Search results for: Power Transfer Applications.
591 Environmental Modeling of Storm Water Channels
Authors: L. Grinis
Abstract:
Turbulent flow in complex geometries receives considerable attention due to its importance in many engineering applications. It has been the subject of interest for many researchers. Some of these interests include the design of storm water channels. The design of these channels requires testing through physical models. The main practical limitation of physical models is the so called “scale effect”, that is, the fact that in many cases only primary physical mechanisms can be correctly represented, while secondary mechanisms are often distorted. These observations form the basis of our study, which centered on problems associated with the design of storm water channels near the Dead Sea, in Israel. To help reach a final design decision we used different physical models. Our research showed good coincidence with the results of laboratory tests and theoretical calculations, and allowed us to study different effects of fluid flow in an open channel. We determined that problems of this nature cannot be solved only by means of theoretical calculation and computer simulation. This study demonstrates the use of physical models to help resolve very complicated problems of fluid flow through baffles and similar structures. The study applies these models and observations to different construction and multiphase water flows, among them, those that include sand and stone particles, a significant attempt to bring to the testing laboratory a closer association with reality.
Keywords: Baffles, open channel, physical modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1922590 Recent Developments in Speed Control System of Pipeline PIGs for Deepwater Pipeline Applications
Authors: Mohamad Azmi Haniffa, Fakhruldin Mohd Hashim
Abstract:
Pipeline infrastructures normally represent high cost of investment and the pipeline must be free from risks that could cause environmental hazard and potential threats to personnel safety. Pipeline integrity such monitoring and management become very crucial to provide unimpeded transportation and avoiding unnecessary production deferment. Thus proper cleaning and inspection is the key to safe and reliable pipeline operation and plays an important role in pipeline integrity management program and has become a standard industry procedure. In view of this, understanding the motion (dynamic behavior), prediction and control of the PIG speed is important in executing pigging operation as it offers significant benefits, such as estimating PIG arrival time at receiving station, planning for suitable pigging operation, and improves efficiency of pigging tasks. The objective of this paper is to review recent developments in speed control system of pipeline PIGs. The review carried out would serve as an industrial application in a form of quick reference of recent developments in pipeline PIG speed control system, and further initiate others to add-in/update the list in the future leading to knowledge based data, and would attract active interest of others to share their view points.
Keywords: Pipeline Inspection Gauge (PIG), In Line Inspection Tools (ILI), PIG motion, PIG speed control system
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3336589 Impact of Gate Insulation Material and Thickness on Pocket Implanted MOS Device
Authors: Muhibul Haque Bhuyan
Abstract:
This paper reports on the impact study with the variation of the gate insulation material and thickness on different models of pocket implanted sub-100 nm n-MOS device. The gate materials used here are silicon dioxide (SiO2), aluminum silicate (Al2SiO5), silicon nitride (Si3N4), alumina (Al2O3), hafnium silicate (HfSiO4), tantalum pentoxide (Ta2O5), hafnium dioxide (HfO2), zirconium dioxide (ZrO2), and lanthanum oxide (La2O3) upon a p-type silicon substrate material. The gate insulation thickness was varied from 2.0 nm to 3.5 nm for a 50 nm channel length pocket implanted n-MOSFET. There are several models available for this device. We have studied and simulated threshold voltage model incorporating drain and substrate bias effects, surface potential, inversion layer charge, pinch-off voltage, effective electric field, inversion layer mobility, and subthreshold drain current models based on two linear symmetric pocket doping profiles. We have changed the values of the two parameters, viz. gate insulation material and thickness gradually fixing the other parameter at their typical values. Then we compared and analyzed the simulation results. This study would be helpful for the nano-scaled MOS device designers for various applications to predict the device behavior.Keywords: Linear symmetric pocket profile, pocket implanted n-MOS Device, model, impact of gate material, insulator thickness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 394588 A Generalization of Planar Pascal’s Triangle to Polynomial Expansion and Connection with Sierpinski Patterns
Authors: Wajdi Mohamed Ratemi
Abstract:
The very well-known stacked sets of numbers referred to as Pascal’s triangle present the coefficients of the binomial expansion of the form (x+y)n. This paper presents an approach (the Staircase Horizontal Vertical, SHV-method) to the generalization of planar Pascal’s triangle for polynomial expansion of the form (x+y+z+w+r+⋯)n. The presented generalization of Pascal’s triangle is different from other generalizations of Pascal’s triangles given in the literature. The coefficients of the generalized Pascal’s triangles, presented in this work, are generated by inspection, using embedded Pascal’s triangles. The coefficients of I-variables expansion are generated by horizontally laying out the Pascal’s elements of (I-1) variables expansion, in a staircase manner, and multiplying them with the relevant columns of vertically laid out classical Pascal’s elements, hence avoiding factorial calculations for generating the coefficients of the polynomial expansion. Furthermore, the classical Pascal’s triangle has some pattern built into it regarding its odd and even numbers. Such pattern is known as the Sierpinski’s triangle. In this study, a presentation of Sierpinski-like patterns of the generalized Pascal’s triangles is given. Applications related to those coefficients of the binomial expansion (Pascal’s triangle), or polynomial expansion (generalized Pascal’s triangles) can be in areas of combinatorics, and probabilities.Keywords: Generalized Pascal’s triangle, Pascal’s triangle, polynomial expansion, Sierpinski’s triangle, staircase horizontal vertical method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2393587 The Reproducibility and Repeatability of Modified Likelihood Ratio for Forensics Handwriting Examination
Authors: O. Abiodun Adeyinka, B. Adeyemo Adesesan
Abstract:
The forensic use of handwriting depends on the analysis, comparison, and evaluation decisions made by forensic document examiners. When using biometric technology in forensic applications, it is necessary to compute Likelihood Ratio (LR) for quantifying strength of evidence under two competing hypotheses, namely the prosecution and the defense hypotheses wherein a set of assumptions and methods for a given data set will be made. It is therefore important to know how repeatable and reproducible our estimated LR is. This paper evaluated the accuracy and reproducibility of examiners' decisions. Confidence interval for the estimated LR were presented so as not get an incorrect estimate that will be used to deliver wrong judgment in the court of Law. The estimate of LR is fundamentally a Bayesian concept and we used two LR estimators, namely Logistic Regression (LoR) and Kernel Density Estimator (KDE) for this paper. The repeatability evaluation was carried out by retesting the initial experiment after an interval of six months to observe whether examiners would repeat their decisions for the estimated LR. The experimental results, which are based on handwriting dataset, show that LR has different confidence intervals which therefore implies that LR cannot be estimated with the same certainty everywhere. Though the LoR performed better than the KDE when tested using the same dataset, the two LR estimators investigated showed a consistent region in which LR value can be estimated confidently. These two findings advance our understanding of LR when used in computing the strength of evidence in handwriting using forensics.Keywords: Logistic Regression LoR, Kernel Density Estimator KDE, Handwriting, Confidence Interval, Repeatability, Reproducibility.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 481586 Continuous Feature Adaptation for Non-Native Speech Recognition
Authors: Y. Deng, X. Li, C. Kwan, B. Raj, R. Stern
Abstract:
The current speech interfaces in many military applications may be adequate for native speakers. However, the recognition rate drops quite a lot for non-native speakers (people with foreign accents). This is mainly because the nonnative speakers have large temporal and intra-phoneme variations when they pronounce the same words. This problem is also complicated by the presence of large environmental noise such as tank noise, helicopter noise, etc. In this paper, we proposed a novel continuous acoustic feature adaptation algorithm for on-line accent and environmental adaptation. Implemented by incremental singular value decomposition (SVD), the algorithm captures local acoustic variation and runs in real-time. This feature-based adaptation method is then integrated with conventional model-based maximum likelihood linear regression (MLLR) algorithm. Extensive experiments have been performed on the NATO non-native speech corpus with baseline acoustic model trained on native American English. The proposed feature-based adaptation algorithm improved the average recognition accuracy by 15%, while the MLLR model based adaptation achieved 11% improvement. The corresponding word error rate (WER) reduction was 25.8% and 2.73%, as compared to that without adaptation. The combined adaptation achieved overall recognition accuracy improvement of 29.5%, and WER reduction of 31.8%, as compared to that without adaptation. Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3222585 Medical Image Watermark and Tamper Detection Using Constant Correlation Spread Spectrum Watermarking
Authors: Peter U. Eze, P. Udaya, Robin J. Evans
Abstract:
Data hiding can be achieved by Steganography or invisible digital watermarking. For digital watermarking, both accurate retrieval of the embedded watermark and the integrity of the cover image are important. Medical image security in Teleradiology is one of the applications where the embedded patient record needs to be extracted with accuracy as well as the medical image integrity verified. In this research paper, the Constant Correlation Spread Spectrum digital watermarking for medical image tamper detection and accurate embedded watermark retrieval is introduced. In the proposed method, a watermark bit from a patient record is spread in a medical image sub-block such that the correlation of all watermarked sub-blocks with a spreading code, W, would have a constant value, p. The constant correlation p, spreading code, W and the size of the sub-blocks constitute the secret key. Tamper detection is achieved by flagging any sub-block whose correlation value deviates by more than a small value, ℇ, from p. The major features of our new scheme include: (1) Improving watermark detection accuracy for high-pixel depth medical images by reducing the Bit Error Rate (BER) to Zero and (2) block-level tamper detection in a single computational process with simultaneous watermark detection, thereby increasing utility with the same computational cost.
Keywords: Constant correlation, medical image, spread spectrum, tamper detection, watermarking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 980584 Evaluating Machine Learning Techniques for Activity Classification in Smart Home Environments
Authors: Talal Alshammari, Nasser Alshammari, Mohamed Sedky, Chris Howard
Abstract:
With the widespread adoption of the Internet-connected devices, and with the prevalence of the Internet of Things (IoT) applications, there is an increased interest in machine learning techniques that can provide useful and interesting services in the smart home domain. The areas that machine learning techniques can help advance are varied and ever-evolving. Classifying smart home inhabitants’ Activities of Daily Living (ADLs), is one prominent example. The ability of machine learning technique to find meaningful spatio-temporal relations of high-dimensional data is an important requirement as well. This paper presents a comparative evaluation of state-of-the-art machine learning techniques to classify ADLs in the smart home domain. Forty-two synthetic datasets and two real-world datasets with multiple inhabitants are used to evaluate and compare the performance of the identified machine learning techniques. Our results show significant performance differences between the evaluated techniques. Such as AdaBoost, Cortical Learning Algorithm (CLA), Decision Trees, Hidden Markov Model (HMM), Multi-layer Perceptron (MLP), Structured Perceptron and Support Vector Machines (SVM). Overall, neural network based techniques have shown superiority over the other tested techniques.Keywords: Activities of daily living, classification, internet of things, machine learning, smart home.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1785583 A Survey of Various Algorithms for Vlsi Physical Design
Authors: Rajine Swetha R, B. Shekar Babu, Sumithra Devi K.A
Abstract:
Electronic Systems are the core of everyday lives. They form an integral part in financial networks, mass transit, telephone systems, power plants and personal computers. Electronic systems are increasingly based on complex VLSI (Very Large Scale Integration) integrated circuits. Initial electronic design automation is concerned with the design and production of VLSI systems. The next important step in creating a VLSI circuit is Physical Design. The input to the physical design is a logical representation of the system under design. The output of this step is the layout of a physical package that optimally or near optimally realizes the logical representation. Physical design problems are combinatorial in nature and of large problem sizes. Darwin observed that, as variations are introduced into a population with each new generation, the less-fit individuals tend to extinct in the competition of basic necessities. This survival of fittest principle leads to evolution in species. The objective of the Genetic Algorithms (GA) is to find an optimal solution to a problem .Since GA-s are heuristic procedures that can function as optimizers, they are not guaranteed to find the optimum, but are able to find acceptable solutions for a wide range of problems. This survey paper aims at a study on Efficient Algorithms for VLSI Physical design and observes the common traits of the superior contributions.Keywords: Genetic Algorithms, Physical Design, VLSI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1745582 A Deep Learning Framework for Polarimetric SAR Change Detection Using Capsule Network
Authors: Sanae Attioui, Said Najah
Abstract:
The Earth's surface is constantly changing through forces of nature and human activities. Reliable, accurate, and timely change detection is critical to environmental monitoring, resource management, and planning activities. Recently, interest in deep learning algorithms, especially convolutional neural networks, has increased in the field of image change detection due to their powerful ability to extract multi-level image features automatically. However, these networks are prone to drawbacks that limit their applications, which reside in their inability to capture spatial relationships between image instances, as this necessitates a large amount of training data. As an alternative, Capsule Network has been proposed to overcome these shortcomings. Although its effectiveness in remote sensing image analysis has been experimentally verified, its application in change detection tasks remains very sparse. Motivated by its greater robustness towards improved hierarchical object representation, this study aims to apply a capsule network for PolSAR image Change Detection. The experimental results demonstrate that the proposed change detection method can yield a significantly higher detection rate compared to methods based on convolutional neural networks.
Keywords: Change detection, capsule network, deep network, Convolutional Neural Networks, polarimetric synthetic aperture radar images, PolSAR images.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 520581 Model Order Reduction of Linear Time Variant High Speed VLSI Interconnects using Frequency Shift Technique
Authors: J.V.R.Ravindra, M.B.Srinivas,
Abstract:
Accurate modeling of high speed RLC interconnects has become a necessity to address signal integrity issues in current VLSI design. To accurately model a dispersive system of interconnects at higher frequencies; a full-wave analysis is required. However, conventional circuit simulation of interconnects with full wave models is extremely CPU expensive. We present an algorithm for reducing large VLSI circuits to much smaller ones with similar input-output behavior. A key feature of our method, called Frequency Shift Technique, is that it is capable of reducing linear time-varying systems. This enables it to capture frequency-translation and sampling behavior, important in communication subsystems such as mixers, RF components and switched-capacitor filters. Reduction is obtained by projecting the original system described by linear differential equations into a lower dimension. Experiments have been carried out using Cadence Design Simulator cwhich indicates that the proposed technique achieves more % reduction with less CPU time than the other model order reduction techniques existing in literature. We also present applications to RF circuit subsystems, obtaining size reductions and evaluation speedups of orders of magnitude with insignificant loss of accuracy.Keywords: Model order Reduction, RLC, crosstalk
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1662580 Comparison of Phylogenetic Trees of Multiple Protein Sequence Alignment Methods
Authors: Khaddouja Boujenfa, Nadia Essoussi, Mohamed Limam
Abstract:
Multiple sequence alignment is a fundamental part in many bioinformatics applications such as phylogenetic analysis. Many alignment methods have been proposed. Each method gives a different result for the same data set, and consequently generates a different phylogenetic tree. Hence, the chosen alignment method affects the resulting tree. However in the literature, there is no evaluation of multiple alignment methods based on the comparison of their phylogenetic trees. This work evaluates the following eight aligners: ClustalX, T-Coffee, SAGA, MUSCLE, MAFFT, DIALIGN, ProbCons and Align-m, based on their phylogenetic trees (test trees) produced on a given data set. The Neighbor-Joining method is used to estimate trees. Three criteria, namely, the dNNI, the dRF and the Id_Tree are established to test the ability of different alignment methods to produce closer test tree compared to the reference one (true tree). Results show that the method which produces the most accurate alignment gives the nearest test tree to the reference tree. MUSCLE outperforms all aligners with respect to the three criteria and for all datasets, performing particularly better when sequence identities are within 10-20%. It is followed by T-Coffee at lower sequence identity (<10%), Align-m at 20-30% identity, and ClustalX and ProbCons at 30-50% identity. Also, it is noticed that when sequence identities are higher (>30%), trees scores of all methods become similar.Keywords: Multiple alignment methods, phylogenetic trees, Neighbor-Joining method, Robinson-Foulds distance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1831579 A PIM (Processor-In-Memory) for Computer Graphics : Data Partitioning and Placement Schemes
Authors: Jae Chul Cha, Sandeep K. Gupta
Abstract:
The demand for higher performance graphics continues to grow because of the incessant desire towards realism. And, rapid advances in fabrication technology have enabled us to build several processor cores on a single die. Hence, it is important to develop single chip parallel architectures for such data-intensive applications. In this paper, we propose an efficient PIM architectures tailored for computer graphics which requires a large number of memory accesses. We then address the two important tasks necessary for maximally exploiting the parallelism provided by the architecture, namely, partitioning and placement of graphic data, which affect respectively load balances and communication costs. Under the constraints of uniform partitioning, we develop approaches for optimal partitioning and placement, which significantly reduce search space. We also present heuristics for identifying near-optimal placement, since the search space for placement is impractically large despite our optimization. We then demonstrate the effectiveness of our partitioning and placement approaches via analysis of example scenes; simulation results show considerable search space reductions, and our heuristics for placement performs close to optimal – the average ratio of communication overheads between our heuristics and the optimal was 1.05. Our uniform partitioning showed average load-balance ratio of 1.47 for geometry processing and 1.44 for rasterization, which is reasonable.Keywords: Data Partitioning and Placement, Graphics, PIM, Search Space Reduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1505578 Real Time Acquisition and Analysis of Neural Response for Rehabilitative Control
Authors: Dipali Bansal, Rashima Mahajan, Shweta Singh, Dheeraj Rathee, Sujit Roy
Abstract:
Non-invasive Brain Computer Interface like Electroencephalography (EEG) which directly taps neurological signals, is being widely explored these days to connect paralytic patients/elderly with the external environment. However, in India the research is confined to laboratory settings and is not reaching the mass for rehabilitation purposes. An attempt has been made in this paper to analyze real time acquired EEG signal using cost effective and portable headset unit EMOTIV. Signal processing of real time acquired EEG is done using EEGLAB in MATLAB and EDF Browser application software platforms. Independent Component Analysis algorithm of EEGLAB is explored to identify deliberate eye blink in the attained neural signal. Time Frequency transforms and Data statistics obtained using EEGLAB along with component activation results of EDF browser clearly indicate voluntary eye blink in AF3 channel. The spectral analysis indicates dominant frequency component at 1.536000Hz representing the delta wave component of EEG during voluntary eye blink action. An algorithm is further designed to generate an active high signal based on thoughtful eye blink that can be used for plethora of control applications for rehabilitation.
Keywords: Brain Computer Interface, EDF Browser, EEG, EEGLab, EMOTIV, Real time Acquisition
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3248577 The Nexus between Wind Energy, Biodiversity Protection and Social Acceptance: Evidence of Good Practices from Greece, Latvia and Poland
Authors: Christos Bouras, Eirini Stergiou, Charitini Karakostaki, Vasileios Tzanos, Vasileios Kokkinos
Abstract:
Wind power represents a major pathway to curtailing greenhouse gas emissions and thus reducing the rate of climate change. A wind turbine runs practically emission-free for 20 years, representing one of the most environmentally sustainable sources of energy. Nevertheless, environmental and biodiversity concerns can often slow down or halt the deployment of wind farms due to local public opposition. This opposition is often fuelled by poor relationships between wind energy stakeholders and civil society, which in many cases led to conflictual protests and property damage. In this context, addressing these concerns is essential in order to facilitate the proliferation of wind farms in Europe and the phase-out of fossil fuels from the energy mix. The aim of this study is to identify a number of good practices and cases to avoid increasing biodiversity protection at all stages of wind farms’ lifecycle in three participating countries, namely Greece, Latvia, and Poland. The results indicate that although available technological solutions are already being exploited worldwide, in these countries, there is still room for improvement. To address this gap, a set of policy recommendations is proposed to accomplish the wind energy targets in the near future while simultaneously mitigating the pertinent biodiversity risks.
Keywords: Biodiversity protection, environmental impact, social acceptance, wind energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 276576 Vibration of a Beam on an Elastic Foundation Using the Variational Iteration Method
Authors: Desmond Adair, Kairat Ismailov, Martin Jaeger
Abstract:
Modelling of Timoshenko beams on elastic foundations has been widely used in the analysis of buildings, geotechnical problems, and, railway and aerospace structures. For the elastic foundation, the most widely used models are one-parameter mechanical models or two-parameter models to include continuity and cohesion of typical foundations, with the two-parameter usually considered the better of the two. Knowledge of free vibration characteristics of beams on an elastic foundation is considered necessary for optimal design solutions in many engineering applications, and in this work, the efficient and accurate variational iteration method is developed and used to calculate natural frequencies of a Timoshenko beam on a two-parameter foundation. The variational iteration method is a technique capable of dealing with some linear and non-linear problems in an easy and efficient way. The calculations are compared with those using a finite-element method and other analytical solutions, and it is shown that the results are accurate and are obtained efficiently. It is found that the effect of the presence of the two-parameter foundation is to increase the beam’s natural frequencies and this is thought to be because of the shear-layer stiffness, which has an effect on the elastic stiffness. By setting the two-parameter model’s stiffness parameter to zero, it is possible to obtain a one-parameter foundation model, and so, comparison between the two foundation models is also made.
Keywords: Timoshenko beam, variational iteration method, two-parameter elastic foundation model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 988575 Efficient Program Slicing Algorithms for Measuring Functional Cohesion and Parallelism
Authors: Jehad Al Dallal
Abstract:
Program slicing is the task of finding all statements in a program that directly or indirectly influence the value of a variable occurrence. The set of statements that can affect the value of a variable at some point in a program is called a program slice. In several software engineering applications, such as program debugging and measuring program cohesion and parallelism, several slices are computed at different program points. In this paper, algorithms are introduced to compute all backward and forward static slices of a computer program by traversing the program representation graph once. The program representation graph used in this paper is called Program Dependence Graph (PDG). We have conducted an experimental comparison study using 25 software modules to show the effectiveness of the introduced algorithm for computing all backward static slices over single-point slicing approaches in computing the parallelism and functional cohesion of program modules. The effectiveness of the algorithm is measured in terms of time execution and number of traversed PDG edges. The comparison study results indicate that using the introduced algorithm considerably saves the slicing time and effort required to measure module parallelism and functional cohesion.
Keywords: Backward slicing, cohesion measure, forward slicing, parallelism measure, program dependence graph, program slicing, static slicing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1458574 Vision-Based Collision Avoidance for Unmanned Aerial Vehicles by Recurrent Neural Networks
Authors: Yao-Hong Tsai
Abstract:
Due to the sensor technology, video surveillance has become the main way for security control in every big city in the world. Surveillance is usually used by governments for intelligence gathering, the prevention of crime, the protection of a process, person, group or object, or the investigation of crime. Many surveillance systems based on computer vision technology have been developed in recent years. Moving target tracking is the most common task for Unmanned Aerial Vehicle (UAV) to find and track objects of interest in mobile aerial surveillance for civilian applications. The paper is focused on vision-based collision avoidance for UAVs by recurrent neural networks. First, images from cameras on UAV were fused based on deep convolutional neural network. Then, a recurrent neural network was constructed to obtain high-level image features for object tracking and extracting low-level image features for noise reducing. The system distributed the calculation of the whole system to local and cloud platform to efficiently perform object detection, tracking and collision avoidance based on multiple UAVs. The experiments on several challenging datasets showed that the proposed algorithm outperforms the state-of-the-art methods.Keywords: Unmanned aerial vehicle, object tracking, deep learning, collision avoidance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 964573 Robust Sensorless Speed Control of Induction Motor with DTFC and Fuzzy Speed Regulator
Authors: Jagadish H. Pujar, S. F. Kodad
Abstract:
Recent developments in Soft computing techniques, power electronic switches and low-cost computational hardware have made it possible to design and implement sophisticated control strategies for sensorless speed control of AC motor drives. Such an attempt has been made in this work, for Sensorless Speed Control of Induction Motor (IM) by means of Direct Torque Fuzzy Control (DTFC), PI-type fuzzy speed regulator and MRAS speed estimator strategy, which is absolutely nonlinear in its nature. Direct torque control is known to produce quick and robust response in AC drive system. However, during steady state, torque, flux and current ripple occurs. So, the performance of conventional DTC with PI speed regulator can be improved by implementing fuzzy logic techniques. Certain important issues in design including the space vector modulated (SVM) 3-Ф voltage source inverter, DTFC design, generation of reference torque using PI-type fuzzy speed regulator and sensor less speed estimator have been resolved. The proposed scheme is validated through extensive numerical simulations on MATLAB. The simulated results indicate the sensor less speed control of IM with DTFC and PI-type fuzzy speed regulator provides satisfactory high dynamic and static performance compare to conventional DTC with PI speed regulator.Keywords: Sensor-less Speed Estimator, Fuzzy Logic Control(FLC), SVM, DTC, DTFC, IM, fuzzy speed regulator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2502572 Predictive Functional Control with Disturbance Observer for Tendon-Driven Balloon Actuator
Authors: Jun-ya Nagase, Toshiyuki Satoh, Norihiko Saga, Koichi Suzumori
Abstract:
In recent years, Japanese society has been aging, engendering a labor shortage of young workers. Robots are therefore expected to perform tasks such as rehabilitation, nursing elderly people, and day-to-day work support for elderly people. The pneumatic balloon actuator is a rubber artificial muscle developed for use in a robot hand in such environments. This actuator has a long stroke and a high power-to-weight ratio compared with the present pneumatic artificial muscle. Moreover, the dynamic characteristics of this actuator resemble those of human muscle. This study evaluated characteristics of force control of balloon actuator using a predictive functional control (PFC) system with disturbance observer. The predictive functional control is a model-based predictive control (MPC) scheme that predicts the future outputs of the actual plants over the prediction horizon and computes the control effort over the control horizon at every sampling instance. For this study, a 1-link finger system using a pneumatic balloon actuator is developed. Then experiments of PFC control with disturbance observer are performed. These experiments demonstrate the feasibility of its control of a pneumatic balloon actuator for a robot hand.
Keywords: Disturbance observer, Pneumatic balloon, Predictive functional control, Rubber artificial muscle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2427571 The Effects of Whole-Body Vibration Training on Jump Performance in Handball Athletes
Authors: Yen-Ting Wang, Shou-Jing Guo, Hsiu-Kuang Chang, Kenny Wen-Chyuan Chen, Alex J.Y. Lee
Abstract:
This study examined the effects of eight weeks of whole-body vibration training (WBVT) on vertical and decuple jump performance in handball athletes. Sixteen collegiate Level I handball athletes volunteered for this study. They were divided equally as control group and experimental group (EG). During the period of the study, all athletes underwent the same handball specific training, but the EG received additional WBVT (amplitude: 2 mm, frequency: 20 - 40 Hz) three time per week for eight consecutive weeks. The vertical jump performance was evaluated according to the maximum height of squat jump (SJ) and countermovement jump (CMJ). Single factor ANCOVA was used to examine the differences in each parameter between the groups after training with the pretest values as a covariate. The statistic significance was set at p < .05. After 8 weeks WBVT, the EG had significantly improved the maximal height of SJ (40.92 ± 2.96 cm vs. 48.40 ± 4.70 cm, F = 5.14, p < .05) and the maximal height CMJ (47.25 ± 7.48 cm vs. 52.20 ± 6.25 cm, F = 5.31, p < .05). 8 weeks of additional WBVT could improve the vertical and decuple jump performance in handball athletes. Enhanced motor unit synchronization and firing rates, facilitated muscular contraction stretch-shortening cycle, and improved lower extremity neuromuscular coordination could account for these enhancements.
Keywords: Muscle strength, explosive power, squat jump, and countermovement jump.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2125570 An Investigation of Current Potato Nitrogen Fertility Programs' Contribution to Ground Water Contamination
Authors: Brian H. Marsh
Abstract:
Nitrogen fertility is an important component for optimum potato yield and quality. Best management practices are necessary in regards to N applications to achieve these goals without applying excess N with may contribute to ground water contamination. Eight potato fields in the Southern San Joaquin Valley were sampled for nitrogen inputs and uptake, tuber and vine dry matter and residual soil nitrate-N. The fields had substantial soil nitrate-N prior to the potato crop. Nitrogen fertilizer was applied prior to planting and in irrigation water as needed based on in-season petiole sampling in accordance with published recommendations. Average total nitrogen uptake was 237 kg ha-1 on 63.5 Mg ha-1 tuber yield and nitrogen use efficiency was very good at 81 percent. Sixty-nine percent of the plant nitrogen was removed in tubers. Soil nitrate-N increased 14 percent from pre-plant to post-harvest averaged across all fields and was generally situated in the upper soil profile. Irrigation timing and amount applied did not move water into the lower profile except for a single location where nitrate also moved into the lower soil profile. Pre-plant soil analysis is important information to be used. Rotation crops having deeper rooting growth would be able to utilize nitrogen that remained in the soil profile.Keywords: Potato, nitrogen fertilization, leaching potential, irrigation management
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1715569 Understanding the Selectional Preferences of the Twitter Mentions Network
Authors: R. Sudhesh Solomon, P. Y. K. L. Srinivas, Abhay Narayan, Amitava Das
Abstract:
Users in social networks either unicast or broadcast their messages. At mention is the popular way of unicasting for Twitter whereas general tweeting could be considered as broadcasting method. Understanding the information flow and dynamics within a Social Network and modeling the same is a promising and an open research area called Information Diffusion. This paper seeks an answer to a fundamental question - understanding if the at-mention network or the unicasting pattern in social media is purely random in nature or is there any user specific selectional preference? To answer the question we present an empirical analysis to understand the sociological aspects of Twitter mentions network within a social network community. To understand the sociological behavior we analyze the values (Schwartz model: Achievement, Benevolence, Conformity, Hedonism, Power, Security, Self-Direction, Stimulation, Traditional and Universalism) of all the users. Empirical results suggest that values traits are indeed salient cue to understand how the mention-based communication network functions. For example, we notice that individuals possessing similar values unicast among themselves more often than with other value type people. We also observe that traditional and self-directed people do not maintain very close relationship in the network with the people of different values traits.Keywords: Social network analysis, information diffusion, personality and values, Twitter Mentions Network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 762568 A Self Supervised Bi-directional Neural Network (BDSONN) Architecture for Object Extraction Guided by Beta Activation Function and Adaptive Fuzzy Context Sensitive Thresholding
Authors: Siddhartha Bhattacharyya, Paramartha Dutta, Ujjwal Maulik, Prashanta Kumar Nandi
Abstract:
A multilayer self organizing neural neural network (MLSONN) architecture for binary object extraction, guided by a beta activation function and characterized by backpropagation of errors estimated from the linear indices of fuzziness of the network output states, is discussed. Since the MLSONN architecture is designed to operate in a single point fixed/uniform thresholding scenario, it does not take into cognizance the heterogeneity of image information in the extraction process. The performance of the MLSONN architecture with representative values of the threshold parameters of the beta activation function employed is also studied. A three layer bidirectional self organizing neural network (BDSONN) architecture comprising fully connected neurons, for the extraction of objects from a noisy background and capable of incorporating the underlying image context heterogeneity through variable and adaptive thresholding, is proposed in this article. The input layer of the network architecture represents the fuzzy membership information of the image scene to be extracted. The second layer (the intermediate layer) and the final layer (the output layer) of the network architecture deal with the self supervised object extraction task by bi-directional propagation of the network states. Each layer except the output layer is connected to the next layer following a neighborhood based topology. The output layer neurons are in turn, connected to the intermediate layer following similar topology, thus forming a counter-propagating architecture with the intermediate layer. The novelty of the proposed architecture is that the assignment/updating of the inter-layer connection weights are done using the relative fuzzy membership values at the constituent neurons in the different network layers. Another interesting feature of the network lies in the fact that the processing capabilities of the intermediate and the output layer neurons are guided by a beta activation function, which uses image context sensitive adaptive thresholding arising out of the fuzzy cardinality estimates of the different network neighborhood fuzzy subsets, rather than resorting to fixed and single point thresholding. An application of the proposed architecture for object extraction is demonstrated using a synthetic and a real life image. The extraction efficiency of the proposed network architecture is evaluated by a proposed system transfer index characteristic of the network.Keywords: Beta activation function, fuzzy cardinality, multilayer self organizing neural network, object extraction,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1573567 Leveraging Hyperledger Iroha for the Issuance and Verification of Higher-Education Certificates
Authors: Vasiliki Vlachou, Christos Kontzinos, Ourania Markaki, Panagiotis Kokkinakos, Vagelis Karakolis, John Psarras
Abstract:
Higher Education is resisting the pull of technology, especially as this concerns the issuance and verification of degrees and certificates. It is widely known that education certificates are largely produced in paper form making them vulnerable to damage while holders of such certificates are dependent on the universities and other issuing organisations. QualiChain is an EU Horizon 2020 (H2020) research project aiming to transform and revolutionise the domain of public education and its ties with the job market by leveraging blockchain, analytics and decision support to develop a platform for the verification and sharing of education certificates. Blockchain plays an integral part in the QualiChain solution in providing a trustworthy environment to store, share and manage such accreditations. Under the context of this paper, three prominent blockchain platforms (Ethereum, Hyperledger Fabric, Hyperledger Iroha) were considered as a means of experimentation for creating a system with the basic functionalities that will be needed for trustworthy degree verification. The methodology and respective system developed and presented in this paper used Hyperledger Iroha and proved that this specific platform can be used to easily develop decentralize applications. Future papers will attempt to further experiment with other blockchain platforms and assess which has the best potential.
Keywords: Blockchain, degree verification, higher education certificates, Hyperledger Iroha.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 844566 Suppression of Narrowband Interference in Impulse Radio Based High Data Rate UWB WPAN Communication System Using NLOS Channel Model
Authors: Bikramaditya Das, Susmita Das
Abstract:
Study on suppression of interference in time domain equalizers is attempted for high data rate impulse radio (IR) ultra wideband communication system. The narrow band systems may cause interference with UWB devices as it is having very low transmission power and the large bandwidth. SRAKE receiver improves system performance by equalizing signals from different paths. This enables the use of SRAKE receiver techniques in IRUWB systems. But Rake receiver alone fails to suppress narrowband interference (NBI). A hybrid SRake-MMSE time domain equalizer is proposed to overcome this by taking into account both the effect of the number of rake fingers and equalizer taps. It also combats intersymbol interference. A semi analytical approach and Monte-Carlo simulation are used to investigate the BER performance of SRAKEMMSE receiver on IEEE 802.15.3a UWB channel models. Study on non-line of sight indoor channel models (both CM3 and CM4) illustrates that bit error rate performance of SRake-MMSE receiver with NBI performs better than that of Rake receiver without NBI. We show that for a MMSE equalizer operating at high SNR-s the number of equalizer taps plays a more significant role in suppressing interference.
Keywords: IR-UWB, UWB, IEEE 802.15.3a, NBI, data rate, bit error rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1699565 Creating a Profound Sense of Comfort to Stimulate Workers’ Innovation and Productivity: Exploring Research and Case Study Applications
Authors: Rana Bazaid, Debajyoti Pati
Abstract:
Purpose: The aim of this research is to explore and discuss innovation-workspaces, and how the design of the workspace has the potential to boost the work process and encourage employees’ satisfaction, leading to inventive and creative results. Background: The relationship between the workers and the work environment has a strong potential to enhance work outcomes when optimized for work goals. Innovation-work environment can benefit employees’ satisfaction, health, and performance. To understand this complex relationship, this research explores innovation-work environments. Methods: A review of 26 peer-reviewed articles, seven books, and 23 companies’ websites was conducted; in addition, five case studies were analyzed to deduce appropriate examples for the study. Results: The research found all successful five innovation environments focused on two aspects: first, workers’ satisfaction and comfort, which includes a focus on physical, functional, and psychological comfort; second aspect, all five centers were diverse work environments that addressed workers’ needs, design for individuals and teamwork, design for workers’ freedom, and design for increasing interaction. Conclusion: understanding individuals' needs and creating work environments that enhance interaction between workers and with the space are key aspects of successful innovation-work environments.
Keywords: Innovation-workspace, productivity, work environment, workers’ satisfaction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 607564 Requirements Driven Multiple View Paradigm for Developing Security Architecture
Authors: K. Chandra Sekaran
Abstract:
This paper describes a paradigmatic approach to develop architecture of secure systems by describing the requirements from four different points of view: that of the owner, the administrator, the user, and the network. Deriving requirements and developing architecture implies the joint elicitation and describing the problem and the structure of the solution. The view points proposed in this paper are those we consider as requirements towards their contributions as major parties in the design, implementation, usage and maintenance of secure systems. The dramatic growth of the technology of Internet and the applications deployed in World Wide Web have lead to the situation where the security has become a very important concern in the development of secure systems. Many security approaches are currently being used in organizations. In spite of the widespread use of many different security solutions, the security remains a problem. It is argued that the approach that is described in this paper for the development of secure architecture is practical by all means. The models representing these multiple points of view are termed the requirements model (views of owner and administrator) and the operations model (views of user and network). In this paper, this multiple view paradigm is explained by first describing the specific requirements and or characteristics of secure systems (particularly in the domain of networks) and the secure architecture / system development methodology.
Keywords: Multiple view paradigms, requirements model, operations model, secure system, owner, administrator, user, network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1378563 Renewable Energy Industry Trends and Its Contributions to the Development of Energy Resilience in an Era of Accelerating Climate Change
Authors: A. T. Asutosh, J. Woo, M. Kouhirostami, M. Sam, A. Khantawang, C. Cuales, W. Ryor, C. Kibert
Abstract:
Climate change and global warming vortex have grown to alarming proportions. Therefore, the need for a shift in the conceptualization of energy production is paramount. Energy practices have been created in the current situation. Fossil fuels continue their prominence, at the expense of renewable sources. Despite this abundance, a large percentage of the world population still has no access to electricity but there have been encouraging signs in global movement from nonrenewable to renewable energy but means to reverse climate change have been elusive. Worldwide, organizations have put tremendous effort into innovation. Conferences and exhibitions act as a platform that allows a broad exchange of information regarding trends in the renewable energy field. The Solar Power International (SPI) conference and exhibition is a gathering of concerned activists, and probably the largest convention of its kind. This study investigates current development in the renewable energy field, analyzing means by which industry is being applied to the issue. In reviewing the 2019 SPI conference, it was found innovations in recycling and assessing the environmental impacts of the solar products that need critical attention. There is a huge movement in the electrical storage but there exists a large gap in the development of security systems. This research will focus on solar energy, but impacts will be relevant to the entire renewable energy market.
Keywords: Climate change, renewable energy, solar, trends, research, SPI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1174562 Anomaly Detection in a Data Center with a Reconstruction Method Using a Multi-Autoencoders Model
Authors: Victor Breux, Jérôme Boutet, Alain Goret, Viviane Cattin
Abstract:
Early detection of anomalies in data centers is important to reduce downtimes and the costs of periodic maintenance. However, there is little research on this topic and even fewer on the fusion of sensor data for the detection of abnormal events. The goal of this paper is to propose a method for anomaly detection in data centers by combining sensor data (temperature, humidity, power) and deep learning models. The model described in the paper uses one autoencoder per sensor to reconstruct the inputs. The auto-encoders contain Long-Short Term Memory (LSTM) layers and are trained using the normal samples of the relevant sensors selected by correlation analysis. The difference signal between the input and its reconstruction is then used to classify the samples using feature extraction and a random forest classifier. The data measured by the sensors of a data center between January 2019 and May 2020 are used to train the model, while the data between June 2020 and May 2021 are used to assess it. Performances of the model are assessed a posteriori through F1-score by comparing detected anomalies with the data center’s history. The proposed model outperforms the state-of-the-art reconstruction method, which uses only one autoencoder taking multivariate sequences and detects an anomaly with a threshold on the reconstruction error, with an F1-score of 83.60% compared to 24.16%.
Keywords: Anomaly detection, autoencoder, data centers, deep learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 756