Mobile phone, Robotic car.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42369412 Speaker Identification Using Admissible Wavelet Packet Based Decomposition
Authors: Mangesh S. Deshpande, Raghunath S. Holambe
Abstract:
Mel Frequency Cepstral Coefficient (MFCC) features are widely used as acoustic features for speech recognition as well as speaker recognition. In MFCC feature representation, the Mel frequency scale is used to get a high resolution in low frequency region, and a low resolution in high frequency region. This kind of processing is good for obtaining stable phonetic information, but not suitable for speaker features that are located in high frequency regions. The speaker individual information, which is non-uniformly distributed in the high frequencies, is equally important for speaker recognition. Based on this fact we proposed an admissible wavelet packet based filter structure for speaker identification. Multiresolution capabilities of wavelet packet transform are used to derive the new features. The proposed scheme differs from previous wavelet based works, mainly in designing the filter structure. Unlike others, the proposed filter structure does not follow Mel scale. The closed-set speaker identification experiments performed on the TIMIT database shows improved identification performance compared to other commonly used Mel scale based filter structures using wavelets.Keywords: Speaker identification, Wavelet transform, Feature extraction, MFCC, GMM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19829411 Enhanced Clustering Analysis and Visualization Using Kohonen's Self-Organizing Feature Map Networks
Authors: Kasthurirangan Gopalakrishnan, Siddhartha Khaitan, Anshu Manik
Abstract:
Cluster analysis is the name given to a diverse collection of techniques that can be used to classify objects (e.g. individuals, quadrats, species etc). While Kohonen's Self-Organizing Feature Map (SOFM) or Self-Organizing Map (SOM) networks have been successfully applied as a classification tool to various problem domains, including speech recognition, image data compression, image or character recognition, robot control and medical diagnosis, its potential as a robust substitute for clustering analysis remains relatively unresearched. SOM networks combine competitive learning with dimensionality reduction by smoothing the clusters with respect to an a priori grid and provide a powerful tool for data visualization. In this paper, SOM is used for creating a toroidal mapping of two-dimensional lattice to perform cluster analysis on results of a chemical analysis of wines produced in the same region in Italy but derived from three different cultivators, referred to as the “wine recognition data" located in the University of California-Irvine database. The results are encouraging and it is believed that SOM would make an appealing and powerful decision-support system tool for clustering tasks and for data visualization.
Keywords: Artificial neural networks, cluster analysis, Kohonen maps, wine recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21239410 Contrast-Enhanced Multispectal Upconversion Fluorescence Analysis for High-Resolution in-vivo Deep Tissue Imaging
Authors: Lijiang Wang, Wei Wang, Yuhong Xu
Abstract:
Lanthanide-doped upconversion nanoparticles which can convert near-infrared lights to visible lights have attracted growing interest because of their great potentials in fluorescence imaging. Upconversion fluorescence imaging technique with excitation in the near-infrared (NIR) region has been used for imaging of biological cells and tissues. However, improving the detection sensitivity and decreasing the absorption and scattering in biological tissues are as yet unresolved problems. In this present study, a novel NIR-reflected multispectral imaging system was developed for upconversion fluorescent imaging in small animals. Based on this system, we have obtained the high contrast images without the autofluorescence when biocompatible UCPs were injected near the body surface or deeply into the tissue. Furthermore, we have extracted respective spectra of the upconversion fluorescence and relatively quantify the fluorescence intensity with the multispectral analysis. To our knowledge, this is the first time to analyze and quantify the upconversion fluorescence in the small animal imaging.
Keywords: Multispectral imaging, near-infrared, upconversion fluorescence imaging, upconversion nanoparticles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17169409 Comparative Study of Intuitionistic and Generalized Neutrosophic Soft Sets
Authors: Debabrata Mandal
Abstract:
The aim of this paper is to define several operations such as Intersection, Union, OR, AND operations of intuitionistic (resp. generalized) neutrosophic soft sets in the sense of Maji and compare these with intuitionistic (resp. generalized) neutrosophic soft sets in the sense of Said et al via examples. At the end of the paper, a new concept - extension is introduced, which can be used to refine our choices in case of decision making.
Keywords: AND, OR, Union, Intersection, Extension, Decision making.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16979408 Fuzzy Analytic Hierarchy Process for Determination of Supply Chain Performance Evaluation Criteria
Authors: Ibrahim Cil, Onur Kurtcu, H. Ibrahim Demir, Furkan Yener, Yusuf. S. Turkan, Muharrem Unver, Ramazan Evren
Abstract:
Fuzzy AHP (Analytic Hierarchy Process) method is decision-making way at the end of integrating the current AHP method with fuzzy structure. In this study, the processes of production planning, inventory management and purchasing department of a system were analysed and were requested to decide the performance criteria of each area. At this point, the current work processes were analysed by various decision-makers and comparing each criteria by giving points according to 1-9 scale were completed. The criteria were listed in order to their weights by using Fuzzy AHP approach and top three performance criteria of each department were determined. After that, the performance criteria of supply chain consisting of three departments were asked to determine. The processes of each department were compared by decision-makers at the point of building the supply chain performance system and getting the performance criteria. According to the results, the criteria of performance system of supply chain by using Fuzzy AHP were determined for which will be used in the supply chain performance system in the future.
Keywords: AHP, fuzzy, performance evaluation, supply chain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10589407 Soft Cost Elements That Affect Developers’ Decision to Build Green
Authors: Nurul Zahirah M.A., N. Zainul Abidin, Azlan Raofuddin Nuruddin
Abstract:
Despite all the hype about green building, many developers are still resistant to the idea of building green due to the common perception that green building construction is expensive. This contradicts with scholarly findings that identify only a marginal cost premium or none at all given that green design is considered during the design process and planning stage. Nevertheless, cost implications continue to become an issue when deciding to build green. The planning stage is of strategic importance as decisions made at this early stage would influence the project cost thereafter. Using analysis of existing literature, the paper identifies six elements of soft cost that are considered in the planning stage. The elements include consultants, green building consultant, certification, commissioning, market, and tax. Out of the six elements, commissioning represents the bulk of soft cost for buildings seeking green certification. The study concluded that, although hard cost may have a bigger impact on the project cost, but soft cost is the hidden cost which people tend to ignore. Poor consideration of soft cost during planning stage may lead to over-realistic expectations and ultimately, overlooked cost additions.
Keywords: Green building, cost element, soft cost, developer decision.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19809406 Fuzzy Processing of Uncertain Data
Authors: Petr Morávek, Miloš Šeda
Abstract:
In practice, we often come across situations where it is necessary to make decisions based on incomplete or uncertain data. In control systems it may be due to the unknown exact mathematical model, or its excessive complexity (e.g. nonlinearity) when it is necessary to simplify it, respectively, to solve it using a rule base. In the case of databases, searching data we compare a similarity measure with of the requirements of the selection with stored data, where both the select query and the data itself may contain vague terms, for example in the form of linguistic qualifiers. In this paper, we focus on the processing of uncertain data in databases and demonstrate it on the example multi-criteria decision making in the selection of variants, specified by higher number of technical parameters.Keywords: fuzzy logic, linguistic variable, multicriteria decision
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14189405 Brand Position Communication Channel for Rajabhat University
Authors: Narong Anurak
Abstract:
The objective of this research was to study Brand Position Communication Channel in Brand Building in Rajabhat University Affecting Decision Making of Higher Education from of qualitative research and in-depth interview with executive members Rajabhat University and also quantitative by questionnaires which are personal data of students, study of the acceptance and the finding of the information of Rajabhat University, study of pattern or Brand Position Communication Channel affecting the decision making of studying in Rajabhat University and the result of the communication in Brand Position Communication Channel. It is found that online channel and word of mount are highly important and necessary for education business since media channel is a tool and the management of marketing communication to create brand awareness, brand credibility and to achieve the high acclaim in terms of bringing out qualified graduates. Also, off-line channel can enable the institution to survive from the high competition especially in education business regarding management of the Rajabhat University. Therefore, Rajabhat University has to communicate by the various communication channel strategies for brand building for attractive student to make decision making of higher education.
Keywords: Brand Position, Communication Channel, Rajabhat University.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13899404 Developing Rice Disease Analysis System on Mobile via iOS Operating System
Authors: Rujijan Vichivanives, Kittiya Poonsilp, Canasanan Wanavijit
Abstract:
This research aims to create mobile tools to analyze rice disease quickly and easily. The principle of object-oriented software engineering and objective-C language were used for software development methodology and the principle of decision tree technique was used for analysis method. Application users can select the features of rice disease or the color appears on the rice leaves for recognition analysis results on iOS mobile screen. After completing the software development, unit testing and integrating testing method were used to check for program validity. In addition, three plant experts and forty farmers have been assessed for usability and benefit of this system. The overall of users’ satisfaction was found in a good level, 57%. The plant experts give a comment on the addition of various disease symptoms in the database for more precise results of the analysis. For further research, it is suggested that image processing system should be developed as a tool that allows users search and analyze for rice diseases more convenient with great accuracy.
Keywords: Rice disease, analysis system, mobile application, iOS operating system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12939403 An Evaluation of Buying Behaviors and Perceptions of Organic Vegetable Consumers in Chiang Mai Province
Authors: Somdech Rungsrisawat
Abstract:
The purpose of this research is to study of consumer perception and understanding consumer buying behavior that related between satisfied and factors affecting the purchasing. Methodology can be classified between qualitative and quantitative approaches for the qualitative research were interviews from middlemen who bought organic vegetables, and middlemen related to production and marketing system. A questionnaire was utilized as a tool to collect data. Statistics utilized in this research included frequency, percentage, mean, standard deviation, and multiple regression analysis. The result show the reason to decision buying motives is Fresh products of organic vegetables is the most significant factor on individuals’ income, with a b of –.143, t = –2.470, the price of organic vegetables is the most significant factor on individuals’ income, with a b of .176, t = 2.561, p value = .011. The results show that most people with higher income think about the organic products are expensive and have negative attitudes towards organic vegetable as individuals with low and medium income level. Therefore, household income had a significant influence on the purchasing decision.
Keywords: Consumer behaviors, Consumer perceptions, Organic Vegetable.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23169402 Hybrid Anomaly Detection Using Decision Tree and Support Vector Machine
Authors: Elham Serkani, Hossein Gharaee Garakani, Naser Mohammadzadeh, Elaheh Vaezpour
Abstract:
Intrusion detection systems (IDS) are the main components of network security. These systems analyze the network events for intrusion detection. The design of an IDS is through the training of normal traffic data or attack. The methods of machine learning are the best ways to design IDSs. In the method presented in this article, the pruning algorithm of C5.0 decision tree is being used to reduce the features of traffic data used and training IDS by the least square vector algorithm (LS-SVM). Then, the remaining features are arranged according to the predictor importance criterion. The least important features are eliminated in the order. The remaining features of this stage, which have created the highest level of accuracy in LS-SVM, are selected as the final features. The features obtained, compared to other similar articles which have examined the selected features in the least squared support vector machine model, are better in the accuracy, true positive rate, and false positive. The results are tested by the UNSW-NB15 dataset.
Keywords: Intrusion detection system, decision tree, support vector machine, feature selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12399401 Holomorphic Prioritization of Sets within Decagram of Strategic Decision Making of POSM Using Operational Research (OR): Analytic Hierarchy Process (AHP) Analysis
Authors: Elias O. Tembe, Hussain A. Al-Salamin
Abstract:
There is decagram of strategic decisions of operations and production/service management (POSM) within operational research (OR) which must collate, namely: design, inventory, quality, location, process and capacity, layout, scheduling, maintain ace, and supply chain. This paper presents an architectural configuration conceptual framework of a decagram of sets decisions in a form of mathematical complete graph and abelian graph. Mathematically, a complete graph is undirected (UDG), and directed (DG) a relationship where every pair of vertices is connected, collated, confluent, and holomorphic. There has not been any study conducted which, however, prioritizes the holomorphic sets which of POMS within OR field of study. The study utilizes OR structured technique known as The Analytic Hierarchy Process (AHP) analysis for organizing, sorting and prioritizing(ranking) the sets within the decagram of POMS according to their attribution (propensity), and provides an analysis how the prioritization has real-world application within the 21st century.
Keywords: AHP analysis, Decagram, Decagon, Holomorphic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20009400 An Improved Limited Tolerance Rough Set Model
Authors: Chen Wu, Komal Narejo, Dandan Li
Abstract:
Some extended rough set models in incomplete information system cannot distinguish the two objects that have few known attributes and more unknown attributes; some cannot make a flexible and accurate discrimination. In order to solve this problem, this paper suggests an improved limited tolerance rough set model using two thresholds to control what two objects have a relationship between them in limited tolerance relation and to classify objects. Our practical study case shows the model can get fine and reasonable decision results.
Keywords: Decision rule, incomplete information system, limited tolerance relation, rough set model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11949399 Automated Thickness Measurement of Retinal Blood Vessels for Implementation of Clinical Decision Support Systems in Diagnostic Diabetic Retinopathy
Authors: S.Jerald Jeba Kumar, M.Madheswaran
Abstract:
The structure of retinal vessels is a prominent feature, that reveals information on the state of disease that are reflected in the form of measurable abnormalities in thickness and colour. Vascular structures of retina, for implementation of clinical diabetic retinopathy decision making system is presented in this paper. Retinal Vascular structure is with thin blood vessel, whose accuracy is highly dependent upon the vessel segmentation. In this paper the blood vessel thickness is automatically detected using preprocessing techniques and vessel segmentation algorithm. First the capture image is binarized to get the blood vessel structure clearly, then it is skeletonised to get the overall structure of all the terminal and branching nodes of the blood vessels. By identifying the terminal node and the branching points automatically, the main and branching blood vessel thickness is estimated. Results are presented and compared with those provided by clinical classification on 50 vessels collected from Bejan Singh Eye hospital..Keywords: Diabetic retinopathy, Binarization, SegmentationClinical Decision Support Systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20439398 Comparison of Detached Eddy Simulations with Turbulence Modeling
Authors: Muhammad Amjad Sohail, Prof. Yan Chao, Mukkarum Husain
Abstract:
Flow field around hypersonic vehicles is very complex and difficult to simulate. The boundary layers are squeezed between shock layer and body surface. Resolution of boundary layer, shock wave and turbulent regions where the flow field has high values is difficult of capture. Detached eddy simulation (DES) is a modification of a RANS model in which the model switches to a subgrid scale formulation in regions fine enough for LES calculations. Regions near solid body boundaries and where the turbulent length scale is less than the maximum grid dimension are assigned the RANS mode of solution. As the turbulent length scale exceeds the grid dimension, the regions are solved using the LES mode. Therefore the grid resolution is not as demanding as pure LES, thereby considerably cutting down the cost of the computation. In this research study hypersonic flow is simulated at Mach 8 and different angle of attacks to resolve the proper boundary layers and discontinuities. The flow is also simulated in the long wake regions. Mesh is little different than RANS simulations and it is made dense near the boundary layers and in the wake regions to resolve it properly. Hypersonic blunt cone cylinder body with frustrum at angle 5o and 10 o are simulated and there aerodynamics study is performed to calculate aerodynamics characteristics of different geometries. The results and then compared with experimental as well as with some turbulence model (SA Model). The results achieved with DES simulation have very good resolution as well as have excellent agreement with experimental and available data. Unsteady simulations are performed for DES calculations by using duel time stepping method or implicit time stepping. The simulations are performed at Mach number 8 and angle of attack from 0o to 10o for all these cases. The results and resolutions for DES model found much better than SA turbulence model.Keywords: Detached eddy simulation, dual time stepping, hypersonic flow, turbulence modeling
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23499397 Cost Sensitive Feature Selection in Decision-Theoretic Rough Set Models for Customer Churn Prediction: The Case of Telecommunication Sector Customers
Authors: Emel Kızılkaya Aydogan, Mihrimah Ozmen, Yılmaz Delice
Abstract:
In recent days, there is a change and the ongoing development of the telecommunications sector in the global market. In this sector, churn analysis techniques are commonly used for analysing why some customers terminate their service subscriptions prematurely. In addition, customer churn is utmost significant in this sector since it causes to important business loss. Many companies make various researches in order to prevent losses while increasing customer loyalty. Although a large quantity of accumulated data is available in this sector, their usefulness is limited by data quality and relevance. In this paper, a cost-sensitive feature selection framework is developed aiming to obtain the feature reducts to predict customer churn. The framework is a cost based optional pre-processing stage to remove redundant features for churn management. In addition, this cost-based feature selection algorithm is applied in a telecommunication company in Turkey and the results obtained with this algorithm.
Keywords: Churn prediction, data mining, decision-theoretic rough set, feature selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1763